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Abstract

In this paper, we describe Dunamu ML’s sub-
mission to the Financial Misinformation Detec-
tion (FMD) 2025 shared task. To address the
low-resource challenge in FMD, we augmented
a general domain misinformation detection
dataset for training. We first collected claims,
contexts, and misinformation labels from a pub-
lic dataset. Then, we generated evidence for
each label based on a closed LLM with few-
shot examples extracted from the FMD training
dataset. Finally, we oversampled the training
data specific to the financial domain and aug-
mented it with the generated data to perform su-
pervised fine-tuning (SFT) on the LLM. When
evaluated on the blind test dataset, our model
achieved an F1 score of 84.67 in misinforma-
tion classification and a ROUGE-1 score of
81.21 in evidence generation, ranking first on
the leaderboard in both aspects.

1 Introduction

Misinformation detection is a very important is-
sue in this era, where information spreads quickly
through social media (Chung et al., 2023). Fur-
thermore, the evolving landscape of the applica-
tion of large language models (LLMs) which often
generate false information, known as “hallucina-
tion” (Huang et al., 2024), further highlights the
importance of fact verification. Especially in the
financial industry, the ability to discern fake news
is essential for making various decisions based on
information (Rangapur et al., 2023). It is crucial
not only to discern whether it is fake news or not
but also to have a clear understanding of the evi-
dence behind it to make more accurate financial
decisions.

Financial Misinformation Detection (FMD)1

Challenge aims to create a specialized LLM that
excels in pinpointing financial misinformation and

*Equal contribution.
1https://coling2025fmd.thefin.ai/home

articulating its findings. This challenge requires
participants to be provided with a claim and the
context related to that claim and to train a model
that can both determine whether the claim is true,
false, or not enough information and generate con-
cise explanations (Liu et al., 2024).

In this work, to overcome the low-resource set-
ting of FMD, we address the above issues by lever-
aging data augmentation (DA), which enriches the
diversity of the dataset without constructing new
data (Feng et al., 2021). We first found a public
general domain dataset built on the same exter-
nal resources to overcome the data deficiency of
the financial sector (Yao et al., 2023). Then, we
proceeded with data augmentation using a closed
LLM (e.g. GPT-4). Finally, we conducted super-
vised fine-tuning (SFT) with the oversampled given
dataset in the financial sector and the augmented
dataset in the general domain.

In the experiment using the FMD 2025 hid-
den test set, we achieved an F1 score of 84.67 in
classifying misinformation and a ROUGE-1 score
of 81.21 in generating evidence, ranking first on
the leaderboard in both aspects. Moreover, we
demonstrated that our data augmentation method
improves the performance of SFT on FMD through
ablation experiments.

2 Methodology

2.1 Data Augmentation

External Data Resource To address low-
resource challenges, we found public fact-checking
dataset, Mocheg (Yao et al., 2023)2 constructed
from the same web sources (Snopes3 and Politi-
Fact4). The dataset provided by the task organizer
is limited to the financial domain, whereas this
dataset encompasses a general domain. This data

2https://github.com/VT-NLP/Mocheg
3https://www.snopes.com/
4https://www.politifact.com/

https://coling2025fmd.thefin.ai/home
https://github.com/VT-NLP/Mocheg
https://www.snopes.com/
https://www.politifact.com/


298

External data
Claim: Is It Dangerous to Wear 
a COVID-19 Protective Mask for 
Too Long?

Context: During the COVID-19 
coronavirus disease pandemic 
in the spring of …

Training data

Claim: … 

Context: …

Evidence: …

Augmented data Fine-tuning

Embedding

Embedding

Vector search

Claim: <claim of retrieved sample>

Context: <context of retrieved sample>

Evidence: <evidence of retrieved sample> 

Claim: Is It Dangerous to Wear a COVID-19                          
Protective Mask for Too Long?
Context: During the COVID-19 coronavirus …

TOP N

Label: … 

Label: False 

× N

Evidence:Context Database

Generate 
Evidence

Claim: Is It Dangerous to Wear a COVID-19 Protective Mask 
for Too Long?
Context: During the COVID-19 coronavirus disease …

Label: False 

Evidence: In all, little research has been done on the 
impact …

Prompt

Figure 1: Overview of the proposed method. Our method comprises two core components: data augmentation and
supervised fine-tuning.

consists of 33,880 ruling statements where each
statement is mapped with a claim annotated with a
truthfulness label. We automatically generated the
evidence on this data using closed LLM.

Augmentation Method We applied in-context
learning to generate evidence for each claim. We
provide the LLM with the claim, context, and
misinformation label to generate evidence, as pre-
sented in Listing 1. To generate evidence in a for-
mat similar to that in the training data, we extracted
samples from the training data and provided them
as few-shot examples. The criterion for selecting
the few-shot examples was based on the similarity
of sentence embeddings. As shown in Figure 1, for
the sample for which we want to generate evidence,
we selected the top-k samples from the training
data with the closest context embedding similarity.
Before applying augmentation, we experimented
to find the appropriate closed LLM, the appropriate
search key, and the number of few-shots. Detailed
experimental results are presented in Section 3.3.3.
Generate an explanation for why a claim

is True or False or NEI (Not Enough
Information) based on the given
context.

Your answer should be a part of the
given context , meaning it should be
extractive.

<examples >
# Claim: {example_claim}
# Context: {example_justification}
# Label: {example_label}
# Evidence: {example_evidence}

...
</examples >

Following the examples above , extract
the evidence from the context that
supports the label.

# Claim: {claim}
# Context: {justification}
# Label: {label}
# Evidence:

Listing 1: Prompt template for evidence generation.

2.2 LLM Fine-Tuning
We oversampled the given training data and com-
bined it with the generated data for training. We
performed supervised fine-tuning (SFT) (Ouyang
et al., 2022) on the open-source LLM using the
prompt shown in Listing 2. The LLM is fine-tuned
to take a task instruction, claim, and context as
input to generate a label and evidence. In other
words, it is trained to generate the text that follows
"# Prediction:".
Please determine whether the claim is

True , False , or Not Enough
Information (NEI) based on the given
context , and provide appropriate

evidence. Note that your evidence
must be extractive from the context.

# Claim: {claim}
# Context: {justification}
# Prediction: {label}
# Evidence: {evidence}

Listing 2: Prompt template for supervised fine-tuning.

3 Experiments

3.1 Experimental Setup
We used only 85% of the given 1,953 training data
for training, and the remaining 15% was used as
the dev set. The data generated through our data
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Team F1 ROUGE-1 ROUGE-2 ROUGE-L

Dunamu ML 84.67 81.21 78.73 79.69
GGbond 79.55 78.92 75.17 76.63
1-800-SHARED-TASKS 82.83 72.53 67.63 69.11
Drocks 78.77 74.29 69.83 71.42
GMU-MU 75.75 57.89 49.56 51.45
Ask Asper 78.24 51.06 40.25 42.21
Team FMD LLM 64.48 51.78 44.28 46.07
Capybara 72.21 30.33 10.14 17.40

Table 1: The F1 and ROUGE scores for the blind test set.

Methodology F1 ROUGE-1 ROUGE-2 ROUGE-L

only train data 83.73 79.06 75.99 77.17
only generated data 83.33 53.32 44.62 47.15
gpt-4 74.80 56.37 47.95 50.40
train data + generated data (ours) 85.37 79.37 76.70 77.78

Table 2: Ablation study for the dev set.

augmentation process amounted to 23,546. As a
final training dataset, we oversampled the FMD
train dataset that consists of 1,660 samples 5 times
and merged them with the generated dataset as
described in . For the evaluation metrics, the classi-
fication performance for True, False, and NEI was
evaluated using the Micro-F1, while the generation
of evidence was assessed using the ROUGE score.

3.2 Implementation Details

In the data augmentation process, we uti-
lized GPT-4-0613 (OpenAI et al., 2024) as the
closed language model for evidence generation.
For few-shot selection, we employed OpenAI’s
text-embedding-3-large for sentence embed-
ding and used cosine similarity as the similarity
metric. Additionally, we employed the FAISS
(Douze et al., 2024) library for conducting the em-
bedding similarity search.

For fine-tuning, we used Llama-3.1-8B (Dubey
et al., 2024) as the pre-trained LLM, and set the
maximum sequence length to 8192. For fine-tuning,
we utilized eight NVIDIA A100 80GB GPUs in a
single node. We used the AdaFactor optimizer
(Shazeer and Stern, 2018) with a learning rate
of 3e-4 and a cosine scheduler. For parameter-
efficient fine-tuning, we used QLoRA (Dettmers
et al., 2024) with r = 8 and α = 16. We applied
early stopping with 5 epochs, and the per-device
batch size was set to 2. During inference, we em-

ployed beam search decoding with a beam size of
3.

3.3 Result and Analysis

3.3.1 Main Result
Table 1 presents the F1 and ROUGE scores on
the blind test set. Our proposed method achieved
an F1 score of 84.67 and a ROUGE-1 score of
81.21, which are the highest scores in both F1 and
ROUGE metrics on the leaderboard. This result
demonstrates the effectiveness of our data augmen-
tation and fine-tuning approach in both misinfor-
mation classification and evidence generation.

3.3.2 The Effect of Data Augmentation
To further explore the effect of data augmentation,
we conducted an ablation study with the follow-
ing settings: 1) fine-tuning only with the given
training data, 2) generation based on GPT-4, 3)
fine-tuning only with the generated dataset, and 4)
fine-tuning utilizing both the given training data
and the generated data, as proposed. The ablation
results for the development set are presented in Ta-
ble 2. When we incorporated the augmented data
for fine-tuning, the F1 score improved by +1.60
and the ROUGE-1 score by +0.31 compared to us-
ing only the given training data. This validates that
our data augmentation contributed to the improve-
ment in performance. When we generated labels
and evidence using GPT-4, the performance signifi-
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Model Search key # few-shot ROUGE-1

gpt-4 claim 2 55.48
gpt-4 claim 3 55.45
gpt-4 just_head 2 56.37
gpt-4 just_tail 2 55.78

gpt-4o claim 2 42.73
gpt-4o claim 10 50.67
gpt-4o claim 20 53.19
gpt-4o claim 30 51.30
gpt-4o just_head 2 43.37
gpt-4o just_head 20 53.34

Table 3: Evidence generation results in different settings.
The “just_head” refers to the first 1,000 characters of
the justification and “just_tail” refers to the last 1,000
characters of the justification.

cantly decreased compared to when we applied fine-
tuning, demonstrating that our fine-tuning approach
is a reasonable choice. When only the generated
data was used for training, the F1 score decreased
by -2.04 and the ROUGE-1 score notably decreased
by -26.05 compared to our proposed method, indi-
cating that using the given training data is essential
for performance.

3.3.3 The Performance on Evidence
Generation

We experimented with performance variations in
generating evidence based on a closed LLM from
the following three perspectives: 1) the choice of
LLM, 2) features utilized for selecting few-shots,
and 3) the number of few-shots. Table 3 shows
the result. Despite using fewer few-shot examples
due to GPT-4’s token length limit (8K), it demon-
strated higher performance compared to GPT-4o.
In GPT-4, the maximum number of few-shot exam-
ples we could use was 3, and there was no signifi-
cant difference in performance between providing
2-shots or 3-shots. In GPT-4o, when the number of
few-shots increased from 10 to 20, the ROUGE-1
score improved, but when it increased to 30, the
score actually decreased. Finally, when selecting
few-shot examples, it was observed that choosing
samples with similar justifications resulted in bet-
ter evidence generation performance than choosing
samples with similar claims. Due to the prompt
length limit, only the first 1000 characters or the
last 1000 characters of the justification were used,
and using the first resulted in better performance.

4 Conclusion

This paper describes Dunamu ML’s submissions
to the FMD 2025 shared task. We proposed a data
augmentation method for FMD. We collected con-
text, claims, and misinformation labels from the
general domain and generated evidence using a
closed LLM. Then, we oversampled the data from
the financial domain and merged it with the gen-
erated data from the general domain. Finally, we
performed supervised fine-tuning of the LLM us-
ing this merged dataset. When evaluated on the
hidden test set, our model has achieved the top po-
sition on the leaderboard in both misinformation
classification and evidence generation.
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