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Abstract

In this paper, we address the numerical reason-
ing challenges of financial question-answering
systems. We propose a two-stage approach
where models first generate intermediate cal-
culations and then produce the final answer.
We perform two experiments to evaluate the
performance of our approach. In the first, we
compare single-step and multi-step approaches,
demonstrating that incorporating intermediate
calculations significantly improves numerical
accuracy. In the second experiment, we com-
pare traditional DPO and iterative DPO (iDPO)
with length-regularized DPO. We show that
while traditional DPO reduced parsing errors,
it introduces verbosity; iDPO improves reason-
ing iteratively but faces diminishing returns.
On the other hand, Length-regularized DPO re-
duces verbosity of intermediate calculation as
well as enhances numerical accuracy across all
models. These results highlight the potential of
combining intermediate reasoning steps with
domain-specific optimizations to build robust
financial question-answering systems.

1 Introduction

Finance has emerged as a prominent area of fo-
cus for Large Language Models (LLMs)(Lee et al.,
2024; Zhao et al., 2024; Desai et al., 2024; Nie
et al., 2024; Xie et al., 2024b) since financial data
(Zhao et al., 2022; Xie et al., 2024a) presents a
unique set of complexities and challenges(Desai
et al., 2024). These challenges arise from the intri-
cate nature of financial texts and often require pre-
cise numerical calculations and an understanding
of contextual dependencies that general-purpose
LLMs struggle with. Common errors often in-
clude failure to perform precise numerical reason-
ing and generating inaccurate or irrelevant infor-
mation due to an inadequate understanding of the
context (Phogat et al., 2024).

*Work completed during Fidelity Investments Internship

In this paper, we focus on answering questions
based on earnings reports(Chen et al., 2022b; Yang
et al., 2023; Xie et al., 2024a; Zhao et al., 2022)
and show that simple decomposition of the task
of answering a financial question into two parts
helps improve the reasoning capability. We build
on the idea that arithmetic reasoning can benefit
from generating a rationale (Wei et al., 2022; Co-
hen and Cohen, 2024) and fine-tune our LLMs
to first output the arithmetic calculation required
to answer the question. For this, we leverage Di-
rect Preference Optimization (DPO)(Rafailov et al.,
2024) and study the impact of introducing explicit
rewards to incentivize the model to prioritize more
accurate and contextually appropriate calculations.
We then process the calculation and arrive at the
final answer.

To demonstrate the effectiveness of our proposed
approach, we perform extensive evaluations on the
ConvFinQA(Chen et al., 2022b) dataset. Given the
nature of numeric data and the annotation incon-
sistencies in the dataset, we also evaluate the ap-
proaches, considering a 0.1 percent threshold error.
Our proposed Length-based regularization helps
LLMs improve their performance and outperform
GPT4o.

2 Length Regularization as Explicit
Reward in DPO

Consider R to be a set of earnings reports, and r
€ R denotes an earnings report. Let q € Q de-
note a question about the report and y € Y denote
the corresponding numeric answer to q. The task
of question answering on earnings reports can be
expressed as maximizing P(y|q,r). In this paper,
we fine-tuned our models to output a calculation
c first and then arrive at the answer y based on
c¢. Our approach can be expressed as maximizing
P(c|q,T).

A typical challenge in applying DPO to fine-
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tuning LLMs is ‘length bias’(Liu et al., 2024b;
Park et al., 2024; Lu et al., 2024) - the tendency
of models to generate unnecessarily long or convo-
luted outputs, especially when performing complex
reasoning. In the context of our task, models fine-
tuned using DPO without explicit length control
exhibited this bias, frequently generating verbose
and convoluted calculations for relatively straight-
forward financial questions. This over-generation
introduces new errors, particularly in mathemat-
ical computations where simpler expressions are
preferable.

Previous works have explicitly highlighted the
importance of length-based regularization(Liu
et al., 2024a; Park et al., 2024) in the context of
classical RLHF pipelines and the DPO variants.
Inspired by this, we introduced length regulariza-
tion as an explicit reward in the DPO framework
to mitigate this issue. Specifically, we penalize
overly long calculations, encouraging the model to
generate more concise outputs without sacrificing
the necessary depth of reasoning. By incorporating
this reward, we aim to balance the model’s prefer-
ence for providing comprehensive answers with the
need for clarity and precision in financial contexts.

3 Experiments

In this section, we first describe our experimental
setup and implementation details. We begin with
off-the-shelf LLLMs and fine-tune them using the
following approaches: (a) Supervised Fine-tuning,
(b) traditional DPO (one-step DPO), (c) Iterative
DPO(Liu et al., 2024a; Fan et al.), and (d) DPO
with Length Regularization as an explicit reward.
Finally, we provide a detailed analysis of the effec-
tiveness and impact of our proposed approach.

3.1 Experimental Setup

3.1.1 Data

ConvFinQA (Chen et al., 2022b) is a dataset de-
signed to explore numerical reasoning in conversa-
tional question-answering tasks. Comprising 3,037
conversations derived from FinQA (Chen et al.,
2022a), it emphasizes complex, multi-hop reason-
ing over financial reports from S&P 500 companies.
A significant portion of the dataset features ambigu-
ous questions with long dependencies, where con-
tent from previous answers is essential to resolve
queries like "What were they?" or "These years?".
Figure 1 provides an example conversation from
this dataset.

Financial Report: ....reinsurance commissions , fees and other
revenue increased 1% driven by a favorable foreign currency
translation of 2% and was partially offset by a 1% decline in
dispositions ...

2011 2010 2009
Revenue | $4501 $2111 $1267
Income $448 $234 $203

Q: What was the change in net revenue from 2010 to 2011?
A: Subtract(4501 - 2111) = 2390

Q: What was the net revenue in 2010?
A: 2111

Q: What was the percent change?
A: Subtract(4501, 2111), Divide(#0, 2111), Multiply(#1, 100) =
112.2%

Figure 1: Example from CONVFINQA dataset

One major dataset challenge involves rounding
percentage discrepancies during final answer gener-
ation. In most cases, rounding to the nearest integer
resolves the mismatch; however, certain cases still
result in inconsistencies. For instance, slight vari-
ations in how generative models handle precision
and rounding lead to discrepancies even after apply-
ing conventional rounding techniques. To address
this, we introduce a 0.1% error tolerance (0.1% ET)
during evaluation to account for these minor differ-
ences. Importantly, this error-tolerant evaluation
is applied exclusively to models that generate final
answers directly rather than those that produce only
calculation steps.

3.1.2 Models

We have employed the following models for our ex-
periments: Mistral-7B-Instruct-v0.3!, Llama-3.2-
1B2, Phi-3-Mini-128K?, GPT-3.5 Turbo (gpt-3.5-
turbo-16k-0613), and GPT-40. We initially em-
ployed these models in a zero-shot setting to answer
the numerical reasoning chains in the dataset con-
versations. Multiple fine-tuning experiments with
various prompt configurations were conducted to
facilitate an in-depth model analysis.

"https://huggingface.co/mistralai/Mistral-7B-Instruct-
v0.3

“https://huggingface.co/meta-llama/Llama-3.2-1B-
Instruct

3https://huggingface.co/microsoft/Phi-3-mini-128k-
instruct
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Prompt Model NoET 0.1% ET
Final Mistral-7B 58.28 59.21
Answer Llama-3.2 57.21 59.17
Prompt Phi-3 58.14 59.32
GPT-3.5 Turbo 69.32 76.01
GPT-40 83.60 85.03
Calculation-  Mistral-7B 36.18 -
Only Prompt  Mistral-7B(SFT)  84.50 -
Llama-3.2 35.11 -
Llama-3.2(SFT) 82.10 -
Phi-3 36.21 -
Phi-3(SFT) 79.30 -
GPT-3.5 Turbo 65.36 -
GPT-40 86.10 -

Table 1: Accuracies from Experiment 1: Single step vs
Multi step under varying error tolerance settings. SFT
denotes the supervised fintuned versions.

3.2 Experiment 01: Single step vs Multi step
based approaches to final answer

We first built two systems to evaluate how the mod-
els that perform multi step numeric reasoning with
calculation as the intermediate step compare to
their out of the box single step variants. To do
this, we have employed two prompts: (1) Final An-
swer Prompt, which directly generates the final an-
swer for each question, and (2) Calculation-Only
Prompt, which focuses exclusively on generating
intermediate calculations required for reasoning.
For conversational questions, the current question
was provided along with contextual information
derived from the previous question-answer pair
within the conversation flow. The prompt details
can be found in Appendix A.

3.2.1 Hyperparameters

We applied LoRA with 4-bit quantization. The
fine-tuning parameters included a rank » = 32, an
alpha value of @ = 64, and an initial learning rate
of 5 x 1075, which decayed to 1.1 x 1075 using a
cosine schedule by the end of the training period.
We set the batch size to 1 and employed a LoRA
dropout of 0.05. The supervised fine-tuning (SFT)
was carried out for a total of 1000 steps across all
prompt variations.

3.2.2 Results and Observations

Table 1 summarizes the results of this experiment
under varying error tolerance settings. For the
Calculation-Only Prompt, no error tolerance was
applied, as the generated calculations required an
exact match with the gold-standard answer, includ-
ing decimal precision.

It can be observed that SFT significantly en-
hances the ability of models to generate syntac-
tically correct and logically consistent calculations.
This finetuning step helped the models better ad-
here to the expected syntax and improved their
overall reasoning.

3.2.3 Error Analysis

Errors in the outputs generated by the SFT
Calculation-Only prompt based systems are typ-
ically deviations in the required format such as
incorrect operator placement or incomplete expres-
sions. Here are a few examples of such expressions:

* add (multiply (0.09,3), 0.08) : This expres-
sion has the presence of a nested multiplica-
tion and is in the wrong format.

* 41029, subtract (28422): This expression
is in the wrong format. The correct format
should have been subtract(41029, 28422)

* divide (#0,5): This expression has ambiguous
and unresolved variable #0.

3.3 Experiment 02: DPO vs iDPO vs Length
regularized DPO

To alleviate the errors by the models in supervised
fine tuning stage and further improve the reasoning,
we implemented Direct Preference Optimization
(DPO) as a refinement step. DPO was performed
using poorly generated calculations from the SFT
model alongside the gold-standard calculations in
the dataset. A total of 600 poorly generated sam-
ples, extracted from the SFT outputs, were used for
training. We have built three different systems that
performed DPO:
1. A traditional one-step DPO system of 100 steps
applied to the model to address errors observed
from SFT.

2. Iterative DPO (iDPO): A system consisting of
two consecutive DPO sessions of 100 steps each.
In iDPO, the model iteratively learns from errors
in the previous session, progressively improving
its ability to generate accurate calculations.

3. Length-Regularized DPO (LDPO): Explicitly
length-regularized DPO using the length regu-
larization term length_alpha (Park et al., 2024)
in the loss function. This approach penalizes
overly long or verbose calculations to encour-
age conciseness.

Appendix C.1 shows the overall flow of training

experiments.
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3.3.1 Hyperparameters

For all DPO iterations, the learning rate was set to
5 x 1076, decaying to 9 x 10~7 at the 100th step
and further to 2 x 10~ at the 500th step. We used
a batch size of 1, applied a LoRA dropout of 0.05,
set the 3 value to 0.1, and assigned a value of 0.01
to length_alpha.

3.3.2 Results and Observations

Table 2 shows that DPO improved the overall per-
formance across all models by addressing logical
inconsistencies and refining calculation accuracy.
Figure 2 illustrates some of the model responses
from DPO experiments. It can be observed that
traditional one step DPO successfully eliminated
many parsing errors such as nested function calls.
However, models finetuned with traditional DPO
also introduced new challenges such as overly com-
plex responses for simple queries. An example
scenario is the DPO finetuned model generating [di-
vide(1,B), multiply(A,#0)] instead of the simpler
divide(A,B). The models often produced unnec-
essarily verbose responses, increasing complexity
and reducing parsing accuracy.

The models employing iDPO improved on the
traditional DPO based counterparts by addressing
some of these issues, as can be seen by superior
performance across the model variants employed.
iDPO however led to repetitive errors in subsequent
iterations and therefore the improvements stalled
after the first iteration.

Length Regularized DPO model variants were
the most appropriate and led to the best perfor-
mance across the model variants. While Mistral 3
variant with LDPO achieved the highest accuracy,
it has to be noted that all of the model variants
that employed LDPO outpeformed their other DPO
counterparts.

Model 00B SFT DPO iDPO LDPO
GPT-40 86.10 - - - -
GPT-3.5 Turbo  65.36 - - -

Mistral 3 36.18 845 845 87.01 87.2
Llama 3.2 35.11  82.1 828 86.05 87.14
Phi 3 3621 793 81.1 84.03  86.19

Table 2: Accuracies from Experiment 2: DPO vs iDPO
vs LDPO

4 Limitations

* Dependency on Clean Annotations: Our ap-
proach relies on the availability of calculation

Gold Calculation: subtract(multiply(7963, 36%), multiply(10014, 27%))
Generated Calculation: multiply(7963, 36%), multiply(10014, 27%),
subtract(#0, #1) X

Gold Calculation: add(19400, 2500), add(#0, 1100), add(#1, 200),
divide(19400, #2)

Generated Calculation: add(19400, 2500), add(#0, 1100), add(#1, 200),
divide(#2, 4), divide(19400, #3) X

Gold Calculation: add(15636, 14710)
Generated Calculation: subtract(15688, 14663), divide(#0, 14663),
add(15636, 14710) 2

Gold Calculation: subtract(279, 100)
Generated Calculation: 279, subtract(#0, 100)

Figure 2: Examples of complex responses generated
after the initial DPO step.

annotations in the training data. Real-world
financial datasets might not contain annota-
tions or have noisy or incomplete annotations
which could hinder the model’s performance.

* Potential Oversimplification: While length
regularization effectively reduces verbosity, it
may lead to oversimplification of reasoning
paths. This could result in the model missing
nuanced steps required for answering complex
financial queries.

* Generalization Challenges: Length-based
regularization may not generalize well across
other domains or question-answering tasks
that require different forms of reasoning or
context interpretation.

5 Conclusion

In this study we have investigated the effective-
ness of employing length regularzed DPO in multi
step fashion towards answering financial questions.
Our first experiment demonstrated that introducing
intermediate calculations before generating final
answers improved multi-step reasoning and accu-
racy. Our second experiment showed that tradi-
tional DPO reduced parsing errors but introduced
verbosity, while iterative DPO (iDPO) iteratively
improved reasoning but faced diminishing returns.
Length-regularized DPO emerged as the most ef-
fective approach, balancing concise outputs with
reasoning depth, reducing verbosity, improving nu-
merical accuracy, and enhancing efficiency across
all tested models. These findings underscore the
importance of domain-specific strategies to im-
prove reliability and precision in financial question-
answering systems.
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A Appendix A

Prompt for Experimentation

The following is the prompt used for Final Answer Only
Prompt in our experiments:

Final Answer Only Prompt

You are a highly intelligent bot. You can have conver-
sations with the user to answer a series of questions
over a financial report. Later questions may depend
on previous questions to answer.

Here is the financial report: $report

I will be asking questions over it next. Understood?

The following is the prompt used for Calculation-Only
Prompt in our experiments:
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Calculation-Only Prompt

You are an expert financial analyst who analysis fi-
nancial reports of various organizations. You will
be given a financial report of an organization and
your manager will be asking a series of connected
questions based on that report.

Your objective is to:

* Understand the given financial report and its
associated information provided in tables.

* Answer the given questions turn by turn using
the information from the report and relevant
context from your responses to previous turns.

* The answer to a question is the calculation over
the values stated in the report.The calculation
might depend on answers to previous questions
in the series.

Criteria for Answering:

1. Use the Operations Table below to perform any
operations needed to answer the question.

2. Calculation should include the operations (if
any) performed for answering the question. In-
clude all the calculations needed to answer the
current question in response.

3. If the answer is just getting extracted from the
report, output the answer directly.

4. Use # to refer to the result of a previous
step where necessary. Example: add(1,2),
multiply(#9,3).

5. Respond with Calculation only, do not give the
final answer.

Operations Definition Table:

e add(number1, number2) — add two num-
bers: number1 + number2

e subtract(numberl, number2) — subtract
two numbers: number1 - number?2

e multiply(numbert,
two numbers: number1

number2) — multiply
- number2

e divide(number1, number2) — divide two
numbers: number1 / number2

e exp(numberT,
number?2

number2) — numberl *

e greater(number1, number2) — boolean
comparison: number1 > number?2

Your response should look like this for each question:
Calculation:

Example Report and Questions: $ex

Here is the financial report: $report

Answer the questions based on the report. Under-
stood?

B Appendix B

Hybrid Reasoning Prompt Configuration

The following is the prompt used for Hybrid Reasoning
Prompt in our experiments:

Hybrid Reasoning Prompt

You are an expert financial analyst who analyzes fi-
nancial reports of various organizations. You will
be given a financial report of an organization, and
your manager will ask a series of connected ques-
tions based on that report.

Your objective is to:

* Understand the given financial report and its
associated information provided in tables.

* Answer the given questions turn by turn using
the information from the report and relevant

context from your responses to previous turns.

* Handle questions where the answer may de-
pend on previous answers in the series.

Criteria for Answering:

1. Use the Operations Table below to perform any
operations needed to answer the question.

2. Include all calculations performed in your re-
sponse to provide the final numerical answer.

3. Use # to refer to the result of a previous
step where necessary. Example: add(1,2),
multiply(#9,3).

4. Do not generate further content after outputting
the answer.

Operations Definition Table:

e add(number1, number2) — add two num-
bers: number1 + number2

e subtract(number1, number2) — subtract
two numbers: number1 - number?2

e multiply(numberi,
two numbers: number1

number2) — multiply
- number2

e divide(numberl, number2) — divide two
numbers: number1 / number?2

e exp(numberl, number2) — numberl *

number2

e greater(numberl, number2) — boolean
comparison: number1 > number2

Your response should look like this for each question:
Calculation:

Answer:

Example Report and Questions: $ex

Here is the financial report: $report

Answer the questions based on the report. Under-
stood?

Table 3 summarizes the performance of models on the Hy-

brid Reasoning Prompt, which combines intermediate calcula-
tion generation with final answer generation. This approach
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SFT Model

ConFinQA
Training Data

: (Traditional DPO : (Traditional DPO
optimization) optimization)
SFT Outputs DPO Session 1 . DPO Outputs

DPO Session 2

Pairs 1 Pairs 2 Fe)

!

Length-Regularized
DPO (LDPO)

Figure 3: Flowchart showing the different training stages carried out during experimentation.

Prompt Model No ET 0.1% ET
Hybrid Mistral-7B 63.53 (48.89) 65.19
Reasoning Llama-3.2 61.22 (48.27) 64.59
Prompt Phi-3 62.97 (47.77) 65.02
GPT-3.5 Turbo  61.34 (60.2) 62.61
GPT-4o 85.97 (84.81) 86.31

Table 3: Baseline performance of models Hybrid Rea-

soning Prompt setting

consistently improved final answer accuracy across all mod-
els compared to the Final Answer Prompt, highlighting the
benefits of incorporating reasoning steps. The only exception
was GPT-3.5, which occasionally failed to produce a final
answer after completing the calculation, leading to a slight
drop in accuracy. Also, the calculation execution accuracy,
shown in parentheses, remains lower due to parsing issues and

formatting errors.

C Appendix C

C.1 Training Flowchart

Figure 3 shows how training was carried out during experimen-
tation. First, Supervised Fine-tuning (SFT) was performed
using the ConvFinQA dataset. This model is then fine-tuned
using DPO with incorrect predictions of the SFT model and
ground truth from the ConvFinQA dataset. After a single DPO
fine-tuning session, we explore two training variations: (1)
Iteratively applying multiple DPO sessions and (2) Length-

Regularized DPO (LDPO).
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