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Abstract

We introduce ConShift, a family of alignment-
based algorithms that enable semantic variation
analysis at the sense-level. Using independent
senses of words induced from the context of
tokens in two corpora, sense-enriched word
embeddings are aligned using self-supervision
and a flexible matching mechanism. This
approach makes it possible to test for mul-
tiple sense-level language variations such as
sense gain/presence, loss/absence and broad-
ening/narrowing, while providing explanation
of the changes through visualization of related
concepts. We illustrate the utility of the method
with sense- and word-level semantic shift de-
tection results for multiple evaluation datasets
in diachronic settings and dialect variation in
the synchronic setting.

1 Introduction

We present a series of methods to analyze semantic
variation of words across two corpora both quali-
tatively and quantitatively based on the underlying
senses of the words (Kutuzov et al., 2018; Tah-
masebi et al., 2021). Word-level semantic change
detection methods based on embedding alignment
are able to capture the shift in a word’s meaning by
the distance between the embedded corpora (Hamil-
ton et al., 2016; Gruppi et al., 2021). However,
these methods are unable to provide nuanced ex-
planations for the change. More recently, contex-
tualised embeddings have been used for semantic
change detection, allowing for sense-level analysis
(Montanelli and Periti, 2023). This analysis is still
shallow, with few existing methods exploring the
relationship between senses from an explainable
perspective, such as identifying how new senses
arise by extracting words that relate to it (Mitra
etal., 2014; Hu et al., 2019; Giulianelli et al., 2020).
In part, this is due to the limited evaluation datasets
for both word-level (Gulordava and Baroni, 2011;
Schlechtweg et al., 2021) and sense-level seman-
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Figure 1: PCA projection of the aligned word em-
bedding space of the 1800s and 2000s from CCOHA.
Senses of the word record were induced independently
and matched following alignment. The single sense
from the 1800s (plus sign record_0) broadens into 3
senses with differing contexts in the 2000s.

tic change detection (Zamora-Reina et al., 2022).
Thus, methods often focus on predicting whether
a word has distinct meanings across corpora or
not, as opposed to finding partial overlap or the
existence of multiple senses of the same lexeme.
Certain sense-level changes in one corpus may not
be easy to capture in these methods as analysis
often looks at senses in both corpora jointly.

We introduce a set of methods for sense-aware
detection of semantic variation, called ConShift,
leveraging the local information provided by con-
textual representation of LMs and the interpretabil-
ity of distributional semantics methods leveraged
through alignment. Through this, we detect
changes in senses between two corpora and visual-
ize them through their local contextual neighbors.
Figure 1 provides an example for the word record
from the Clean Corpus of Historical American En-
glish (CCOHA) (Alatrash et al., 2020). With a
single sense in the 1800s, record acquires multiple
new, related senses in the 20th century, indicating
a process of semantic broadening. Our visualiza-
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tion shows not only these individual meanings but
exposes their semantic relationship across corpora
on a common axis with the help of an alignment
algorithm. ConShift can be used to extract senses
of a word in diachronic (over time) and synchronic
(same time, different domains) settings, and illus-
trate the semantic relationship between senses even
when such differences are complex.

Our work makes the following contributions: (1)
We present ConShift, a family of methods for align-
ing sense-aware word embeddings across a pair
of input corpora to analyze different usages of a
word. This method captures word-level semantic
change, as well as sense loss, gain, narrowing and
broadening. (2) We show our methods work in both
diachronic and synchronic settings through multi-
ple datasets, even for senses of words not used in
the alignment step. (3) Our methods handle multi-
ple forms of word sense assignment and clustering.
We show an analysis of the impact of both, espe-
cially clustering of senses jointly and independently
across two corpora. (4) We develop explanation
methods that can be used to visualize senses in a
common axis through PCA projection after align-
ment, capturing both related terms and semantic
distances. The code and embeddings are available
at https://github.com/clare-arrington/ConShift.

2 Related Work

Sense-based Semantic Change Modeling The
primary task in sense change modeling is unsuper-
vised diachronic shift detection, where the goal is to
identify changes in a word across two temporal cor-
pora (Kutuzov et al., 2018; Tahmasebi et al., 2021).
Recent methods for this task have focused on con-
textualised architectures like BERT (Devlin et al.,
2018) and XLM (Conneau and Lample, 2019) for
dynamic representations of a word’s usage in con-
text. Montanelli and Periti (2023) organized con-
textualised semantic shift detection methods into a
framework based on meaning representation, time-
awareness, and learning modality. At a high level,
contextual representations are assessed by directly
comparing embeddings (Cassotti et al., 2023; Zhou
and Li, 2020; Kutuzov, 2020; Rosin and Radinsky,
2022; Pomsl and Lyapin, 2020), or by clustering
into senses before detection (Hu et al., 2019; Giu-
lianelli et al., 2020; Montariol et al., 2021; Arefyev
and Zhikov, 2020; Periti et al., 2022).

When sense-based methods use clustering for
consecutive time periods, the resulting clusters

need to be matched on similar word meanings be-
fore detection. Kanjirangat et al. (2020) considered
2 approaches: joint clustering and matching cluster
centers by Euclidean distance to create one-to-one
pairs. Tang et al. (2023) annotated senses by com-
paring contextual embeddings of usages in a corpus
to sense embeddings. Alternatively, some meth-
ods want to capture diachronic shift over a smooth
time period (Frermann and Lapata, 2016). Periti
et al. (2022) offered an alternate approach via in-
cremental clustering, where the corpora at different
time steps is progressively split into senses clusters.
Montariol et al. (2021) skipped cluster alignment
by using the Wasserstein distance (Solomon, 2018),
an optimal transport problem that finds the mini-
mal effort needed to transform one distribution into
another. Both methods show distribution-based
changes to the senses over time; they did not cap-
ture the relationship between senses. In contrast,
our method uses embedding alignment, which al-
lows for comparisons between all senses of a word.

One recent approach for sense modeling uses
word substitutions to observe semantic change.
Kudisov and Arefyev (2022) (BOS) induced ex-
plainable senses through Masked Language Mod-
eling (MLM), to generate lexical substitute vec-
tors (Amrami and Goldberg, 2019). These vec-
tors provided more information than contextualised
embedding layers, since sense clusters can be de-
scribed by their highest lexical substitutes. Card
(2023) simplified the form of vector representation
from MLM and used Jensen-Shannon divergence
to measure between target probability distributions,
while accounting for frequency. Periti et al. (2024)
used a replacement schema to simulate forms of
change, extending to additional models including
LLaMa 2. The use of a larger model showed im-
provements over the smaller LMs like BERT. These
approaches provide interpretable process, though
there is room for further explainability once seman-
tic shift has been detected. Giulianelli et al. (2020)
tracked senses over time, through k-means cluster-
ing on BERT embeddings. They provided manual
observations of cases like narrowing and broaden-
ing, and distinctions between sense clusters like
metaphorical usage. Hu et al. (2019) used a su-
pervised sense disambiguation approach to match
senses from the Oxford English Dictionary to word
usages and tracked frequency over time. They per-
formed an in-depth, manual modeling of temporal
change in individual senses through an ecological
perspective. ConShift is able to detect and label
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cases of sense change, like narrowing.

Semantic Change Detection through Alignment
Word embedding alignment is used to measure
word distances across multiple embeddings for se-
mantic shift detection (Kim et al., 2014; Kulkarni
et al., 2015; Bamler and Mandt, 2017; Basile et al.,
2020). Hamilton et al. (2016) is a projection-based
approach that uses Orthogonal Procrustes to set
one word embedding vector in the same space as
another through the use of landmark terms which
are chosen as the subset used in alignment. Some
approaches for aligning embeddings select terms
based on their presence in both corpora (Yin et al.,
2018), their frequency, or their stability across the
two vectors (Lubin et al., 2019; Gruppi et al., 2021).

3 Methodology

3.1 Overview

In this section, we introduce our approach to sense-
based semantic variation analysis. Given two cor-
pora of the same language, C and C, and a set T’
of target words, we produce quantitative scores and
qualitative results for analyzing the semantic vari-
ation. Corpora C7 and Cs may originate from dif-
ferent domains over same time period (synchronic
variation) or from the same domain over different
periods of time (diachronic variation). The outline
of the method is as follows:

1. For each target word ¢t € T, we extract senses.
The base method we use is based on clustering
of masked token predictions of a transformer
model (using MLM), grouping tokens with
similar contexts to the same cluster/sense. In-
stances of target tokens in each corpus are
tagged with the sense cluster they belong to.

2. Sense-enriched static word embeddings are
trained for each corpus, where sense-tagged
tokens are embedded as new types. The em-
beddings are aligned with a self-supervised
matching method to compare semantic spaces.

3. After alignment, sense-tagged types are
matched to detect whether a given sense of a
word in (] is present in C'y and vice-versa. If
senses can be matched, i.e. are within a given
cosine distance after alignment, that meaning
exists in both corpora. Otherwise, a sense only
in one corpus implies a semantic variation in
the word’s usage between two corpora.

We introduce three variations of the Con-
Shift method. In ConShift and ConShift-M-J, all
usages of a target word from both corpora are clus-
tered jointly into senses. In these approaches, clus-
tering provides an initial pairing between senses
across the two corpora once embedded. In contrast,
target usages are clustered independently for each
corpus in ConShift-M-I ,resulting in senses that are
unmatched initially. We test the semantic shift of
paired senses and their target words through align-
ment of corpora. While ConShiftonly checks for
shift between one to one sense matches, ConShift-
M-J and ConShift-M-I both allow checking of
many-to-many (0..M, M..M or M..0) matches. Fig-
ure 2 shows the overview of ConShift and the fol-
lowing sections describe the details of each step.

3.2 Obtaining Sense-Tagged Tokens

The starting point of our approach is the assign-
ment of senses to occurrences of target words in
each corpus through word sense disambiguation
(WSD). Given a set of sentences, or usages, that
contain a target word, we cluster them into senses.
Individual target occurrences are then tagged with a
suffix label indicating their cluster and representing
a unique sense token. For example, if the word staff
was found to have two senses, then token staff be-
comes staff_I or staff_2 for all instances within the
corpora. When joint clustering is used for inducing
senses, labels in both corpora will refer to the same
set of clusters, meaning staff I from C is related
to staff_1 in Csy. With independent induction, these
labels are unrelated and must be matched during or
after alignment.

For sense assignment, any well-established
WSD algorithm can be used, including supervised
methods that assign senses to an existing inventory
or unsupervised methods, i.e. word sense induc-
tion (WSI). We select a method that uses Masked
Language Modeling (MLM) with hierarchical ag-
glomerative clustering (HAC) as the base for all
results presented in the paper, as one of the best per-
forming methods in the literature for WSI (Amrami
and Goldberg, 2019). In Appendix Section A.1, we
compare results against an alternate method using
k-means (Giulianelli et al., 2020) and present full
implementation details of these methods for com-
pleteness and reproducibility.

Through BERT’s MLM task (Devlin et al., 2018),
the token of a target word in a sentence is masked
and the MLLM predicts which terms should occupy
the masked position. This prediction results in a
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Figure 2: Overview of ConShift for a pair of input corpora and target word, record. Embedded occurrences are
clustered jointly into senses. After tagging, corpora are transformed into separate word embeddings and aligned.
Semantic variation is detected by measuring distance between shared senses.

probability distribution over the entire vocabulary
of the language model, with higher probability in-
dicating a good lexical replacement for the missing
token. This process transforms sentences from the
corpus into lexical substitute vectors, which are
then clustered with HAC, representing a subset of
word usages from the corpus. We use these clusters
to transform the corpora by replacing the target
tokens with sense-labeled tokens.

3.3 Aligning Sense-Tagged Word Vectors

After replacing every target term, we use the sense-
embedded corpus to create static word embeddings
with Word2Vec (Mikolov et al., 2013). This proce-
dure generates two embedding matrices F/; and Es,
corresponding to corpora C7 and C. We align E;
and E5 to measure the distances of sense-tagged
word vectors across embeddings. Alignment is
necessary when comparing independently-trained
word embeddings due to the stochastic nature of the
initialization of the model’s weights, which renders
a direct comparison impossible. To perform align-
ment, we find an optimal transformation that maps
the semantic space of one embedding to the other
that minimizes the distance between a set of anchor
words, or landmarks. Since this process hinges on
landmark tokens being relatively unshifted, select-
ing the landmark subset from the vocabulary is a
non-trivial and crucial step for effective semantic
shift detection (Yin et al., 2018; Lubin et al., 2019;
Gruppi et al., 2021).

3.3.1 Choosing Sense-Aware Landmarks

Landmarks are by definition stable (unshifted) to-
kens. As these unshifted tokens are not known
apriori, we select the set using the search method
from S4-A! (Gruppi et al., 2021). The method em-
ploys a self-supervised approach to identify term
vectors that are shifted between embeddings E
and F5. On the initial iteration, tokens from the
entire shared vocabulary are used for global align-
ment. The vocabulary is bisected into landmarks
and non-landmarks based on ranked cosine dis-
tance. A neural network classifier is then itera-
tively trained using the stable landmark set and
a set of vectors that have been artificially shifted
to be unstable. After each iteration, the classifier
updates its weights and relabels the original term
vectors into landmarks and non-landmarks. Using
the new landmark set, the embeddings are aligned
once more. This procedure repeats until no change
occurs from one iteration to the next, defining a
consistent landmark set.

Because our embeddings contain both word and
sense tokens, we need an additional step to prepare
the shared vocabulary, i.e. the set of tokens that
exist in both E'; and Es. When all tokens represent
words, the shared vocabulary is the intersection of
V1 and V;, and words are paired trivially. Similarly,
when we assign the same set of senses to both em-
beddings, either through WSD or joint WSI, sense
tokens are also paired together through the intersec-
tion of the vocabularies. Effectively, we treat these
senses as regular word tokens during alignment,

Uhttps://github.com/IBM/S4_semantic_shift
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Gained Sense

Figure 3: Example matching of a set of senses for di-
achronic shift detection, where corpus C' is older than
C5. A sense in (' with 2 or more matched senses in
C5 represents broadening of usage, while the inverse
represents narrowing. Lost and gained senses are those
without any matches.

since they represent a common cluster origin. This
approach is used for the base method, ConShift,
where we jointly cluster word usages from the two
input corpora. Hence, the same token in £ and E
represents all sentences corresponding to a single
sense cluster (i.e. staff_1 in E; is equivalent to
staff _1 in E5.) In this case, quality of landmarks
is limited by the quality of the initial clusters.

To account for the interrelation of senses, our
second approach considers that additional matches
may exist between senses. We expand the shared
vocabulary by adding pairs consisting of all senses
of a target in both F; and F>. Given senses
81,15 .-, S1,n In corpus E1, and senses 821, ..., S2.m
in corpus E»9, we generate the following vector tu-
ples: (s1,1,52,1), (51,1,52,2), -+, (S1,n, S2,m). Thus,
the representation of the original target word is
fully covered in the alignment process. When
searching the shared vocabulary, zero, one or many
pairs containing a singular sense may be selected
as landmarks. This approach may be applied to
any form of sense assignment, shared or not. In
ConShift-M-J, we cluster jointly and pair all senses
of a target regardless of whether their token is
shared, as opposed to ConShift. In ConShift-M-I,
clusters are induced independently to be optimized
for each corpus. No information is known about the
relationship between senses prior to pairing. How-
ever, these pairings can now be used as landmarks
during the alignment process. Being selected as a
landmark can indicate at a high-level if a token is
stable or not, but we don’t rely on this information
for shift detection or to filter sense pairings. Af-
ter alignment, we measure and evaluate all sense
pairings fully.

3.3.2 Alignment

We align the embedding matrices through the
Orthogonal Procrustes (OP) problem (Schone-
mann, 1966), which finds a transformation ma-
trix W* with the following objective: W* =
miny ||[WA — B, s.t.. WIW = I, where A
and B are ¢ X d embedding matrices. W* is a
d x d orthogonal matrix that transforms A through
rotation and reflection, preserving the inner prod-
ucts of its rows. This objective minimizes the sum
of the Euclidean distances between each pair of
row vectors of A and B. This objective is applied
only to the identified landmark set, L by finding:
W* = miny ||WEF — E£||, s.t: WIW = I,
where EF is the sub-matrix obtained by selecting
the rows of E; that correspond to landmark words.

3.4 Measuring Semantic Shift

Once the embeddings are aligned, senses can be
examined for their rate of semantic shift, which is
then used in downstream assessments like identify-
ing lost and gained senses or detecting word-level
shift. Using the landmarks and aligned embed-
dings, we use leave-one-out cross validation to se-
lect a cosine threshold that determines if a pair of
vectors are semantically shifted (Algorithm Line
11). A token is stable (unshifted) from E; to Es
if the cosine distance between the vectors for this
token after alignment is below the threshold. In the
base ConShift method, sense tokens that exist in
both embeddings are compared for their shift rate.
These correspond to senses already matched by
clustering, which can be evaluated in more depth
with alignment. Any sense present in a single em-
bedding remains unmatched and is labeled loss
or gained. With ConShift-M-J and ConShift-M-I,
we evaluate all sense pairs of the form (s14, s2,;).
Any stable pair is considered a match, allowing us
to check for more nuanced cases that involve one
sense mapping to multiple others like broadening
and narrowing. As the two methods share the same
alignment process, we can compare the impact of
joint and individual clustering on shift detection.
Figure 3 provides examples of match types across
two corpora. ConShift only allows one to one map-
pings and hence cannot represent sense broadening,
gain or loss. The full matching methods can iden-
tify all forms. We investigate their effectiveness
through experiments in the next section. Table 1
provides a summary of the underlying differences
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Method Sense Assignment

Possible Sense Landmarks

Sense Shift Analysis

ConShift . .
Joint induction

Pairs from clustering

Only on paired senses

ConShift-M-J
ConShift-M-I

Independent induction

All combinations of senses
from F; and Fs

On all sense pairs

Table 1: A summary of the different algorithms introduced in this paper. We assess two forms of sense assignment
through WSI, where senses are either shared or unique to the corpora. From there, the senses can be paired based on
these clusters or matched at alignment. Valid matches are detected during shift analysis.

of the three algorithms we introduce in this paper.

For word level shift detection, we aggregate
the variation level of individual senses to assign
a graded score and binary label, modeling shift as
a function of its senses. The graded score is com-
puted as the weighted average of each sense pair’s
cosine distance, where the weight is proportional to
the frequency of the given sense in the corpus. This
includes all pairs, not just those that were matched.
Binary labels are assigned based on whether the
graded score is above the threshold learned from
cross-validation.

3.5 Explaining Semantic Change

The most immediate application of ConShift is
detection of semantic variation at the sense level,
by mapping senses that are semantically related.
When comparing corpora from two different time
periods, absence of a sense in the later time period
may indicate an obsolete meaning. Additionally, a
sense from the past matching to multiple modern
senses can indicate that the usage of that meaning
has become broader, such as the word broadcast
which initially meant fo scatter or sow seeds and
now has a related technological sense of fo send
out or transmit. If the two corpora are from dif-
ferent domains or communities, the absence and
presence of senses can signal differences in lan-
guage use. Cognates, for example, are words from
different languages which share the same etymo-
logical origin, but have experienced different forms
of semantic change. Thus, we assign individual la-
bels to each sense based on the number of matches
to detect sense loss, gain, broadening, narrowing
and stable meanings (as shown in Figure 3).
Qualitatively, we highlight the forms of explana-
tion possible at each step of our approach. Since
our sense induction method is interpretable, cluster
centroids from the lexical substitute vectors can be
used to obtain the top substitute terms of each sense
cluster. Additionally, the vectors closest to the cen-
troid can be mapped to their original sentence form,
to obtain exemplar usages of each sense. Once the

corpora are transformed to type embeddings and
aligned, we can visualize senses in the shared se-
mantic space. For each sense, we can observe the
meaning in the original context by its local neigh-
bors, as well as the closest equivalent context of
the other corpora through the mapped neighbors.
If a concept is missing in the mapped corpus, the
closest terms can give an estimation of how closely
it’s captured by the corpora. Given both the con-
textual and static neighbors, we construct a fuller
picture of the senses and their relationships.

4 Diachronic Semantic Shift Evaluation
and Explanation

In the following sections, we evaluate the effec-
tiveness of ConShift and its variants on the task
of diachronic semantic change detection using Se-
mEval 2020 Task 1 (Schlechtweg et al., 2020) and
LSCDiscovery in Spanish (Zamora-Reina et al.,
2022). For the two joint clustered approaches,
ConShift and ConShift-M-J, we assess the benefits
of allowing additional matching between senses.
Between the matched approaches, ConShift-M-J
and ConShift-M-I, we investigate whether finding
senses per corpus provides more accurate represen-
tations of senses and better matching.

4.1 SemkEval Dataset

SemEval-2020 Task 1 is the first task on unsu-
pervised lexical semantic change detection featur-
ing an evaluation framework with gold standards
(Schlechtweg et al., 2020). We use the English set,
based on the Clean Corpus of Historical American
English (CCOHA) (Alatrash et al., 2020), a pre-
processed and lemmatized version of the Corpus
of Historical American English (COHA). The cor-
pus was split into two time periods: 1810-1860
and 1960-2010. 37 words were assigned binary
and graded labels based on their amount of change
between these time periods.

Word Change Detection Table 2 shows the task
scores of our sense-aligned methods against the
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Method Binary Graded
ConShift 0.703  0.482
ConShift-M-J 0.689  0.526
ConShift-M-I 0.730  0.608
Montariol et al. (2021) - 0.456
Card (2023) - 0.547
Tang et al. (2023) 0.730  0.589
Kutuzov (2020) - 0.605
Rosin and Radinsky (2022) | - 0.627
Periti et al. (2024) - 0.741
Cassotti et al. (2023) - 0.757

Table 2: Word change detection results for SemEval-
2020 Task 1, binary shift measured using accuracy and
graded shift scored using Spearman correlation.

1810 - 1860 1960 - 2010
repair
vincennes
leghorn passenger
plane_0
convoy ;
reinforcement heIicoptequt
bomber
vera
cruz fort

Figure 4: A contextual projection for a gained sense
of the word plane from the SemEval dataset. Sense 0
from the 2000s, plane_0, and its local neighborhood is
compared to the aligned neighbors from the 1800s.

current top performing approaches from the lit-
erature. The base ConShift approach has the
lowest performance of our methods. For the
two approaches with additional matching, the ap-
proach using senses from independent clustering,
ConShift-M-I, performs better. The variation in
performance can be explained by inspecting the dif-
ference in matching that occurs with each method.
Most notably, despite having the ability to create
additional matches, ConShift-M-J only creates sin-
gle connections between senses for this dataset. We
observe that joint clustering harms the modeling
of certain senses once embedded when one corpus
was underrepresented in the original sense cluster.
This leads to a pair of senses where one is far less
clear in its representation and occurs most often for
words with gained meanings like plane, record, and
graft. An example of this issue can be observed
for the word plane, where 2 senses are found (air-

plane and a surface) when induced jointly. Table 3
provides a comparison of plane’s joint clustered
senses, through the top lexical substitutes from
WSI against the word embedding neighbors. The
1800s sense for airplane has an unclear neighbor-
hood, leading it to not match to either of the 2000s
senses. This is a false case of loss in the direc-
tion from 1800s to 2000s, when really the airplane
sense has only been gained in the 2000s. When
induced individually, we get clearer senses for each
group. Two 1800s senses map to a more general
2000s sense, and the 2000s sense of an aircraft
is identified as gained. Thus, improvement from
ConShift to ConShift-M-J can be attributed to the
change in sense matching that allows for different
matches between senses.

The independent clustering approach, ConShift-
M-I, produces many multi-way matches between
senses, resulting in performance improvements
over both joint methods. We conclude that the
primary reason multi-way matches occur with
ConShift-M-I and not ConShift-M-]J is due to im-
proved clustering that allows clusters to represent
concepts without being influenced by the other cor-
pus. Matching helps to distinguish senses that are
truly shifted semantically, by considering the other
possible polysemous senses that may be also be
close in meaning.

Sense Change Evaluation The most common
shift type identified for this dataset was sense gain.
To inspect a single sense, we can project it after
alignment into the shared semantic space of both
embeddings using PCA. This allows us to observe
the differences in concepts that each embedding
captures. Figure 4 shows this for the target term
plane, which gained a sense in the 2000s. Since
the concept of an aircraft didn’t exist in the 1800s,
the closest contextual components are that of mil-
itary implements and battle locations (Veracruz,
Vincennes, and Leghorn). In addition, we observe
cases of broadening, such as record shown in Fig-
ure 1. Record as a noun has a single etymological
origin?, with most senses connected to this mean-
ing. We find three senses in the 2000s, each with
their own unique context that still relates to the sin-
gle 1800s sense of record as documented informa-
tion. The SemEval dataset labels record as having
gained a sense. Sense 2 from the 2000s, which
covers a record of court proceedings, is matched
to the 1800s sense with a cosine distance slightly

Zhttps://www.oed.com/dictionary/record_n1
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Lexical Substitutes

1800s Embedding Neighbors

2000s Embedding Neighbors

0 | line, direction, angle,
shape, side, point

projection, horizontal, perpendicular,
parallel, vertical, angle

particle, depth, surface,
intricate, wavelength, curve

1 | jet, flight, aircraft,
pilot, ship, flying

whist, old-fashioned, smartly,
loft, keziah, rubber

pilot, helicopter, passenger,
airport, flight, aboard

Table 3: Comparison of terms representing senses of the term plane from joint clustering. MLM substitutes feature
the terms with the highest average probability for that cluster, predicted from the BERT MLM task. Embedding

terms are nearest neighbors.

Method Binary Shift Sense Gain Sense Loss | Graded Shift
ConShift 0.651 0.00 0.610 0.275
ConShift-M-J 0.676 0.389 0.602 0.289
ConShift-M-I 0.709 0.431 0.630 0.449
Rachinskiy and Arefyev (2022) | 0.716 0.511 0.688 0.735
Rombek (Not published) 0.687 0.520 0.681 0.535
Kudisov and Arefyev (2022) 0.658 0.520 0.610 0.209
Homskiy and Arefyev (2022) 0.655 0.591 0.582 0.676

Table 4: Results for LSCD Spanish subtasks, word shift level detection (Graded and Binary), and sense level
detection (Gain and Loss). Graded change is reported as the Spearman correlation and the remainder are F1 score.

below the shift threshold. The remaining senses
from the 2000s are considered shifted.

4.2 LSCDiscovery

We evaluate our sense-level labeling on the
LSCDiscovery shared task for lexical semantic
change detection in Spanish (Zamora-Reina et al.,
2022). We use the evaluation dataset, which con-
sisted of 60 human-annotated words that were as-
signed binary labels sense loss and gain, a binary
change score and a graded change score.

Word and Sense Change Detection We report
our results in Table 4 against the top performing
methods from the task, ordered by their binary
change score. Both the second and third best per-
forming methods used the MLM approach for WSI
with hierarchical agglomerative clustering, with
different approaches for measuring shift (Rombek,
Kudisov and Arefyev (2022)). Our best perform-
ing method, ConShift-M-I, has a high overall bi-
nary shift detection score, though it has a lower
graded score, between the two HAC methods. The
unmatched method, ConShift, performs unevenly
in sense gain and loss labeling, due to the naive
method for detecting sense changes based only on
cluster membership. This method is too restric-
tive, so the approaches that match and consider the
relationship between senses performs better.

5 Synchronic Sense Analysis

In addition to diachronic analysis, we provide an ex-
ample of our method’s ability to investigate differ-
ences in words from different communities. Since
synchronic data has no inherent ordering, sense
modeling looks for variations in usage, which can
occur for a number of reasons, such as loan words
gained from regional neighbors.

5.1 US - UK English Dataset

We look at dialectical differences between modern
American and British English, based on Gruppi
et al. (2021). 117 word pairs were identified for
belonging to one of the following forms of word
variation: 1) homonymy, 2) synonymy, and 3) alter-
nate spellings (such as color and colour). Our UK
corpus is the British National Corpus (BNC) XML
Edition (of Oxford 2007) which contains a mix of
news, fiction, and academic texts. The US corpus
is the Corpus of Contemporary American English
(COCA) (Davies, 2009) which contains text from
newspapers, magazines, fiction, and academic texts.
This dataset was not constructed based on a specific
corpus. Rather, we use it to motivate exploration
of possible synchronic patterns.

Evaluating Word Variation Using ConShift-M-
I, we identify all three cases of variation in the
dataset. For homonymy, we compare the US and
UK senses of saloon in Figure 5. UK saloon_1
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UK English (BNC) US English (COCA)

nightclub
saloon_0
diner
bmw
pub mercedes
saloon_1
foyer

tavern

abin
saloonﬁ

veranda

Figure 5: Senses of saloon from the US and UK. Saloon
in the UK has two related senses of a high-class lounge
(saloon_0) or sedan-style car (saloon_1), which origi-
nated from lounge-esque train cars. The US saloon_0 is
a less reputable bar, so it is shifted from both UK senses.

is the most shifted sense, which represents a style
of car (known as a sedan in the US). Interestingly,
the remaining senses are also unmatched. Though
both senses refer to locations and share the same
etymology, the UK saloon_0 implies a more lux-
urious venue than US saloon_0. This is also the
origin for UK saloon_1, as it derived from luxury
train cars. Additional cases of homonymy that oc-
cur include football representing different sports
and casualty having an additional meaning of an
emergency room in the UK. Representing indepen-
dent senses makes it easier to see the differences
between usages that may seem related, as well as
the relationship between meanings within a single
corpus. For synonyms, we compare elevator from
American English to /ift in British English, shown
in Figure 6. We find a common meaning in senses
elevator_0 and lift_0 of a transportation method for
moving between floors. These senses are detected
as unshifted, along with the related meaning lift_1
as the action of raising something. Other pairs of
this nature include fall/autumn and gas/petrol.
Figure 7 shows a case of comparing senses for
a common word with different spellings, US the-
ater and UK theatre. Most senses are related to the
concept of a room where performances happen and
grouped together. The UK has a unique but related
sense of a room where operations occur. In some in-
stances, we don’t observe the variation that is stated
in the dataset for a given target. This is generally
because the unique sense is not represented in its
intended corpus or has occurred in both corpora.
For example, the target hamper contains the sense
of a wicker basket that holds laundry in the US and

US English (COCA) UK English (BNC)

lowered

stairwell

lavatory heave
elevator_0
escalator lift_1 lift 0
ramp hoist

chute

tether pull

Figure 6: Projection of senses for elevator from the US
corpus and /4 ft from the UK corpus. We match noun
senses, along with the related verb form (lift_0).

US English (COCA) UK English (BNC)

imax

theater 1

. theater_2
cinema

theatre_2

ward
theater_0 ballroom
hospital
theatre_0

opera Playhouse

theatre_1
ballet

Figure 7: Projection of senses for US theater and UK
theatre. Multiple senses match across corpora given
the term similarity, with UK theatre_2 unmatched.

one that holds food in the UK, though the latter
sense is missing. Most often this issue arises from
missing UK senses, like the synonym pair of mail
and post. Conversely, the US corpora sometimes
contains UK usages as well, as is the case with trol-
ley, a British word for shopping cart. While these
issues limit the current quantitative ability of the
dataset, they highlight the nuances that come with
studying synchronic variation in a pair of corpora.

6 Conclusions

We introduced ConShift, a set of methods for mod-
eling sense-level semantic change across corpora
in synchronic and diachronic settings. ConShift
provides explanations of semantic change through
sense comparisons and conceptual mapping. We
plan to further assess our alignment method using
alternate sense labeling methods and shift detec-
tion measures, and investigate more niche cases of
sense variation.
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Limitations

We make a number of assumptions in our method
and the applicability of the method will depend on
whether these assumptions are true or not. Our first
assumption is that type of change we model when
performing perturbations in the self-supervised
alignment is sufficient for capturing the various
ways senses may be shifted. The second assump-
tion involves the sense induction models providing
an accurate representation of senses. Even though
our model is agnostic to the method used for sense
induction and we allow a single sense to be mapped
to zero to multiple senses in the other corpus, we
are still limited by the quality of the initial clusters
we obtain. Once senses are induced, they are trans-
formed to types and not decomposed any further.
The underlying contextual embedding may not be
well suited to the given corpus and may need to
be retrained on it to be more effective. However,
the impact of such adjustments are hard to mea-
sure due to lack of English language datasets with
sense shift labels. While datasets with word-level
semantic change labels exist, these are also rather
small and do not necessarily capture many words
with multiple evolving senses. Our method requires
the selection of a number of words in advance for
sense level analysis, as using MLM for the whole
corpus would be too expensive computationally.
Additionally, many word embedding models fil-
ter out words that occur infrequently in a corpus.
Breaking a word into multiple senses will make
each less frequent and may put its count below the
threshold. This requires balancing goals between
the embedding and induction step.

Ethics Statement

Language use differs between groups separated
by time, cultural background, mode of communi-
cation and topics of interest among many others.
Hence the study of semantic variation must take
into account whether the changes captured by a
specific method can be classified as a true semantic
shift, i.e. a use of the word for a different concept.
Even lexicographers may disagree on this question
sometimes, hence this is a truly difficult problem.
Additionally, alternative explanations may be avail-
able for the difference captured by our algorithm.
For example, different datasets may not be easily
comparable due to differences in the breadth of top-
ics, the communication modes covered or the time
periods. This is especially important in synchronic

settings and arbitrary datasets.

Given the ambiguity of language and insuffi-
ciency of labels especially for word level change,
semantic variation detection methods are best ap-
plied for easing analysis of datasets, not by auto-
mated decision making. Our methods can be very
useful for comparing and understand corpora from
different groups, analyzing limitations of large lan-
guage models and applications based on them when
faced with such semantic differences in word usage.
However, it should never be used to make a value
judgment on whether any specific usage is proper
or improper. Our aim should be to develop tools
to help understand each other better, not to narrow
down which usages are appropriate to incorporate
into models.
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A Appendix

A.1 Experiment Details

In this section, we report the parameters that were
selected at each stage of our pipeline and the rea-
soning behind them.
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Assignment Method Alignment Method | Accuracy (Binary) Spearman (Graded)

MLM+HAC ConShift 0.703 0.482
ConShift-M-J 0.689 0.526
ConShift-M-I 0.730 0.608

BERT Embed + k-means ConShift 0.770 0.522
ConShift-M-J 0.716 0.545
ConShift-M-I 0.716 0.512

Table 5: Comparison of sense assignment approaches on word change detection performance for SemEval-2020

Task 1.

Sense Assignment The first of our approaches is
the MLM-based WSI that uses hierarchical agglom-
erative clustering (HAC). Amrami and Goldberg
(2019) sample the probability distributions to get a
bag of words of common substitutes prior to cluster-
ing. We work directly with the probabilities output
by the model. Since most terms in the distribution
will have a probability near O for a given masked to-
ken, we reduce the vector size by subsetting the vo-
cabulary (Arefyev and Zhikov, 2020; Card, 2023).
First, stopwords and non-alphabetical terms like
symbols and numbers are removed. Secondly, we
remove the terms that are predicted at very high
and low frequencies. For all prediction vectors of
a target, we find the rate that a term occurs with
a probability above 0.01%. Any term in less than
3% or more than 90% of prediction vectors is re-
moved (Arefyev and Zhikov, 2020; Kudisov and
Arefyev, 2022). This eliminates infrequent words
with low probabilities that are unlikely to impact
clustering, as well as highly frequent words that
may over-influence cluster merging. Following this
process, we subset the vectors using the reduced
vocabulary and normalize them. This procedure is
done for each target separately, so the final length
of vectors vary.

Once all lexical substitute vectors are obtained
for a target, hierarchical agglomerative clustering
is used to create an initial set of sense clusters by
flattening the model. We start with 15 clusters to
replicate the approach in Amrami and Goldberg
(2019), then iteratively merge clusters based on the
centroid distance. We calculate cluster distances
with average linkage and use cosine similarity to
measure the distance between normalized lexical
substitute vectors. Sense cluster size is measured
by the percentage of vectors within the cluster from
the overall set, where any cluster below n% will be
merged. To find the best value of n for each target,
we search over a full range of percentages until

the vectors are clustered into a single sense (often
around n = 20) and evaluate using the silhouette
score. If the silhouette score was never above 0,
one sense is created for that target. A hard lower
bound of at least 5 vectors is set to avoid singleton
clusters and match the minimum count parameter
at the word embedding step.

The second approach we evaluate is BERT em-
bedding with k-means clustering (Giulianelli et al.,
2020). For each term, we create k clusters rang-
ing from 2 to 11. Both methods determine the best
clustering through silhouette score, using euclidean
distance for its metric. For English tasks, we use
the bert-base-uncased model with 12 layers, 768
hidden dimensions and 110M parameters (Devlin
et al., 2018). For Spanish, we use BETO (Canete
et al., 2020), a BERT model trained with the whole
word masking technique on a large Spanish Cor-
pus (3B words). This model has the same dimen-
sions as bert-base, with a similarly sized vocabulary.
The MLM+HAC method was performed using the
Scipy implementation and k-means clustering used
scikit-learn.

We compare results of the two sense assignment
methods for SemEval-2020 Task 1 (4.1) in Table 5.
Given the small size of the SemEval dataset, the
scores for binary change detection have little vari-
ation across the combination of approaches. For
graded detection, independent clustering performs
best for both methods of WSI. For jointly clustered
senses, performance differs between the methods
of aligning with and without matching.

Word Embedding We use Gensim’s implemen-
tation of Word2Vec * to create word embeddings.
For all datasets, we use a vector size of 300 and win-
dow of 10. Selection of the minimum frequency is
influenced by the minimum sense size, as discussed
in Section 3.2. For the SemEval and LSCDiscovery
tasks, this value is set to 5. TFor the larger corpora

3https://radimrehurek.com/gensim/models/word2vec.html
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Dataset Name | # Pos. # Neg. Shift Rate
SemEval 100 25 0.1
LSCDiscovery | 50 50 1

US-UK 100 100 0.1

Table 6: Selected alignment learning parameters (num-
ber of positive samples, number of negative samples and
rate of artificial shift) for each dataset.

from the US-UK dataset, we set the minimum fre-
quency to 50.

Alignment For the iterative learning on pseudo-
shifted vectors, described in Section 3.3, we select
the number of positive and negative samples used
for training, as well as the rate of artificial shift
that is applied to a selected vector. We performed
a parameter sweep to select values for our final re-
porting, based on the reported ranges from Gruppi
(2022). For positive samples that are created using
artificial shift, we select from [50, 100]. Negative
samples, which draw from the landmarks, were
from the range of [25, 50, 100]. For the shift rate,
we check [.1, .5, 1]. We report the final parameters
that we use for each task in Table 6. When deter-
mining the best cosine threshold through leave-one-
out cross validation, we search from O to 1 with a
step size of .05.
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Algorithm 1 : Pseudo-code of ConShift-M where two corpus embeddings, F1 and F2, are aligned
after selecting landmarks from their shared vocabulary, V' and all sense pairs. Senses may be shared
(ConShift-M-J) or independent (ConShift-M-I), as they are paired through a Cartesian product. Pairs
consists of all word tuples between E'1 and E2, where pair = (wordy 4, words ), and a and b are two
matching words or paired senses. In the base approach of ConShift, we skip the construction of additional
sense pairs from lines 7 and 8 and use the original Vipg;eq, containing only words and sense tokens that
are the same in both embeddings. The shift of a set of target terms 7" is detected after alignment.

1: Data: F1,E2,V1,V2

2: Result: Shift predictions, P, and sense mappings, M

Selecting Landmarks

Vshared < (Vl N V2)

Pairsspared < [(w7 w)]vw € Vshared

S1 < find_senses(V'1)

S2 < find_senses(V'2)

Pairsgepse < S1 x S2

Pairs < Pairsgpqeq U Pairsgepse

L + landmark_search(E'1, E2, Pairs) > Described in Section 3.3.1

R A A

Alignment

10: E1, E2' + orthogonal_Procrustes(FE1, E2, L) > Described in Section 3.3.2

Measuring Semantic Shift

11: cosine-threshold + cross-validation(E1, E2', L)

12: Shifteds « [p|Vp € Pairsgepse if cos_dist(p) > cosine-threshold
13: Unshifteds < [p]Vp € Pairssense if cos_dist(p) < cosine-threshold
14: Mg < Shifteds U Unshifted,

15: P < weighted_average(M;)

16: return P, M
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