
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 8037–8052

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Understanding Reference Policies in Direct Preference Optimization

Yixin Liu1 Pengfei Liu2 Arman Cohan1,3

1Yale University 2Shanghai Jiao Tong University 3Allen Institute for AI

yixin.liu@yale.edu, pengfei@sjtu.edu.cn, arman.cohan@yale.edu

Abstract

Direct Preference Optimization (DPO) has be-
come a widely used training method for the in-
struction fine-tuning of large language models
(LLMs). In this work, we explore an under-
investigated aspect of DPO – its dependency
on the reference model or policy. Such ref-
erence policies, typically instantiated as the
model to be further fine-tuned, are important
since they can impose an upper limit on DPO’s
effectiveness. Therefore, we address three re-
lated research questions in this work. First,
we explore the optimal strength of the KL di-
vergence constraint in DPO, which penalizes
deviations from the reference policy, and find
that DPO is sensitive to this strength. Next,
we examine the necessity of the KL-constraint
from the reference policies in DPO by provid-
ing both theoretical and empirical comparisons
between DPO and related learning objectives,
demonstrating DPO’s superiority in this con-
trolled setting. Additionally, we investigate
whether DPO benefits from stronger reference
policies, finding that a stronger reference pol-
icy can lead to improved performance, but only
when it is similar to the model being fine-tuned.
Our findings highlight the confounding role of
reference policies in DPO and offer insights
for best practices, while also identifying open
research questions for future studies.

1 Introduction

Recently, Direct Preference Optimization (DPO
) (Rafailov et al., 2023) has become a widely used
training method to align pre-trained large language
models with human preferences (Ouyang et al.,
2022). DPO offers a significant advantage over
standard supervised fine-tuning (SFT) because it
learns to distinguish the quality of various candi-
date outputs, rather than merely relying on a single
gold reference. Specifically, derived from the KL-
constrained reinforcement learning (RL) setting,
the training objective of DPO implicitly learns a

reward model rθ given an input x and an output
y: rθ(x, y) = β log pθ(y|x)

pref(y|x) , where pθ and pref are
the distributions parameterized by the LLM being
fine-tuned and the reference LLM respectively, and
β controls the strength of the KL divergence regu-
larization applied from the reference LLM.

We argue that the dependency on the reference
model/policy pref ,1 as demonstrated by the parame-
terization of rθ, is an important yet under-explored
aspect of DPO. To begin with, this dependency
can lead to a discrepancy between the prediction
of rθ(x, y), the optimization target, and pθ(y|x),
the learned distribution parameterized by the fine-
tuned LLM. That is, given an input x and a pair
of outputs yw and yl between which yw has better
quality, even if the reward model correctly predicts
that rθ(x, yw) > rθ(x, yl), it does not guarantee
pθ(yw|x) > pθ(yl|x), that the fine-tuned model
learns to assign a higher probability to the better
output (Chen et al., 2024). Moreover, since this
dependency arises from a KL divergence constraint
from the reference policy, any deviations from the
reference policy will be penalized. This can create
a performance ceiling, as the reference policy is
typically instantiated as the SFT model in practice,
which is meant to be further improved using DPO.

It thus seems that removing or reducing such
constraints might be beneficial. Recent work (Gor-
batovski et al., 2024) does find that updating the ref-
erence policy helps improve DPO’s performance.
However, eliminating this dependence can actu-
ally lead to performance degradation because of
model degeneration (Rafailov et al., 2023). As a re-
sult, while related studies have proposed reference-
policy-free training methods that have shown supe-
rior performance than DPO (Xu et al., 2023; Hong
et al., 2024; Meng et al., 2024), other forms of
regularization are still required in these methods.

1We will interchangeably use the terms “model” and “pol-
icy” to reflect the contexts of both LLM fine-tuning and RL.

8037

For example, ORPO (Hong et al., 2024) introduces
a maximum likelihood estimation (MLE) objec-
tive on the positive examples, while SimPO (Meng
et al., 2024) highlights the importance of length
normalization of the sequence log-likelihood.

These findings suggest a complicated relation-
ship between the reference policy and the DPO per-
formance. Therefore, we aim to further understand
the effects and the role of the reference policy in
DPO. To this end, we choose the task of instruction
fine-tuning of LLMs (Ouyang et al., 2022) as the
test bed and two series of open-source pre-trained
LLMs, Tulu 2 and Mistral (Jiang et al., 2023), to
analyze the reference policy in DPO on the Al-
pacaEval benchmark (Li et al., 2023). Specifically,
we investigate three main research questions (RQs).

First, starting from the standard DPO setting
where the KL-constraint regularization is applied
using the SFT reference policy, we explore RQ1:
what the optimal strength of the KL-constraint
should be (§4). Our experiments suggest that
the optimal KL-constraint strength is significantly
smaller than that used in previous work like
Zephyr (Tunstall et al., 2023) and Tulu 2 (Ivison
et al., 2023). Moreover, we find that DPO is sensi-
tive to this KL-constraint, as setting the constraint
slightly smaller than the optimal value can quickly
lead to performance degradation or degeneration.
We therefore conduct an in-depth analysis of this
sensitivity at both sequence and token levels, which
reveals that (1) a small constraint is required for
the model to learn to assign higher probabilities to
better outputs effectively, but (2) a small constraint
also leads to more extreme probability assignments
to specific tokens, likely increasing model instabil-
ity and causing model degeneration.

Having analyzed the standard DPO setting, we
then examine the DPO formulation itself and in-
vestigate RQ2: whether the reference policy is a
necessary regularization for DPO (§5). To this
end, we compare two alternative reward parame-
terizations with the DPO reward parameterization
pθ(y|x)
pref(y|x) : (1) the posterior probability pθ(y|x) as
the reward, equivalent to a reference-policy-free
setting; (2) the likelihood function pθ(x|y) as the
reward, equivalent to using the prior language mod-
eling probability p(y) as the reference policy. No-
tably, unlike related work (Hong et al., 2024; Meng
et al., 2024) that replaces the KL-constraint with
other types of regularization, we focus on a more
controlled comparison under the DPO formulation,

which reveals new insights. Specifically, we pro-
vide proof of equivalence between the reference-
policy-free preference optimization setting and the
Maximum Entropy (MaxEnt) RL setting (Ziebart
et al., 2008), allowing a theoretical comparison of
these objectives under the RL framework. Mean-
while, our empirical experiments reveal that the
alternative objectives cannot outperform DPO with
the optimal KL-constraint strength identified in
RQ1. Interestingly, this optimal strength is also crit-
ical for DPO to outperform reference-policy-free
methods like ORPO (Hong et al., 2024), reversing
their reported superiority.

Given the importance of the reference policy in
the DPO objective, the third question (RQ3) we
study is: whether DPO benefits from a stronger
reference policy (§6). In detail, rather than the
standard practice of using the SFT model to be
fine-tuned as the reference model, we employ two
more capable LLMs as the reference model. Our
experiments reveal an interesting finding: stronger
reference models can indeed offer more benefits
than the SFT model, but only when they are compat-
ible with the model being fine-tuned. Specifically,
this compatibility likely stems from the intrinsic
similarities of models, such as model architectures
or pre-training corpora. However, we also find that
compatibility does not require the reference model
to share the same tokenizer/action space, despite
DPO’s capability to model dense reward functions
which requires a consistent action space as demon-
strated by recent work (Rafailov et al., 2024).

Our work emphasizes the confounding effect of
the reference policy in DPO. Our findings shed
light on the best practices for DPO: (1) when using
the SFT model as the reference policy, a smaller
yet sufficiently strong constraint typically improves
performance; (2) a stronger reference policy can im-
prove performance but should be compatible with
the model to be fine-tuned. Meanwhile, it high-
lights open research questions that call for more
theoretical analysis of the relationship between the
reference policy and the DPO training dynamics.2

2 Preliminaries

2.1 Instruction Fine-tuning

Instruction fine-tuning aims to align the pre-
trained language models with the users’ inten-
tions (Ouyang et al., 2022). The frequently used

2Our training scripts, model checkpoints, and datasets are
released at https://github.com/yale-nlp/refdpo.

8038

https://github.com/yale-nlp/refdpo

training methods of instruction fine-tuning include
standard supervised fine-tuning (SFT), reinforce-
ment learning (RL) methods (Stiennon et al., 2020;
Ouyang et al., 2022) such as Proximal Policy Opti-
mization (Schulman et al., 2017), and reward-based
training methods (Rafailov et al., 2023; Yuan et al.,
2023; Zhao et al., 2023a) such as Direct Prefer-
ence Optimization (Rafailov et al., 2023). Both
RL and reward-based training methods offer ad-
vantages over standard SFT by leveraging human
feedback, typically in the form of human-annotated
rewards assigned to various candidates, enabling
more effective alignment of LLMs with human
preferences. Therefore, they are widely adopted in
the instruction fine-tuning of large language mod-
els (LLMs) such as GPT-4 (Achiam et al., 2023),
Gemini (Team et al., 2023), and Llama-3 (Dubey
et al., 2024).

2.2 Direct Preference Optimization

In Rafailov et al. (2023), DPO is proposed as an
alternative to RL for training LLMs with human
feedback. The DPO objective is derived from the
KL-constrained reinforcement learning setting:

maxpθ Ex∼D,y∼pθ(y|x)[r(x, y)]− βDKL[pθ(y|x)||pref(y|x)],
(1)

where x is the input text, y is the output text, pθ
is the probability distribution parameterized by the
LLM under fine-tuning with trainable parameters θ,
pref is a reference distribution which is often instan-
tiated by another LLM, β is a parameter controlling
the strength of the KL divergence penalty:

DKL[pθ||pref] = Ey∼pθ(y|x)[log
pθ(y|x)
pref(y|x)]. (2)

r(x, y) is the reward of y given x under the Bradley-
Terry (BT) model (Bradley and Terry, 1952):

p(y1 ≻ y2|x) = exp(r(x,y1))
exp(r(x,y1))+exp(r(x,y2))

, (3)

where p(y1 ≻ y2|x) is the probability of output y1
being better than output y2. This reward model can
be optimized by maximum likelihood estimation:

L(r) = −E(x,yw,yl)∼D[log p(yw ≻ yl|x)]
= −E(x,yw,yl)∼D[log σ(r(x, yw)− r(x, yl))].

(4)

Here x is an input in the dataset D, yl and yw is a
pair of outputs between which yw has better quality,
and σ(·) is the sigmoid function.

DPO shows that for the aforementioned RL ob-
jective (Eq. 1), it is equivalent to optimizing the

following objective: learning a reward model pa-
rameterized by the model’s policy pθ (and the ref-
erence policy pref) under the BT model:

LDPO(pθ; pref) =

− E(x,yw,yl)∼D[log σ(β log
pθ(yw|x)
pref(yw|x)

− β log
pθ(yl|x)
pref(yl|x)

)],
(5)

where a reward model is implicitly learned:

rθ(x, y) = β log pθ(y|x)
pref(y|x) . (6)

We note that the reference policy pref used in
DPO is typically the LLM after supervised fine-
tuning, which is the same LLM that will be fine-
tuned using DPO. For simplicity, we refer to this
model as the SFT model.

2.3 Related Work on Preference Learning
Apart from DPO, various training methods of pref-
erence learning have been proposed recently. For
example, IPO (Azar et al., 2024) has been proposed
to address the potential limitation of DPO, which
tends to overlook the KL-divergence regularization,
making it easy to overfit. On the other hand, many
preference learning algorithms are reference-policy-
free. Among these, contrastive learning is a major
category that interprets the model-predicted prob-
ability of an output as a quality score (Liu et al.,
2022; Zhao et al., 2023b; Yuan et al., 2023; Xu
et al., 2024). Other related methods also share sim-
ilar training objectives that are based on the model-
predicted probability (Xu et al., 2023; Hong et al.,
2024; Meng et al., 2024). These methods have
been shown to achieve better or comparable per-
formance to DPO in various settings, without the
need for a reference model. However, we note that
additional normalization or regularization is still
required for these methods. For example, an MLE
objective on the positive examples is used by SLiC-
HF (Zhao et al., 2023a), CPO (Xu et al., 2024),
ORPO (Hong et al., 2024), among others. Mean-
while, SimPO (Meng et al., 2024) highlights the
importance of length normalization of the sequence
log-likelihood in improving method effectiveness.
In this work, we focus on analyzing DPO since it
has a more well-established theoretical background
while presenting a comparison with reference-free
training objectives in §5.

3 DPO for Instruction Fine-tuning

In this work, we center our analysis in the context
of DPO’s applications in instruction fine-tuning.
Therefore, here we outline the experimental set-
tings for our analysis in the following sections.

8039

Datasets Following the setup of Zephyr (Tun-
stall et al., 2023), we use the UltraFeedback (Cui
et al., 2023) dataset, specifically its binarized ver-
sion,3 for DPO fine-tuning. It contains 64K data
examples consisting of a user instruction and a
positive-negative output pair scored by GPT-4.4

Models We mainly use two SFT LLMs as the
starting point for DPO fine-tuning from two re-
cent works on instruction fine-tuning. The first
LLM, mistral-7b-sft-beta5 from Zephyr (Tun-
stall et al., 2023), is fine-tuned from the Mistral
7B base model (Jiang et al., 2023) on the Ultra-
Chat (Ding et al., 2023) dataset.6 We will refer to
this model as mistral-7b for simplicity. The sec-
ond LLM, tulu-2-7b7 from Tulu 2 (Ivison et al.,
2023), is fine-tuned from the Llama-2-7B base
model (Touvron et al., 2023) on the TULU v2 SFT
mixture dataset.8 We choose these two models for
better transparency and reproducibility, since their
experimental artifacts are publicly accessible.

Training Settings We follow the training recipe
proposed in Tunstall et al. (2023) for the experi-
ments, which is also adopted by Ivison et al. (2023).
Specifically, the models are fine-tuned with DPO
for 3 epochs on the UltraFeedback dataset, with
the batch size setting to 32 and linear learning rate
scheduling with warmup.9 Tunstall et al. (2023)
notes that while the models fine-tuned using DPO
tend to overfit, this overfitting does not hurt the
models’ performance, thus they picked the final
checkpoint for evaluation. However, to better un-
derstand the effects of the DPO training objective
on the final model performance, we instead select
the checkpoints based on their loss on the valida-
tion set of the UltraFeedback dataset.

Evaluations We mainly focus on the evaluations
of the LLMs’ instruction-following capabilities. To
this end, we use the AlpacaEval2 (Li et al., 2023)
benchmark for the main evaluation, which con-
sists of 804 test examples for evaluating instruction-
following and uses GPT-4 to evaluate the system

3The dataset is available at https://huggingface.co/
datasets/HuggingFaceH4/ultrafeedback_binarized.

4Further details of datasets are in Appendix A.1.
5https://huggingface.co/HuggingFaceH4/

mistral-7b-sft-beta
6https://huggingface.co/datasets/

HuggingFaceH4/ultrachat_200k
7https://huggingface.co/allenai/tulu-2-7b
8https://huggingface.co/datasets/allenai/

tulu-v2-sft-mixture
9More details are in Appendix A.2.

β mistral-7b tulu-2-7b

∞ (original) 7.57 8.50
0.1 (previous work*) 13.42 9.20

0.1 14.03 9.38
0.05 13.29 9.96
0.02 16.06 10.46
0.01 16.25 7.86
0.005 12.36 [degenerate]

Table 1: Model performance on AlpacaEval2 with vary-
ing values of β (regularization strength with respect to
the reference model). The DPO fine-tuning is started
from mistral-7b and tulu-2-7b respectively. *: the
DPO fine-tuned models in previous work, Zephyr (Tun-
stall et al., 2023) and Tulu-2 (Ivison et al., 2023).

outputs by comparing them with the outputs gener-
ated by GPT-4.10 Notably, its length-controlled
version (Dubois et al., 2024a), which mitigates
the length bias of GPT-4’s evaluations by predict-
ing and canceling it, achieves a 0.98 Spearman
correlation with LMSYS’ Chatbot Arena (Chi-
ang et al., 2024) evaluation results collected from
crowd-sourced human participants. Therefore, we
mainly report the length-controlled AlpacaEval 2
scores in the following sections.

4 RQ1: What Is the Optimal KL
Constraint Strength for DPO?

The regularization from the reference policy in
DPO is introduced by the KL divergence constraint
(Eq. 2). Therefore, we start our analysis of refer-
ence policies by investigating the impact of this
KL-constraint. Specifically, in KL-constrained RL
and DPO, the weighting coefficient β controls the
trade-off between maximizing the reward r and
minimizing the deviation from the reference policy
pref (Eq. 1). Therefore, we vary the value of β to
understand the impact of this KL constraint.

4.1 Main Results

In Table 1, we show the models’ performance on
AlpacaEval2 that are fine-tuned using DPO from
mistral-7b and tulu-2-7b. Following the orig-
inal setting of DPO, we also used these two SFT
models as the reference models. We found a simi-
lar trend with the two series of fine-tuned models
– a smaller KL constraint generally improves
performance, until the constraint becomes too

10gpt-4-1106-preview is used to generate the outputs and
to perform the pairwise output comparison.

8040

https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta
https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta
https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
https://huggingface.co/allenai/tulu-2-7b
https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture
https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture

small and leads to performance degradation.11

The above observation can be intuitively ex-
plained by the need for the fine-tuned model to
deviate from the reference model, which is the SFT
model targeted for improvement, while maintain-
ing necessary regularization. However, we note
the algorithm’s sensitivity to the strength of the KL
constraint: while the studies by Zephyr (Tunstall
et al., 2023) and Tulu 2 (Ivison et al., 2023) both
set the value of β to be 0.1, the results in Table 1
suggest that a smaller optimal value of β may be
more effective, yet with an increasing risk of per-
formance degradation. Next, we present further
analysis of this KL-constraint strength sensitivity.

4.2 Ranking Accuracy
Recent work (Chen et al., 2024) noted a discrep-
ancy between the learned (implicit) reward model
and the learned policy model in DPO in terms
of their capabilities of correctly ranking candi-
date outputs according to their quality. Particu-
larly, the ranking accuracy of the learned reward
model (Eq. 6) is usually high, indicating that the
better output yw is assigned a higher reward. i.e.,
rθ(x, yw) > rθ(x, yl). However, Chen et al. (2024)
found that the ranking accuracy of the learned pol-
icy pθ remains low even after DPO fine-tuning.
They partly attributed this to the generally low rank-
ing accuracy of the reference policy pref , noting
that DPO fine-tuning rarely reverses the preference
(i.e., p(yw|x) vs. p(yl|x)) due to the KL-constraint.

We noticed a similar trend in our experiments.
Specifically, Table 2 shows the ranking accuracy of
the learned reward model rθ and the policy model
pθ on the validation set of UltraFeedback. We ob-
serve a positive correlation between the strength of
the KL constraint (β) and the ranking accuracy of
pθ – a sufficiently small β is necessary to exceed
the 50% ranking accuracy of the random oracle
baseline. Furthermore, a smaller β can lead to a
higher policy ranking accuracy, however, as noted
in §4.1, it can cause model degradation.12

4.3 Token-Level Difference
Rafailov et al. (2024) have recently shown DPO
implicitly parameterizes a dense reward function:

rθ(y
(i), s(i)) = β log pθ(y

(i)|x,y(<i))

pref(y(i)|x,y(<i))
, (7)

11Additional experiments with a 1.5B LLM are in Ap-
pendix B, which demonstrates a similar trend.

12Chen et al. (2024) has also noted that the ranking accuracy
and the generation performance of the learned policy are not
always positively correlated.

β
mistral-7b tulu-2-7b

rθ pθ rθ pθ

∞ (original) 0.500 0.435 0.500 0.439
0.1 0.718 0.495 0.773 0.462
0.05 0.744 0.513 0.778 0.483
0.02 0.746 0.544 0.766 0.536
0.01 0.751 0.605 0.758 0.605
0.005 0.766 0.704 0.750 0.680

Table 2: Ranking accuracy of the learned reward model
rθ(x, y) and the policy model pθ(y|x) on the Ultrafeed-
back validation set.

−100 −75 −50 −25 0

Log-Probability Difference

10−4

10−3

10−2

10−1

100

R
at
io

Beta

0.005

0.01

0.02

0.05

0.1

1

Figure 1: The average token log-probability difference
(discretized) distribution between the DPO-fine-tuned
and reference models (Eq. 8). The models are fine-tuned
from mistral-7b with different values of β.

where y(i) is the i-th token (action step) in the
output y, y(<i) is the prefix of y before y(i). s(i)

is the current “state”, which is determined by the
input x and the prefix y(<i). Intuitively, as noted
by Rafailov et al. (2024), this formulation implies
that DPO can learn token-level credit assignment,
which is proportional to the difference between
the log probabilities assigned by the trained model
and the reference model. Therefore, we use the
statistic, token log-probability difference, to study
the token-level difference between the trained and
reference models:

r̂θ(y
(i), s(i)) = log pθ(y

(i)|x,y(<i))

pref(y(i)|x,y(<i))
. (8)

Figure 1 shows the distribution of the average
log-probability difference of each token in the
model’s vocabulary on the UltraFeedback valida-
tion set, with models fine-tuned from mistral-7b.
We note the following:
(1) Similar to the findings in Rafailov et al. (2024),
we found the DPO fine-tuning leads to a decrease
in token probabilities in general.
(2) The distribution of token-level log-probability
differences is imbalanced, with a small portion of
tokens receiving very different probabilities.
(3) A smaller KL constraint leads to a larger portion
of tokens with large probability differences.

8041

−30−20−100

Log-Probability Difference

EOS

Sure

course

Yes

Hello

Please

What

!

please

safe

Beta

0.005

0.01

0.02

0.05

0.1

1Figure 2: The tokens most downweighted on average
by the models DPO-fine-tuned from mistral-7b with
different values of β.

Figure 2 displays the top 10 tokens with the
largest probability differences that appear at least
100 times. Notably, the end-of-sequence token
(EOS) is the most downweighted among them.
Additionally, a smaller KL-constraint results in a
larger difference for the EOS token. Consequently,
we observe that a smaller KL-constraint generally
leads to longer outputs, suggesting that the models
have learned a preference for output length.

Discussion Our token-level analysis reveals that
as the strength of the KL-constraint decreases,
the DPO-fine-tuned model begins to assign sig-
nificantly different probabilities to a small sub-
set of specific tokens compared to the reference
model. The extremeness of these log-probability
differences is notable: a difference of −10 indi-
cates that the token is downweighted by e10 ≈
22000 times on average. This partially explains the
sensitivity to β, as the increasing extremity of log-
probability differences can destabilize the model.
Moreover, it highlights a limitation of the sequence-
level KL-constraint: it does not effectively prevent
extreme token-level differences.

5 RQ2: Is Reference Policy a Necessary
Regularization for DPO?

We now take a step back to examine the necessity of
the reference policy as a regularization in DPO. As
discussed in §2.3, there are already recent studies
that proposed reference-policy-free algorithms that
replace the KL-constraint with other types of reg-
ularization. We are, however, more interested in a
closer comparison between DPO and similar train-
ing objectives that are either regularization-free or
maintain the KL-constraint as the regularization.

5.1 Training Objectives
To this end, we investigate two related training
objectives and provide theoretical analyses in the
framework established by Rafailov et al. (2023):
optimizing the model using (1) the posterior prob-
ability (pθ(y|x)) and (2) the likelihood function
(pθ(x|y)) as the reward function in the BT model.

Posterior probability as the reward Recall
that Rafailov et al. (2023) have shown that the
DPO training objective learns a reward model:
rθ(x, y) = β log pθ(y|x)

pref(y|x) . An alternative option
is to use the posterior probability with a scaling
hyperparameter β as the reward function, which
does not require a reference model:

r̃θ(x, y) = β log pθ(y|x). (9)

The training objective under the BT model (Eq. 4)
then becomes

LProb(pθ) =

− E(x,yw,yl)∼D[log σ(β log pθ(yw|x)− β log pθ(yl|x))].
(10)

This objective has been investigated in recent
work (Xu et al., 2024) for fine-tuning LLMs for
machine translation, but in Xu et al. (2024) it is
used together with an MLE loss on the positive
examples as a necessary regularization.

Following the analytical framework in Rafailov
et al. (2023), we note that optimizing LProb(pθ) is
equivalent to optimizing the policy model under
the following RL objective:

maxpθ Ex∼D,y∼pθ(y|x)[r(x, y)] + βH[pθ(y|x)], (11)

where H is the entropy function:

H[pθ(y|x)] = Ey∼pθ(y|x)[− log pθ(y|x)]. (12)

The proof for the equivalence of Eq. 10 and Eq. 11
is in Appendix C, with further analyses showing
that Eq. 10 shares similar properties as DPO.

We note that Eq. 11 resembles the Maximum
Entropy (MaxEnt) RL setting (Ziebart et al., 2008;
Eysenbach and Levine, 2021) – apart from optimiz-
ing for a higher reward, this objective discourages
the model from becoming overly deterministic.

Likelihood function as the reward Apart from
the posterior probability, another candidate reward
function is the likelihood function p(x|y). Specifi-
cally, by Bayes’ theorem, we have

p(y|x) ∝ p(x|y)p(y). (13)

8042

Method Score Accuracy Length β

original (SFT) 7.57 0.435 205.0 -
DPO (Eq. 5) 16.25 0.605 359.4 0.01
probability (Eq. 10) 12.84 0.697 744.5 100.0
likelihood (Eq. 15) 13.63 0.602 389.3 0.01

Table 3: Performance comparison of different training
objectives for fine-tuning mistral-7b. The best perfor-
mance with the optimal β is reported. The AlpacaEval2
score, the ranking accuracy of the model’s probability,
and the output length are reported.

Under the task of instruction-following, p(x|y)
depicts how likely the instruction x is related to the
model response y. With the above factorization,
we can derive the learning objective with pθ(x|y)
as the reward function:

pθ(x|y) = pθ(y|x)p(x)
pLM(y) . (14)

Here, we use a fixed LLM to parameterize the prior
probability p(y), which we label pLM(y).13 We
will show later that p(x) does not need an explicit
parameterization.

Using pθ(x|y) as the reward function with a scal-
ing factor β, the objective under the BT model
(Eq. 4) becomes

LLikelihood(pθ)

= −E(x,yw,yl)∼D[log σ(β log pθ(x|yw)− β log pθ(x|yl))]

= −E(x,yw,yl)∼D[log
(pθ(yw|x)
pLM(yw))

β

(pθ(yw|x)
pLM(yw))

β + (pθ(yl|x)pLM(yl)
)β

]

(15)

Eq. 15 is equivalent to using pθ(y|x)
pLM(y) as the reward

function, which has an intuitive interpretation – the
input-dependent quality score of y is its conditional
probability given x, pθ(y|x), normalized by its un-
conditional probability, pLM(y).

Furthermore, under the analytical framework of
DPO, we note that Eq. 15 is equivalent to the KL-
constrained RL setting (Eq. 1) with the prior prob-
ability pLM(y) as the reference policy. That is,

maxpθ Ex∼D,y∼pθ(y|x)[r(x, y)]− βDKL[pθ(y|x)||pLM(y)]. (16)

5.2 Result Analysis
We use mistral-7b as the base model for fine-
tuning to compare DPO with the other two reward
parameterizations discussed above. Table 3 sum-
marizes the performance of different algorithms
with the optimal value of β. We found that
(1) All fine-tuning methods improve the perfor-
mance of the original SFT model;

13We use the SFT model in this work.

DPO Probability Likelihood

20

0

−20

−40

−60

L
og

-P
ro
b
ab

il
it
y

Statistic

Difference

Value

1

Figure 3: Average log-probability (value) and the av-
erage log-probability difference between positive and
negative examples of the EOS token, as assigned by
models fine-tuned with different training objectives.

(2) Using posterior probability as the reward func-
tion (Eq. 10) needs a large optimal value of β, likely
because higher entropy helps prevent degeneration.
(3) DPO outperforms the alternative training objec-
tives. Notably, DPO also outperforms the reference-
policy-free ORPO method (Hong et al., 2024),
which scored 14.7 on the AlpacaEval2 dataset un-
der a comparable setting.14 This is despite ORPO’s
superior performance to Zephyr (Tunstall et al.,
2023), which uses a suboptimal DPO configuration
with β set to 0.1, as shown in Table 1.

Case Study To further understand the difference
in these training objectives, we present a case study
with the EOS token, as we have found in §4.3 that
DPO training can significantly alter model behav-
ior regarding the EOS token. Therefore, here we
provide a further investigation. Specifically, we cal-
culate two statistics: (1) the average log-probability
assigned to the EOS token; (2) the average differ-
ence in the log-probability assigned to the EOS
token between positive (yw) and negative (yl) exam-
ples, illustrating how the model behaves differently
in these two scenarios with the EOS token.

Figure 3 presents these two statistics of models
fine-tuned with different reward function param-
eterizations (averaged over different values of β).
We note the difference between DPO and the fine-
tuning method that uses posterior probability as
the reward function: the former achieves a larger
distinction between positive and negative exam-
ples in terms of the probability assignment to the
EOS token, while the latter shows a smaller dis-
tinction, despite generally assigning more extreme
probabilities to the EOS token, which leads to sig-
nificantly longer outputs. This suggests that the
KL-constraint from the reference policy in DPO
helps to stabilize the model behavior. We present

14The result is available at https://tatsu-lab.github.
io/alpaca_eval/.

8043

https://tatsu-lab.github.io/alpaca_eval/
https://tatsu-lab.github.io/alpaca_eval/

a qualitative case study of the outputs generated
with different training objectives in Appendix D.

6 RQ3: Does DPO Benefit from Stronger
Reference Policies?

In DPO, the reference policy is instantiated with
the SFT model for further fine-tuning. Previous
sections have highlighted the significance of ref-
erence policies in DPO. We now explore whether
stronger reference policies enhance DPO.

6.1 Experimental Settings

We choose two LLMs as the stronger reference poli-
cies in DPO for the fine-tuning of mistral-7b and
tulu-2-7b: (1) mistral-7b-instruct-v0.2,15

(2) llama-3-70b-instruct.16 These two models
are more capable than the base models, achiev-
ing length-controlled AlpacaEval2 scores of 20.55
and 34.40 respectively. We refer to them as
mistral-v0.2 and llama3 for simplicity.

6.2 Result Analysis

Table 4 displays model performance after DPO
fine-tuning across different β values and reference
models. For easier comparison, Table 5 lists the op-
timal performance using different reference models.
We note the following:
(1) A stronger reference policy in DPO fine-
tuning can improve DPO’s effectiveness. Specifi-
cally, the model fine-tuned from mistral-7b per-
forms best with mistral-v0.2 as the reference,
and the model fine-tuned from tulu-2-7b per-
forms best with llama3 as the refererence.
(2) However, a stronger reference policy in DPO
fine-tuning does not always lead to better perfor-
mance. Notably, DPO fine-tuning of tulu-2-7b
with mistral-v0.2 as the reference policy did not
improve tulu-2-7b’s original performance.
(3) The optimal KL constraint strength is larger
with a stronger, suitable reference policy. In
particular, as shown in Table 4, the optimal value of
β for mistral-7b and tulu-2-7b is 1.0 with their
respective suitable reference policies. Conversely,
when the SFT model is used as the reference policy,
the optimal β is 0.01 or 0.02, as shown in Table 1.17

15https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

16https://huggingface.co/meta-llama/
Meta-Llama-3-70B-Instruct

17Additional experiments with a DPO-fined LLM as the
reference policy are in Appendix E.

β
mistral-7b tulu-2-7b

mistral-v0.2 llama3 mistral-v0.2 llama3

10.0 18.74 13.29 7.61 9.79
1.00 20.25 9.59 7.85 11.17
0.10 19.58 10.99 [degenerate] 10.31
0.01 17.18 15.37 [degenerate] 9.16
0.005 15.34 11.70 [degenerate] 3.29

Table 4: Model performance on AlpacaEval2 with
varying values of β fine-tuned from mistral-7b and
tulu-2-7b. Two reference models, mistral-v0.2 and
llama3 are used.

original self mistral-v0.2 llama3

mistral-7b 7.57 16.25 20.25 15.37
tulu-2-7b 8.50 10.46 7.85 11.17

Table 5: Model performance on AlpacaEval2. The best
performance across different values of β with different
reference models is compared, including the SFT model
itself (self), mistral-v0.2, and llama3.

6.3 Discussion

Our investigation reveals while a stronger reference
model can be helpful in DPO, it is not always the
case. One possible explanation is that the refer-
ence model should be similar enough to the model
under training to be compatible – mistral-7b per-
forms better with mistral-v0.2 as the reference
since they are fine-tuned from the same base model,
while tulu-2-7b performs better with llama3 be-
cause tulu-2-7b is fine-tuned from llama-2-7b.

Regarding model similarity and the choice of
the reference policy, we acknowledge the need for
analytical tools and call for further research in this
area. The KL divergence is a potential method,
but estimating it is challenging due to the large
sampling space, leading to high variance.

We note an interesting aspect in the fine-tuning
of tulu-2-7b using llama3 as the reference policy.
Specifically, these models use different tokenizers,
meaning that they do not share the same token-level
action space. The fact that this combination yields
further improvement suggests that action spaces
do not always need to be aligned in DPO, despite
related work proving that DPO can implicitly pa-
rameterize a dense reward function, which requires
a consistent action space (Rafailov et al., 2024).

7 Conclusion

In this work, we studied the effects of reference
policies in DPO, which can stabilize the training

8044

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct

while introducing a potential performance upper-
bound. We found that DPO’s performance is sen-
sitive to the strength of constraints from the refer-
ence policy and demonstrated the benefits of using
reference policies as a regularization in DPO. We
also showed that a stronger reference policy can
enhance DPO performance, but only when the ref-
erence policy is compatible. Our findings highlight
the confounding role of reference policies in DPO,
providing empirical insights and emphasizing the
need for a more in-depth theoretical analysis. We
call for future work to provide more theoretical and
empirical guidelines for choosing the constraint
strength from the reference policy, as well as under-
standing the similarity and compatibility between
the model to be trained and the reference model.

Limitations

Evaluations We mainly use the AlpacaEval2
benchmark to evaluate the instruction-following
capabilities of LLMs in this work, on which the
LLM-based evaluation achieves a high correlation
with human evaluations (Dubois et al., 2024a). The
test examples on this benchmark cover a wide range
of instruction types (Dubois et al., 2024b), which
enhances the generalizability of the evaluation re-
sults. However, we acknowledge that the LLM-
based automatic evaluation has limitations, such as
low self-consistency rates in their predictions and
a preference for the LLMs’ own outputs (Liu et al.,
2023; Wang et al., 2023; Panickssery et al., 2024).
Therefore, while we did not perform human eval-
uations because the large number of analyses we
conducted makes it cost-ineffective, we acknowl-
edge its importance in terms of achieving more
faithful evaluation results.

Model Scale The LLMs we studied in this work
primarily consist of around 7 billion parameters.
Due to computing resource constraints, we did not
investigate LLMs with more parameters. Therefore,
whether our observations are applicable on a larger
scale remains to be investigated.

Acknowledgements

We thank Hamish Ivison for the helpful sugges-
tions regarding the training details for DPO. We are
grateful for the TPU compute support provided by
the Google TRC program and for the OpenAI API
credits support provided by OpenAI’s Researcher
Access Program.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. GPT-4 technical re-
port. arXiv preprint arXiv:2303.08774.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi-
lal Piot, Remi Munos, Mark Rowland, Michal Valko,
and Daniele Calandriello. 2024. A general theoret-
ical paradigm to understand learning from human
preferences. In International Conference on Arti-
ficial Intelligence and Statistics, pages 4447–4455.
PMLR.

Ralph Allan Bradley and Milton E Terry. 1952. Rank
analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–
345.

Angelica Chen, Sadhika Malladi, Lily H Zhang,
Xinyi Chen, Qiuyi Zhang, Rajesh Ranganath, and
Kyunghyun Cho. 2024. Preference learning algo-
rithms do not learn preference rankings. arXiv
preprint arXiv:2405.19534.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anasta-
sios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E
Gonzalez, et al. 2024. Chatbot arena: An open plat-
form for evaluating llms by human preference. arXiv
preprint arXiv:2403.04132.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. 2023. Ultrafeedback: Boosting lan-
guage models with high-quality feedback. arXiv
preprint arXiv:2310.01377.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin,
Shengding Hu, Zhiyuan Liu, Maosong Sun, and
Bowen Zhou. 2023. Enhancing chat language mod-
els by scaling high-quality instructional conversa-
tions. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 3029–3051, Singapore. Association for Com-
putational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat-
sunori B Hashimoto. 2024a. Length-controlled al-
pacaeval: A simple way to debias automatic evalua-
tors. arXiv preprint arXiv:2404.04475.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi
Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy S Liang, and Tatsunori B Hashimoto. 2024b.
Alpacafarm: A simulation framework for methods
that learn from human feedback. Advances in Neural
Information Processing Systems, 36.

8045

https://doi.org/10.18653/v1/2023.emnlp-main.183
https://doi.org/10.18653/v1/2023.emnlp-main.183
https://doi.org/10.18653/v1/2023.emnlp-main.183

Benjamin Eysenbach and Sergey Levine. 2021. Maxi-
mum entropy RL (provably) solves some robust RL
problems. In International Conference on Learning
Representations.

Alexey Gorbatovski, Boris Shaposhnikov, Alexey
Malakhov, Nikita Surnachev, Yaroslav Aksenov, Ian
Maksimov, Nikita Balagansky, and Daniil Gavrilov.
2024. Learn your reference model for real good
alignment. arXiv preprint arXiv:2404.09656.

Jiwoo Hong, Noah Lee, and James Thorne. 2024.
Reference-free monolithic preference optimization
with odds ratio. arXiv preprint arXiv:2403.07691.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin,
Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A. Smith, Iz Belt-
agy, and Hannaneh Hajishirzi. 2023. Camels in a
changing climate: Enhancing lm adaptation with tulu
2. Preprint, arXiv:2311.10702.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-
tomatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511–2522, Singapore. Association for Com-
putational Linguistics.

Yixin Liu, Pengfei Liu, Dragomir Radev, and Graham
Neubig. 2022. BRIO: Bringing order to abstractive
summarization. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2890–2903,
Dublin, Ireland. Association for Computational Lin-
guistics.

Yu Meng, Mengzhou Xia, and Danqi Chen.
2024. SimPO: Simple preference optimiza-
tion with a reference-free reward. arXiv preprint
arXiv:2405.14734.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Arjun Panickssery, Samuel R Bowman, and Shi Feng.
2024. LLM evaluators recognize and favor their own
generations. arXiv preprint arXiv:2404.13076.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea
Finn. 2024. From r to q∗: Your language
model is secretly a Q-function. arXiv preprint
arXiv:2404.12358.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 3008–3021. Curran Associates,
Inc.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, et al. 2023. Zephyr: Di-
rect distillation of LM alignment. arXiv preprint
arXiv:2310.16944.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,
Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. 2023. Large language models are not
fair evaluators. arXiv preprint arXiv:2305.17926.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan,
Lingfeng Shen, Benjamin Van Durme, Kenton Mur-
ray, and Young Jin Kim. 2024. Contrastive prefer-
ence optimization: Pushing the boundaries of llm
performance in machine translation. arXiv preprint
arXiv:2401.08417.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason
Weston. 2023. Some things are more cringe than
others: Preference optimization with the pairwise
cringe loss. arXiv preprint arXiv:2312.16682.

8046

https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2311.10702
https://github.com/tatsu-lab/alpaca_eval
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2022.acl-long.207
https://doi.org/10.18653/v1/2022.acl-long.207
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Wei Wang,
Songfang Huang, and Fei Huang. 2023. RRHF: Rank
responses to align language models with human feed-
back. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman,
Mohammad Saleh, and Peter J Liu. 2023a. SLiC-HF:
Sequence likelihood calibration with human feed-
back. arXiv preprint arXiv:2305.10425.

Yao Zhao, Mikhail Khalman, Rishabh Joshi, Shashi
Narayan, Mohammad Saleh, and Peter J Liu. 2023b.
Calibrating sequence likelihood improves conditional
language generation. In The Eleventh International
Conference on Learning Representations.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell,
and Anind K. Dey. 2008. Maximum entropy inverse
reinforcement learning. In Proc. AAAI, pages 1433–
1438.

A Additional Experimental Details

A.1 Datasets Details
Here we outline additional details regarding the
datasets we used (§3). Following the setup of
Zephyr (Tunstall et al., 2023), we use the Ultra-
Feedback (Cui et al., 2023) dataset, specifically its
binarized version,18 for DPO fine-tuning. The orig-
inal UltraFeedback contains 64K data examples
consisting of a user instruction and 4 candidate
outputs generated by different LLMs, which are
scored by GPT-4. Tunstall et al. (2023) binarized
UltraFeedback to modify the data format for DPO
fine-tuning, by constructing a positive-negative ex-
ample pair out of the 4 candidate outputs. Specif-
ically, the output with the highest GPT-4 score is
selected as the positive example yw used in DPO
fine-tuning (Eq. 5), where the negative example
yl is randomly sampled from the rest 3 candidate
outputs. We note that since UltraFeedback contains
LLM-generated, GPT-4 graded outputs, the instruc-
tion fine-tuning conducted on UltraFeedback is a
distillation setting from more capable LLMs, in-
stead of learning directly from human feedback.
UltraFeedback is released under the MIT license.

A.2 Additional Training Details
Here we discuss additional training details in §3.
We use a linear learning rate scheduler during

18The dataset is available at https://huggingface.co/
datasets/HuggingFaceH4/ultrafeedback_binarized.

β AlpacaEval2 Score

SFT 4.82

0.1 4.75
0.05 5.00
0.02 5.89
0.01 4.91
0.005 5.52
0.001 [degenerate]

Table 6: Model performance on AlpacaEval2 with vary-
ing values of β (regularization strength with respect to
the reference model). The DPO fine-tuning is started
from an SFT checkpoint fine-tuned from qwen2-1.5b.

model training, with 10% of the steps allocated
for learning rate warmup and the remainder for lin-
early decreasing the rate. We perform checkpoint
selection based on the model validation loss on the
UltraFeedback validation set, with a checkpointing
interval of 500 steps. We conduct model training
on 8 NVIDIA RTX 6000 Ada cards with 40GB
memory each. The 3-epoch training takes around 9
hours to finish.

B Additional Experiments for RQ1

In §4, we study our RQ1: what the optimal strength
of the KL-constraint should be, using two series
of LLMs with 7B parameters. Here, we present
additional results with a 1.5B pre-trained LLM,
qwen2-1.5b (Yang et al., 2024).19. The training
setting for qwen2-1.5b is the same as the ones used
in §4, except that we trained the SFT model using
the UltraChat dataset.

Table 6 presents experimental results, showing a
similar trend as the experiments in §4.1 – a small
KL-constraint helps the model to achieve the opti-
mal performance. Notably, the optimal strength of
the KL-constraint identified is the same as the one
for tulu-2-7b.

C Extending DPO: Posterior Probability
as Reward Function

Following the analytical framework in Rafailov
et al. (2023), we now prove the equivalence of
Eq. 10 and Eq. 11 as previously discussed in §5.1.

C.1 Optimum of RL with Maximum Entropy
We will first derive the optimal policy, p∗, for the
RL with Maximum Entropy setting (Eq. 11):

maxp Ex∼D,y∼p(y|x)[r(x, y)] + βH[p(y|x)]. (17)

19https://huggingface.co/Qwen/Qwen2-1.5B

8047

https://openreview.net/forum?id=EdIGMCHk4l
https://openreview.net/forum?id=EdIGMCHk4l
https://openreview.net/forum?id=EdIGMCHk4l
https://openreview.net/forum?id=0qSOodKmJaN
https://openreview.net/forum?id=0qSOodKmJaN
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/Qwen/Qwen2-1.5B

Given any reward function r, we have

max
p

Ex∼D,y∼p(y|x)[r(x, y)] + βH[p(y|x)]

=max
p

Ex∼D,y∼p(y|x)[r(x, y)]− β log p(y|x)]

=min
p

Ex∼D,y∼p(y|x)[log p(y|x)−
1

β
r(x, y)]

=min
p

Ex∼D,y∼p(y|x)[log
p(y|x)

1
Z(x) exp(

1
β r(x, y))

− logZ(x)],

(18)

where Z(x) is the partition function:

Z(x) =
∑

y exp(
1
β r(x, y)). (19)

As Z(x) is only a function of x and does not de-
pend on p, we can define the following probability
distribution:

p∗(y|x) = 1
Z(x) exp(

1
β r(x, y)). (20)

Since Z(x) is not a function of y, we can re-
organize the final objective of Eq. 18 as:

min
p

Ex∼D[Ey∼p(y|x)[log
p(y|x)
p∗(y|x)]− logZ(x)]

=min
p

Ex∼D[DKL[p(y|x)||p∗(y|x)]− logZ(x)]
(21)

Since Z(x) does not depend on p(y|x), the final
objective of Eq. 21 is equivalent to

minp Ex∼D[DKL[p(y|x)||p∗(y|x)]] (22)

By Gibbs’ inequality, the KL-divergence achieves
the minimum of 0 if and only if the two distribu-
tions are identical. Therefore, we have the optimal
solution of Eq. 22 (and Eq. 11) as

p(y|x) = p∗(y|x) = 1
Z(x) exp(

1
β r(x, y)). (23)

C.2 Extending DPO Objective for RL with
Maximum Entropy

We can now express the reward function r(x, y)
under the RL with maximum entropy using the
optimal policy p∗(y|x) by rearranging Eq. 23:

r∗(x, y) = β log p∗(y|x) + β logZ(x) (24)

Therefore, we know that the optimal policy p∗ un-
der the BT model (Eq. 3) satisfies the following
preference model:

p∗(y1 ≻ y2|x)

=
exp(β log p∗(y1|x) + β logZ(x))

exp(β log p∗(y1|x) + β logZ(x)) + exp(β log p∗(y2|x) + β logZ(x))

=
1

1 + exp(β log p∗(y1|x)− β log p∗(y2|x))
=σ(β log p∗(y1|x)− β log p∗(y2|x)).

(25)

We can now derive the maximum likelihood esti-
mation objective based on Eq. 25 for the model
pθ:

min
pθ

− E(x,yw,yl)∼D[log σ(β log pθ(yw|x)− β log pθ(yl|x))]
(26)

This is exactly the objective function we defined
in §5.1 that uses the posterior probability as the
reward function (Eq. 10).

C.3 Further Theoretical Analysis
We continue to follow the analytical framework of
DPO to discuss the theoretical properties of the
training objective defined in Eq. 26 (and Eq. 10).
Specifically, as we discussed in §5.1, the training
objective of Eq. 26 is equivalent to a BT model
with the reparameterization:

rθ(x, y) = β log pθ(y|x). (27)

Following the proof framework in Rafailov et al.
(2023), we will now prove:
all reward classes under the BT model can be rep-
resented with the reparameterization r(x, y) =
β log p(y|x) for some model p(y|x).
Preparation Our proof uses the definition of
the equivalent class of reward functions given by
Rafailov et al. (2023):
“Two reward functions r(x, y) and r′(x, y) are
equivalent iff r(x, y) − r′(x, y) = f(x) for some
function f .”

We also note a lemma given by Rafailov et al.
(2023).
“Under the Bradley-Terry preference framework,
two reward functions from the same class induce
the same preference distribution.”

We now provide another lemma as an extension
of a similar lemma in Rafailov et al. (2023):
Two reward functions from the same equivalent
class induce the same optimal policy under the RL
with Maximum Entropy setting.
Proof. Given two reward functions from the same
class, such that r′(x, y) = r(x, y) + f(x), from
Eq. 23 we know that r′ induces an optimal policy
pr′ :

pr′(y|x) =
1∑

y exp(
1
β r

′(x, y))
exp(

1

β
r′(x, y))

=
1∑

y exp(
1
β (r(x, y) + f(x)))

exp(
1

β
(r(x, y) + f(x)))

=
1

exp(1β f(x))
∑

y exp(
1
β r(x, y))

exp(
1

β
r(x, y)) exp(

1

β
f(x))

=
1∑

y exp(
1
β r(x, y))

exp(
1

β
r(x, y))

= pr(y|x).
(28)

8048

Proof end. As Rafailov et al. (2023) suggested, this
lemma indicates that for a certain reward equiva-
lence class, any arbitrary reward function within
the class will induce the same optimal policy.

Proof For any reward function r(x, y), from Ap-
pendix C.1, we know it induces the following opti-
mal policy according to Eq. 23:

pr(y|x) = 1
Z(x) exp(

1
β r(x, y)). (29)

Therefore, we have

r(x, y) = β log pr(y|x) + β logZ(x), (30)

where Z(x) =
∑

y exp(
1
β r(x, y)). We now define

a projection f :

f(r;β) = r(x, y)− β log
∑

y exp (
1
β r(x, y)), (31)

which projects r into a new reward function:

r′(x, y) = f(r;β)(x, y)

= r(x, y)− β log
∑

y

exp (
1

β
r(x, y))

= β log pr(x, y).

(32)

We can observe that r′ is within the equivalence
class of r since the projector f only depends on x.
Our proof is therefore complete.

D Output Examples from Different
Training Objectives

We show a specific output example for each of the
training objectives investigated in §5. Compared
with the output generated from the DPO objec-
tive in Table 8, the posterior probability objective
(Eq. 10) produces longer outputs with more com-
plex structures that appear overly verbose in Ta-
ble 9. Conversely, the likelihood function objective
(Eq. 15) results in less detailed outputs, as shown
in Table 10.

E Additional Experiments for RQ3

In §6, we study our RQ3: whether DPO bene-
fits from a stronger reference policy, using two
stronger reference LLMs. Here, we present addi-
tional experiments with another option of a stronger
LLM – an LLM that has already been trained using
DPO. Specifically, we use the optimal DPO check-
point fine-tuned from mistral-7b as the reference
model, which is trained with the strength of the KL-
constraint set to 0.01 (§4.1). This model is then
used to fine-tune mistral-7b again.

β AlpacaEval2 Score

reference (β = 0.01) 16.24

10.0 15.20
1.00 16.75
0.10 14.99
0.01 15.07
0.005 14.80

Table 7: Model performance on AlpacaEval2 with vary-
ing values of β. The DPO fine-tuning is started from
mistral-7b, and the reference model is the checkpoint
that is already fine-tuned using DPO from mistral-7b.

The experimental results are presented in Ta-
ble 7, aligned with our observations in §6 – the op-
timal strength of the KL-constraint is larger when a
stronger, suitable reference policy is used. Specifi-
cally, the optimal value of β identified is 1.0, much
larger than the optimal value identified in §4.1,
0.01. Interestingly, the optimal fine-tuned model
under this setting outperforms the reference policy
used, further demonstrating the benefit of stronger
reference policies.

8049

Instruction
I like to host guests at my home from time to time, and I am gathering recipes of different dishes and drinks to keep things
interesting. I am interested in trying some Somali dishes. Can you give me a recipe for Canjeero?

Output
Certainly! Here’s a traditional recipe for Canjeero (also known as Cannoli or Xaaj maanta in Somali), a popular Somali
flatbread made with teff flour or a mix of teff and wheat flour.

Ingredients:
- 2 cups teff flour (you can find this at specialty stores or online)
- 1 cup wheat flour (or more teff flour if you prefer a stronger teff flavor)
- 2 tsp salt
- 1 package or 2 1/4 tsp (7g) active dry yeast
- 3 cups warm water (around 110°F)

Instructions:

1. In a large mixing bowl, combine the teff flour, wheat flour, and salt. Mix well.

2. In a separate bowl, dissolve the yeast in the warm water. Let it sit for 5 minutes until it becomes frothy.

3. Pour the yeast mixture into the flour mixture. Mix well until a smooth, sticky dough forms.

4. Let the dough rest in a warm place for 1-2 hours until it doubles in size.

5. When the dough has risen, divide it into six equal portions. Shape each portion into a ball.

6. Preheat a flat griddle or a non-stick pan over medium heat.

7. Take one ball of the dough and flatten it into a circle, about 1/4 inch thick.

8. Place the flattened dough on the hot griddle or pan. Cook for 2-3 minutes until the bottom is golden brown.
Flip the Canjeero and cook for another 1-2 minutes until the other side is also golden brown.

9. Remove the Canjeero from the griddle or pan and keep it warm and moist by covering it with a clean towel or
aluminum foil.

10. Repeat steps 7-9 with the remaining dough portions.

Canjeero is often served with a stew or soup. Enjoy!

Table 8: Output example with the DPO objective (Eq. 5).

8050

Instruction
I like to host guests at my home from time to time, and I am gathering recipes of different dishes and drinks to keep things
interesting. I am interested in trying some Somali dishes. Can you give me a recipe for Canjeero?

Output
Here’s a traditional and delicious Somali recipe for Canjeero (also known as Canjelo or Canjif) - a popular flatbread that’s often
enjoyed for breakfast or as a snack. This dish is versatile and can be customized with various toppings to suit your preferences.
Here’s how to make it:

Ingredients:
1. 2 cups all-purpose or bread flour
2. 1/2 cup fine semolina (sooji or rava)
3. 1 tsp salt
4. 1 1/2 cups water (or as needed)
5. 2 tbsp vegetable oil (or ghee/clarified butter)
6. Toppings of your choice:

a. Yogurt
b. Fresh or dried fruits (bananas, mangoes, dates, raisins)
c. Honey or sugar
d. Cardamom powder
e. Peanuts or other nuts
f. Qaat (a popular Somali leaf) - optional and not commonly found outside of Somalia

Instructions:

1. In a large mixing bowl, combine the all-purpose or bread flour, semolina, and salt. Mix well to combine.

2. Gradually pour in the water while stirring with a wooden or plastic spoon. Be cautious while adding water, as
the dough can become too sticky if excess water is added. Add water until the dough comes together as a smooth ball.

3. Knead the dough for 3-4 minutes until it becomes soft and elastic. Cover the bowl with a damp cloth or plastic
wrap and let the dough rest for 10-15 minutes. This allows the gluten to develop, resulting in a fluffier bread.

4. Heat a non-stick or cast-iron skillet on medium-high heat. Add the vegetable oil (or ghee/clarified butter) and let
it heat up.

5. Divide the dough into equal-sized balls (usually about 6-8 pieces). Flatten each ball into a disc using your
palms. Make sure the disc is not too thin, as this will result in a crispier bread.

6. Once the skillet is hot, carefully place the flattened discs into the skillet. Do not overcrowd the skillet; cook the
bread in batches if necessary. Cook the bread for 1-2 minutes on each side, or until golden brown spots appear. Press down
lightly on the bread with a spatula to fluff it up.

7. Remove the Canjeero from the skillet and place it on a plate. Repeat the process with the remaining dough
balls.

8. Serve the hot Canjeero with your choice of toppings. Here are some popular combinations:
a. Yogurt and honey or sugar
b. Fresh fruit and cardamom powder
c. Qaat and peanuts
d. Peanut butter and banana
e. Honey and sliced almonds
f. Cinnamon and raisins

Note: Canjeero is a versatile dish that can be enjoyed any time of day. It’s often served with tea or coffee as a snack or as
part of a larger meal. You can also experiment with different types of flour, such as whole-wheat or spelt, to create unique flavors.

Enjoy your homemade Canjeero! This dish is a staple in Somali cuisine and is a great way to explore the rich fla-
vors and traditions of this vibrant culture. If you have any questions or need further assistance, please don’t hesitate to ask.
Happy cooking!

Table 9: Output example with the posterior probability objective (Eq. 10).

8051

Instruction
I like to host guests at my home from time to time, and I am gathering recipes of different dishes and drinks to keep things
interesting. I am interested in trying some Somali dishes. Can you give me a recipe for Canjeero?

Output
Certainly! Here’s a simple recipe for Canjeero (Somali flatbread) that serves 4-6 people:

Ingredients:
- 2 cups (240 grams) of Somali flour (also known as “soor” or “sorghum flour”)
- 2 cups (480 ml) of water
- 1/2 teaspoon of salt

Instructions:

1. In a large mixing bowl, combine the somali flour and salt.

2. Gradually add the water to the flour mixture while stirring with a wooden spoon or spatula until the mixture is
smooth, free of lumps, and has a thick consistency.

3. Cover the bowl with a clean kitchen towel or plastic wrap and let it rest at room temperature for at least 1 hour
(or up to 24 hours) to allow the flour to hydrate and the gluten to develop.

4. When ready to make the canjeero, preheat a non-stick pan or griddle over medium heat.

5. Using a measuring cup or ladle, pour about 1/3 to 1/2 cup of batter into the center of the pan.

6. Immediately, use the back of the ladle or a spatula to gently spread the batter into a thin, round shape (about 6-8
inches in diameter).

7. Let the canjeero cook for 1-2 minutes or until the bottom is golden brown and the top is beginning to set.

8. Flip the canjeero over and let it cook for another 30 seconds to 1 minute on the other side, or until golden
brown.

9. Repeat with the remaining batter, using more oil or butter to lubricate the pan as needed.

10. Serve the canjeero warm with a side of ghee (clarified butter) or other Somali stews or sauces like “Wat” or
“Xalwo.”

Enjoy your traditional Somali Canjeero!

Table 10: Output example with the likelihood function objective (Eq. 15).

8052

