Optimizing Hidden Markov Language Models: An Empirical Study of
Reparameterization and Initialization Techniques

Ivan Lee and Taylor Berg-Kirkpatrick
UC San Diego
{iylee, tberg}@ucsd.edu

Abstract

Hidden Markov models (HMMs) are valuable
for their ability to provide exact and tractable
inference. However, learning an HMM in an
unsupervised manner involves a non-convex
optimization problem that is plagued by poor
local optima. Recent work on scaling HMMs
has shown this challenge only intensifies as
the number of hidden states grows. We pro-
vide a comprehensive empirical analysis of
two approaches to enhance HMM optimization:
reparameterization and initialization of HMM
transition and emission parameters using neu-
ral networks. Through extensive experiments
on language modeling, we find that (1) these
techniques enable effective training of large-
scale HMMs, (2) simple linear reparameteriza-
tions of HMM parameters perform as well as
more complex neural ones, and (3) the two ap-
proaches are complementary, yielding the best
results when combined.

1 Introduction

Despite being largely supplanted by more perfor-
mant neural networks (NNs), HMMs remain valu-
able in modern applications due to their ability to
provide exact and tractable inference. These ap-
plications include data synthesis (Xie et al., 2021;
Lavie et al., 2024), controllable text generation
(Zhang et al., 2023), non-autoregressive transla-
tion (Li et al., 2024), aligning speech and text for
low-resource languages (Ljubevsi’c et al., 2024),
Chinese spelling correction (Wang et al., 2024),
and data analysis (Qi and Inaba, 2024).

Recent work showcased the expressive capac-
ity of HMMs for language modeling by massively
scaling up the number of hidden states using mod-
ern compute hardware (Chiu and Rush, 2020).
The results were promising, highlighting a pos-
sibly lighter-weight and more interpretable alterna-
tive to neural LMs for certain applications. How-
ever, the core optimization problem behind unsu-
pervised learning in HMMs remains a challenge:

Reparam + LVD
® HMM

6509 @

600

550 4

500 1

450 A

Perplexity «

400 1

350 1

300 1

250 -

T T T T T T T
220 221 222 523 524 525 226
HMM Parameters

Figure 1: Perplexity as a function of HMM parameters.
(Blue) Scaling the number of hidden states, when us-
ing random initialization and standard parameterization,
often converges to suboptimal local optima. ()
Reparameterization and improved initialization allevi-
ates this issue.

the marginal likelihood learning objective is non-
convex, and current optimization techniques tend
towards poor local optima. Indeed, Liu et al. (2022)
found that as the number of hidden states grows,
this issue becomes more pronounced, and larger
HMMs often fail to utilize their expanded capacity.
Random restarts offer an approach to mitigate this
problem (Berg-Kirkpatrick and Klein, 2013), but
are computationally expensive.

In contrast, the training of neural models rarely
suffers from poor local optima (Nguyen and Hein,
2017), despite also involving non-convex optimiza-
tion. Can insights from neural training be lever-
aged to improve learning in HMMs? We study this
question empirically by comprehensively investi-
gating extensions and combinations of two tech-
niques: neural reparameterization (NR) and neu-
ral initialization (NI). It has been hypothesized that
the tendency of neural optimization to avoid poor
local optima is due to the shape of neural parame-
terizations (Zhang et al., 2021). Might the reparam-

7727

Findings of the Association for Computational Linguistics:
NAACL 2025, pages 77277738
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

eterization of HMMs using neural networks allow
HMM learning to inherit some of these benefits?

Chiu and Rush (2020) leveraged NR of tradi-
tional multinomial HMM parameters, but primarily
to reduce memory consumption and did not ex-
tensively evaluate whether this approach also im-
proved optimization and why. Here, we seek to
directly measure the effects of reparameterization
on HMM optimization and to compare different
reparameterization structures. Similarly, it has long
been known that smart heuristic initializations can
aid in non-convex optimization (Klein and Man-
ning, 2004). Recently, however, neural pretraining
techniques have been proposed as a new method for
the initialization of HMMs and other probabilistic
models (Liu et al., 2022). We aim to empirically
study whether neural initialization techniques can
be effectively combined with NR.

Our experiments demonstrate that the combi-
nation of both techniques can indeed yield sub-
stantially improved optimization performance in
HMMs. For example, as depicted in Figure 1, we
find that our best approach demonstrates gains in
perplexity with larger HMMs, whereas traditional
training techniques exhibit reduced performance as
the HMM grows. Furthermore, our experimental
analysis reveals that the benefits of NR are almost
fully explained by simple linear reparameterization
strategies, suggesting takeaways for related prob-
abilistic non-convex problems from other model
classes.

2 Experimental Setup

Following Chiu and Rush (2020) and Liu et al.
(2022), we focus on the task of language model-
ing. We train HMMs with various initialization and
reparameterization strategies on S00M tokens and
test on 1M held out tokens from the Slimpajama
dataset (Soboleva et al., 2023). Our baseline model
is a standard HMM with multinomial transition
and emission distributions, randomly initialized
(denoted as % in our figures). Unless otherwise
stated, we fix the number of hidden states to 512
and sequence length to 64 tokens.

For optimization, we use minibatch SGD with
the AdamW optimizer, employing a linear warmup
followed by cosine decay of the learning rate (addi-
tional details are provided in Appendix 5). While
HMMs are traditionally trained with the Baum-
Welch (BW) algorithm, our preliminary experi-
ments found that SGD consistently outperformed

700 e * HvM
s MLPy
6501 MLP-L
° o Transformer-y
600 e Transformer-t
550
*- e :

500 1

450 - E

Perplexity «

400 1 g oot . : .
. olo..“ . ° ,...‘...° .
] g [[o8, * °
350 ;’gg ':.t-‘ac . .

300

T T T T T T T
s18 220 222 224 226 228 230
Parameters

Figure 2: Perplexity as a function of reparameterization
capacity and architecture design (Section 3). Y% indi-
cates our baseline: a randomly initialized HMM with
standard parameterization, optimized with SGD.

BW! in both training time and final perplexity. We
train for a single epoch and report test perplexity,
though we observe nearly identical results on the
training set.

Our experiments systematically explore two ap-
proaches to improve HMM optimization: First, we
study neural reparameterization (Section 3), where
we replace the HMM’s multinomial parameters
with the output of a neural network. We investi-
gate how the capacity and architecture of the neural
network affect optimization and examine whether
the benefits can be achieved with simpler linear
parameterizations. Next, we explore initialization
strategies (Section 4), where we use pretrained lan-
guage models to guide parameter initialization of
an HMM. In particular, we study one form of ini-
tialization called latent variable distillation (Liu
et al., 2022) and ask two key questions: (1) how
does the strength of the teacher model (measured
by its training data size) affect HMM performance,
and (2) what is the optimal amount of compute to
dedicate to initialization before diminishing returns
set in? Finally, we investigate the combination of
both approaches (Section 5), examining whether
their benefits are complementary.

3 Reparameterization

Neural reparameterization (NR) (Tran et al., 2016;
Chiu and Rush, 2020) replaces an HMM'’s emission
and transition matrices with the output of a neu-

!Given the size of our dataset, we employed mini-batch
BW: 011 + - 0™ + (1 —) - 6, where « is the learning
rate and 0™ are the updated parameters returned by one step
of BW.

7728

ral network. For example, Chiu and Rush (2020)
reparameterize an HMM with the multilayer per-
ceptron (MLP) architecture depicted in Appendix
10. While they primarily employed NR to reduce
parameter count for training large HMMs, they also
observed improvements in perplexity—motivating
our deeper investigation into why and how NR en-
hances HMM optimization. We explore the impact
of NR with respect to three key aspects: the capac-
ity of the neural network, choice of architecture
(e.g., MLP versus Transformer), and functional
form (e.g. linear versus non-linear).

Does NR scale matter? Given that Chiu and Rush
(2020) were primarily interested in NR for train-
ing efficiency, we further explore the relationship
between perplexity and the NN’s capacity. When
clear from context, “the NN" refers to the neural
network used to reparameterize an HMM. In par-
ticular, we ask: does overparameterizing the NN
lead to improved local optima?

Figure 2 illustrates the impact of reparameter-
izing an HMM using NNs with varying parame-
ter counts and architectures. We defer discussion
of architecture choice as is not crucial for under-
standing the following takeaways: NR consistently
enhances perplexity compared to the baseline ¥.
This improvement is evident even when the NN is
considerably smaller than the HMM it reparame-
terizes. However, increasing the NN size beyond
222 parameters does not yield additional benefits,
indicating that scaling the NN does not parallel the
advantages of scaling the HMM’s hidden states.
Conversely, reducing the NN capacity below 222
parameters predictably worsens perplexity. These
findings also hold true for hidden state sizes other
than 512 as shown in Appendix 11 and 12.

Does NR architecture matter? We now consider
the impact of the NN’s architecture, focusing on
both MLPs and transformers (TRFs), as well as
their monolithicity—whether the architecture uses
a single neural network instance or multiple in-
stances. For example, we consider the design of
Chiu and Rush (2020) as being non-monolithic ()
since it uses three separate neural networks (fin,
fout> and femir), each taking the hidden state em-
bedding H as input. In contrast, a monolithic (¢)
design employs just a single neural network in-
stance f that processes H. An illustrative example
comparing these designs can be found in Appendix
13.

Our findings, presented in Figure 2, indicate that

Perplexity | Mean Min Max
Ablation A (single H) 711 710 713
Ablation B (split H) 348 346 350
HMM % 540 529 546
Chiu and Rush x 357 355 359

Table 1: Linear reparameterizations are competitive
with, and often superior to, their neural counterparts.

any architectural choice significantly improves per-
formance over the baseline. The non-monolithic
MLP design by Chiu and Rush (2020) often
achieves the best perplexity scores, only being sur-
passed by its monolithic counterpart at scales above
222 parameters. However, this limitation is not prac-
tically relevant since we observe no further perplex-
ity improvements beyond this scale. When compar-
ing different architectures, monolithic MLPs and
TRFs exhibit similar performance for most parame-
ter sizes, though MLPs gain an advantage for sizes
greater than 2%°. The worst performing configura-
tion was the non-monolithic transformer design.

Does NR functional form matter? We now ab-
late Chiu and Rush (2020)’s NR to identify which
components contribute to performance gains. We
begin with the simplest configuration, referred to
as ablation A, where all instances of MLPs are
removed, resulting in a design that prohibits asym-
metric transition probabilities (Appendix 14, left).
Given this limitation, we also consider ablation B,
where the hidden state embeddings are split three
ways (Appendix 14, right). We find that ablation
B surpasses Chiu and Rush (2020)’s NR (Table 1).
This is surprising because ablation B is simply a
low-rank factorization of the transition and emis-
sion matrices: a = H;, H OTut, b= Hemit VT where
H; € R"? and d < n, implying that the bene-
fits of Chiu and Rush (2020)’s NR seem to arise
mainly from factorizing the HMM’s parameters,
rather than any properties unique to NNs.

We also examine the impact of independently
factorizing each HMM matrix and find that while
factorizing all matrices yield the best results, most
improvements come from the emission matrix. We
then further ablate Chiu and Rush (2020)’s NR to
identify which neural components offered value,
discovering a few more performant, though minor,
configurations. See Appendix A for details.

7729

550

525 A

500 A

475 4
=== HMM

450 HMM+LVD (Llama-2-7B)
B HMM+LVD (TinyLlama-1.1B)

Perplexity «

0 0.5 1 15 2 2.5 3
TinyLlama Checkpoint (Trillion Pretraining Tokens)

Figure 3: Impact of various teachers on LVD. All teach-
ers lead to improvements over the baseline, including a
randomly initialized one, albeit to a lesser extent. There
is no correlation between the teacher’s strength and the
extent of improvement.

4 Initialization

Latent Variable Distillation (LVD) (Liu et al., 2022)
uses a pretrained NN (teacher) to initialize the pa-
rameters of an HMM (student), hoping to form a
better starting point which will lead to better local
optima. More specifically, each observation o € O
is mapped to a hidden state s € S using the NN’s
contextualized embedding of o (a token in the lan-
guage modeling setting). The underlying idea is
that observations generated from the same hidden
state should be positioned closely together in the
embedding space. This is implemented by apply-
ing the k-means algorithm to cluster the embed-
dings, where k = |S|. The weights of the HMM
are initialized by maximizing the joint distribution
P(0O, S) for a predetermined number of steps. This
is followed by standard unsupervised training, i.e.,
maximizing the marginal likelihood P(O). See
Appendix 19 for pseudocode of this process.

We now examine the effects of LVD initializa-
tion on HMM training. Liu et al. (2022) show that
LVD results in easier-to-optimize HMMs, but sev-
eral questions persist. We aim to clarify the link
between the strength of the teacher NN and the
student HMM. Additionally, we seek to determine
the optimal number of LVD steps before improve-
ments plateau. Note that we do not use NR in the
following experiments, meaning we directly update
the emission and transition matrices of the HMM
using SGD.

Does Teacher Strength Matter? We train several
HMMs using LVD while varying the strength of the

teacher. Specifically, we utilize TinyLlama-1.18B
(Zhang et al., 2024) checkpoints, which range from
500B to 3T pretraining tokens. For the strongest
teacher, we employed L1ama-2-7B (Touvron et al.,
2023). As illustrated in Figure 3, our findings
confirm that LVD facilitates easier optimization
of HMMs. However, we observed two surprising
results. First, the strength of the teacher has min-
imal impact: TinylLlama trained on 500B tokens
performed comparably to L1ama-2, which is seven
times larger and trained on 2T tokens. Second, us-
ing LVD with a randomly initialized teacher still
offers advantages over not using LVD at all.

Effect of Number of Initialization Steps Again,
we train several HMMs with LVD but now vary
the number of training steps dedicated to maximiz-
ing the joint probability P(O, S) before resuming
unsupervised training by maximizing the marginal
likelihood P(O). We find that initializing with
LVD saturates after SM tokens. However, lever-
aging LVD throughout the entire training process
worsens performance compared to not using LVD.
We visualize our findings in Appendix 8.

5 Reparameterization + Initialization

We now consider approaches that incorperate both
reparameterization and initialization.

LVD + Reparameterization The benefits of LVD
and NR are impressive on their own, but do they
complement each other or simply lead the HMM to
the same local optima? Figure 4 demonstrates that
these methods are indeed complementary, regard-
less of the architecture used. Additionally, LVD
reduces the variance in training runs, a benefit not
observed with NR alone.

Transfer Learning A natural extension of NR is to
initialize the NN with the weights of a pretrained
NN. To test this, we train a decoder-only TRF lan-
guage model 7" on 4B tokens. We then reparameter-
ize an HMM with a monolithic TRF and initialize
it with the weights of 7". We find that this form of
transfer learning is beneficial as long as the learn-
ing rate (for training the HMM) is properly tuned.
We also experiment with initializing the TRF us-
ing checkpoints of TinyLlama-1. 1B, an LM many
orders of magnitude larger than the HMM it repa-
rameterizes. We reconfirm the efficacy of trans-
fer learning as all checkpoints outperformed a ran-
domly initialized TRF. However, contrary to our
intuition, initializing with a stronger checkpoint did
not yield better results. We visualize our findings

7730

vt ——
' e
MLP (Chiu-Rush) »

=
MLP-t »
=
MLy - = 1o LVD
- wo
Enc Transformer- .
/=
Enc Transformer-y »
L

Dec Transformer-t

Dec Transformer-y

300 350 400 450 500 550
Perplexity «

Figure 4: LVD improves perplexity and reduces vari-
ance across random restarts, regardless of architecture.
The benefits of LVD and NR are complementary.

in Appendix 6 and 7.

Transfer Learning + LVD Given that transfer
learning and LVD are both initialization meth-
ods, are their benefits redundant? To explore this,
we compared two HMMs reparameterized with
a monolithic TRF: one initialized randomly and
the other with TinyLlama. Both were trained us-
ing LVD for 10M tokens before continuing with
standard training. We find that combining transfer
learning with LVD does not yield significant im-
provements over using LVD alone. See Appendix
4 for full results.

6 Conclusion

We conducted an empirical investigation into the
use of neural initialization and reparameterization
to address the challenges of learning HMMs. Our
study confirmed the effectiveness of each approach
and revealed that they complement each other. Ad-
ditionally, we discovered that the advantages of
neural reparameterization can be largely attributed
to a low-rank linear factorization of the HMM.

7 Limitations

While this empirical analysis aimed to be as com-
prehensive as possible, we could not test every
possible experiment setting. It is always possible
that increasing the number of random restarts and
expanding our hyperparameter search could reveal
different results.

References

Taylor Berg-Kirkpatrick and Dan Klein. 2013. Deci-
pherment with a million random restarts. In Proceed-
ings of the 2013 Conference on Empirical Methods

in Natural Language Processing, pages 874-878,
Seattle, Washington, USA. Association for Computa-
tional Linguistics.

Justin T Chiu and Alexander M. Rush. 2020. Scaling
hidden markov language models. In Conference on
Empirical Methods in Natural Language Processing.

Dan Klein and Christopher Manning. 2004. Corpus-
based induction of syntactic structure: Models of
dependency and constituency. In Proceedings of
the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL-04), pages 478-485,
Barcelona, Spain.

Itay Lavie, Guy Gur-Ari, and Zohar Ringel. 2024. To-
wards understanding inductive bias in transformers:
A view from infinity. ArXiv, abs/2402.05173.

Haoran Li, Zhanming Jie, and Wei Lu. 2024. Non-
autoregressive machine translation as constrained
HMM. In Findings of the Association for Compu-
tational Linguistics ACL 2024, pages 12361-12372,
Bangkok, Thailand and virtual meeting. Association
for Computational Linguistics.

Anji Liu, Honghua Zhang, and Guy Van den Broeck.
2022. Scaling up probabilistic circuits by latent vari-
able distillation. ArXiv, abs/2210.04398.

Nikola Ljubevsi’c, Peter Rupnik, and Danijel Korvzinek.
2024. The parlaspeech collection of automatically
generated speech and text datasets from parliamen-
tary proceedings.

Quynh Nguyen and Matthias Hein. 2017. The loss
surface of deep and wide neural networks. Preprint,
arXiv:1704.08045.

Zhiyang Qi and Michimasa Inaba. 2024. Data augmen-
tation integrating dialogue flow and style to adapt
spoken dialogue systems to low-resource user groups.
In Proceedings of the 25th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 159-171, Kyoto, Japan. Association for Com-
putational Linguistics.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.
SlimPajama: A 627B token cleaned and deduplicated
version of RedPajama.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almabhairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Cant6n Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew

7731

https://aclanthology.org/D13-1087
https://aclanthology.org/D13-1087
https://api.semanticscholar.org/CorpusID:226262196
https://api.semanticscholar.org/CorpusID:226262196
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://api.semanticscholar.org/CorpusID:267547442
https://api.semanticscholar.org/CorpusID:267547442
https://api.semanticscholar.org/CorpusID:267547442
https://doi.org/10.18653/v1/2024.findings-acl.735
https://doi.org/10.18653/v1/2024.findings-acl.735
https://doi.org/10.18653/v1/2024.findings-acl.735
https://api.semanticscholar.org/CorpusID:252781163
https://api.semanticscholar.org/CorpusID:252781163
https://api.semanticscholar.org/CorpusID:272832065
https://api.semanticscholar.org/CorpusID:272832065
https://api.semanticscholar.org/CorpusID:272832065
https://arxiv.org/abs/1704.08045
https://arxiv.org/abs/1704.08045
https://doi.org/10.18653/v1/2024.sigdial-1.14
https://doi.org/10.18653/v1/2024.sigdial-1.14
https://doi.org/10.18653/v1/2024.sigdial-1.14
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B

Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. Llama 2: Open foundation
and fine-tuned chat models. ArXiv, abs/2307.09288.

Ke M. Tran, Yonatan Bisk, Ashish Vaswani, Daniel
Marcu, and Kevin Knight. 2016. Unsupervised neu-
ral hidden Markov models. In Proceedings of the
Workshop on Structured Prediction for NLP, pages
63-71, Austin, TX. Association for Computational
Linguistics.

Xi Wang, Ruoqing Zhao, Jing Li, and Piji Li. 2024. An
unsupervised domain-adaptive framework for chi-
nese spelling checking. ACM Trans. Asian Low-
Resour. Lang. Inf. Process. Just Accepted.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2021. An explanation of in-context
learning as implicit bayesian inference. ArXiv,
abs/2111.02080.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. 2021. Understanding
deep learning (still) requires rethinking generaliza-
tion. Commun. ACM, 64(3):107-115.

Honghua Zhang, Meihua Dang, Nanyun Peng, and
Guy Van den Broeck. 2023. Tractable control
for autoregressive language generation. ArXiv,
abs/2304.07438.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and

Wei Lu. 2024. Tinyllama: An open-source small
language model. ArXiv, abs/2401.02385.

7732

https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://doi.org/10.18653/v1/W16-5907
https://doi.org/10.18653/v1/W16-5907
https://doi.org/10.1145/3689821
https://doi.org/10.1145/3689821
https://doi.org/10.1145/3689821
https://api.semanticscholar.org/CorpusID:241035330
https://api.semanticscholar.org/CorpusID:241035330
https://doi.org/10.1145/3446776
https://doi.org/10.1145/3446776
https://doi.org/10.1145/3446776
https://api.semanticscholar.org/CorpusID:258179578
https://api.semanticscholar.org/CorpusID:258179578
https://api.semanticscholar.org/CorpusID:266755802
https://api.semanticscholar.org/CorpusID:266755802

a b s Mean Min Max
False False False 607 561 681

True False False 814 750 871

True False True 865 752 950
False True False 345 344 347
True True False 338 337 339
True True True 337 336 339

Table 2: Effect of factorizing HMM parameters on per-
plexity (lower is better).

A Reparameterization Continued

We examined the impact of independently factor-
izing each HMM matrix (Table 2) and found that
while factorizing all matrices yielded the best re-
sults, most improvements came from the emission
matrix b. We then investigated whether any neural
properties offered benefits. Specifically, we ablated
Chiu and Rush (2020)’s NR by varying the num-
ber of linear layers, and the use of activation func-
tions and layer normalization. We also assessed
monolithicity (Figure 15) and splitting H into three
separate hidden state embeddings (Figure 16). Al-
though a few configurations surpassed ablation B
(Table 3), the improvements were minimal.

B Initializing with Cluster Centroids

We examine the impact of initializing hidden state
embeddings with the cluster centroids obtained
during LVD and vocabulary embeddings with the
teacher’s language modeling head. Specifically, we
use TinyLlama as the LVD teacher for initializing
the embeddings of Chiu and Rush (2020)’s NR.
Our findings are negative: both initialization meth-
ods degrade performance, even when embeddings
are frozen for the initial 20 million training tokens.
Results are shown in Figure 5.

332 £ 3.8 345 = 4.81

False

378 = 29.63 381 = 16.96

Init Hidden State Embeddings
True

False True

Freeze embeddings for first 20M tokens

334 + 2.86 405 + 7.89

False

1173 £ 12.41 1679 + 200.96

Init Hidden State Embeddings
True

False True
Initialize Vocabulary Embeddings

Figure 5: Clusters obtained from LVD are used to initial-
ize hidden state embeddings. The language modeling
head of the LVD teacher is used to initialize vocabulary
embeddings.

400

mmm Pretrained
mmm Randomly Initialized
380
) .‘ "
0.04

0.0004 0.004
Learning Rate

w
=)}
o

Perplexity «
£
o

Figure 6: Initializing parameterization with a check-
point pretrained on language modeling improves per-
plexity. However, high learning rates cancel out any
benefit. 3 random seeds, error bars show min and max
performance. Pretrained transformer was trained on lan-
guage modeling on 4B tokens.

7733

LayerNorm Perplexity_mean Perplexity_min Perplexity_max
False 329.5 3227 34049
False 336.6 331.7 3415
False 336.7 3320 3427
True 341.2 339.0 343.6
False 3426 334.3 3583.5
False 3435 3371 360.2
False 344.4 3421 3481

Table 3: Variants of Chiu and Rush (2020)’s NR that outperformed ablation B in Table 1.

SplitH Monolithic Linear Layers Skip Connection RelU
False False 1 False True
True False 1 False True
False False 2 True True
True False 2 False False
True False 2 True True
True True 2 True True
False False 1 False False
380
370

Perplexity «
w w
u (=]
o [=]

£

33

[=]

503b 1.5T 2.5T
TinyLlama Checkpmnt (Pretramlng Tokens)

320

Figure 7: Parameterizing an HMM with TinyLlama, a
1.1B parameter transformer. Horizontal lines show the
best performing runs from Figure 2. Initializing TinyL-
lama with pretrained checkpoints offers benefits over
random initialization, however, more training tokens did
not result in meaningful improvements. Substantially
smaller, randomly initialized parameterizations perform
just as well or better than TinyLlama.

Algorithm 1 Latent Variable Distillation

T, M < teacher model, student model
Step 1: Learn clusters of embeddings
embeds < []
for sequence in text-corpus-1 do

for token in sequence do

embeds.append(7'(token))

end for
end for
clusters < k-means(embeds, k=hidden-states)
Step 2: T guides M to optimize P (O, S)
. for sequence in text-corpus-2 do
embeddings <— T'(sequence)
S+ get-labels(clusters, embeddings)
M optimizes P(O, S)
: end for
: Step 3: M optimizes P(O)
: for sequence in text-corpus-3 do
M optimizes P(O)
: end for

R AN A i

e e e e e e
R e A A S R

Perplexity (Min-Max) |
365 (362-371)

Random Init.

+LVD 317 (316-317)
Pretrained Init. 333 (330-337)
+LVD 313 (312-315)

Table 4: Mean perplexity. HMM is reparameterized
with a 1.1B parameter transformer using the ¢ template.
We use TinyLlama-1.1B trained on 3T tokens as the
checkpoint for LVD and reparameterization.

—== HMM
- WD

1000 4

900+

800

700 A

Perplexity «

600

500

400

= = = =
= A =] =]

é e
= 28
=

125M
250M
375M
500M

Tokens

Figure 8: Perplexity versus the number of tokens used to
optimize P (O, S), guided by latent variable distillation
(LVD). Following LVD, optimization of P(O) contin-
ues until a cumulative total of 500M tokens is reached.
Benefits of LVD emerge only with a minimum of 1M
tokens, achieving full potential at SM tokens. Extend-
ing LVD throughout the entire training period, however,
proves counterproductive (rightmost bar).

7734

700 +

6501

600 1

Perplexity «

450

400 1

350 1

300

500 million tokens from Slimpajama

1 million tokens from Slimpajama
Llama 2 tokenizer with vocabulary size of 32,000

Parameter Argument
Training Task Language modeling
Training Data

Test Data

Tokenizer

Precision bf16-mixed
Batch Size 200
Sequence Length 64 tokens
Optimization Strategy

Optimizer AdamW
Weight Decay 0.1

Betal 0.9

Beta2 0.95

Learning Rate Schedule

HMM Hidden States

Random Seeds

Minibatch Stochastic Gradient Descent

Linear warmup for 25.6 million tokens up to max learning rate,

then cosine decay to 0.1 X max learning rate

512
[42, 52, 62]

Table 5: Settings shared by all experiments unless otherwise specified.

Parameter Argument
HMM Hidden States 512
Random Seeds [42, 52, 62]
Max Learning Rate 4e-1
TinyLlama-1.1B LVD Tokens 10M
Llama2-7B LVD Tokens M

Llama2-7B PCA Dimension

[512, 1024, 2048, 4096]

Table 6: Experimental details for Figure 3.

550 A

500 1

.0 WEe

wmelee

Ablation of Chiu and Rush (2020)
Scale, monolithicity, architecture
HMM

Chiu and Rush (2020)

Koo

T
218 220 2

T T T T
22 224 526 528 230
Parameters

Figure 9: An overview of the experiments conducted
in Section 3 involving scale, architecture (Orange) and

functional form (Blue). Our baseline (%) is a randomly
initialized HMM with standard parameterization and

optimized with SGD.

7735

LayerNorm

Linear

N -)

Figure 10: The neural reparameterization used by Chiu
and Rush (2020). @ indicates matrix multiplication.

Emission
Matrix

Transition
Matrix

Initial
Distribution

Perplexity «

Figure 11: We repeat the experiment in Figure 2, but set hidden states to 256 instead of 512.

Perplexity «

Figure 12: We repeat the experiment in Figure 2 for MLP-1), but set hidden states to 1024 instead of 512.

700 A

6501

600

550 1

500 4

450 1

400 1

350 1

300

. * HMM
R s MLP-y
MLP-

e Transformery
e Transformer-t

.:év.:-. e :’:. :

R0 o
LY

T
218 220 222 224 226

Parameters

700
L]
600
*
500 1
]
400 1
L] L]
-. .. L] °
L]
200 4 %o 5 e, s 0 L.
H HMM
e MLPy
200 T T T T T T T T T
517 218 519 220 221 922 223 224 225
Parameters

7736

Initial Transition Emission

Distribution ~ Matrix Matrix
Initial Transition Emission
Distribution Matrix Matrix
Linear

f

=g

Figure 13: Left: Non-monolithic design (/). Right: Monolithic design (¢).

Initial Transition Emission
Distribution ~ Matrix Matrix
[nitial Transition Emission

Distribution =~ Matrix Matrix
A
H V [Hin [Hout } [HemitJ Vv

Figure 14: Left: Non-monolithic (1)) design where f; is replaced with the identity function. Right: Non-monolithic
design (1)) where f; is replaced with the identity function and the hidden state embedding H is split into three
independent embeddings.

7737

Initial Transition Emission Initial Transition Emission
Distribution Matrix Matrix Distribution Matrix Matrix

Figure 15: Examples of a monolithic architecture (left) and a non-monolithic architecture (right).

Initial Transition Emission

Distribution Matrix Matrix
Initial Transition Emission

Distribution ~ Matrix Matrix

a * N
Hout

t

H,
- o _/
) §

‘ N - 0
fu || Fou
- J /

s D s D
[I-Iin } Hout Hemit L vV }
\) L J

Figure 16: Examples of split hidden state embeddings (left) and merged hidden state embeddings (right).

7738

