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Abstract

Emotional dialogue speech synthesis (EDSS)
aims to generate expressive speech by lever-
aging the dialogue context between interlocu-
tors. This is typically done by concatenating
global representations of previous utterances
as conditions for text-to-speech (TTS) systems.
However, such approaches overlook the impor-
tance of integrating localized acoustic cues that
convey emotion. To address this, we introduce
a novel approach that utilizes a large language
model (LLM) to generate holistic emotion tags
based on prior dialogue context, while also pin-
pointing key words in the target utterance that
align with the predicted emotional state. Fur-
thermore, we enhance the emotional richness
of synthesized speech by incorporating con-
centrated acoustic features of these key words
through a novel selective audio masking loss
function. This methodology not only improves
emotional expressiveness, but also facilitates
automatic emotion speech generation during
inference by eliminating the need for manual
emotion tag selection. Comprehensive sub-
jective and objective evaluations and analyses
demonstrate the effectiveness of the proposed
approach.

1 Introduction

Communication between humans is built on the
ability to understand, and empathize in alignment
to emotional context (Pangaro and Dubberly, 2014).
As human-robot interactions continue to grow in
prominence through the rise of Intelligent Personal
Assistants (IPAs) like Siri and Alexa1, it is crucial
to develop artificial agents that are able to emu-
late these communicative qualities. This involves
generating artificial speech with appropriate empa-
thetic and emotive prosodic patterns that accurately
reflect the dialogue context, a task known as emo-
tional dialogue speech synthesis (EDSS; Fig. 1).

1The number of virtual assistants is forecasted to reach 8.4
billion units by 2024 (Federica Laricchia, 2024).

Figure 1: Conceptual illustration of the typical approach
utilized for the EDSS task. The preceding dialogue his-
tory between two interlocutors serves as the foundation
for determining the style in which the subsequent text
utterance should be spoken.

EDSS is an interdisciplinary field that merges
two main research domains: emotive speech syn-
thesis (ESS) and dialogue speech synthesis (DSS).
The first task of ESS focuses on generating speech
in a particular emotion style. An intuitive ESS ap-
proach involves using discrete emotion labels (Lee
et al., 2017; Lorenzo-Trueba et al., 2018; Murata
et al., 2024) or a lookup table (Lei et al., 2022) as
additional conditions for the text-to-speech (TTS)
model. Alternatively, other studies use a reference
audio to determine emotive style; a fixed emotion
representation is extracted from the reference au-
dio through pretrained speech emotion recognition
(SER) models (Tang et al., 2022; Zhou et al., 2021;
Tang et al., 2024), attribute disentanglement with
auxiliary emotion classification constraints (Zhu
et al., 2023; Kang et al., 2023; He et al., 2022),
or weighted cluster interpolation (Wu et al., 2019;
Um et al., 2020). However, these approaches re-
quire manual selection of an emotion label or a
reference audio by the user during inference, as the
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TTS model lacks the reasoning capabilities to au-
tonomously determine the most suitable emotional
condition for the target text.

Unlike ESS, the task of DSS incorporates pre-
vious conversational utterances between two inter-
locutors to automatically determine through reason-
ing capabilities, the overall style in which the subse-
quent text input should be articulated. Towards this,
previous utterances are utilized as additional input
to the backbone TTS framework (Liu et al., 2023b).
Typically, semantic information from each of the
previous utterances are extracted and concatenated
together using a pretrained language model like
BERT (Guo et al., 2021; Lee et al., 2023). The
combined representation then acts as the holistic
stylistic condition for the target text input. How-
ever, these methods rely solely on textual informa-
tion, which only includes semantic context. As
such, to improve prosodic learning, some studies
further utilize acoustic context through cross-modal
attention (Cong et al., 2021) or multiple modality-
specific encoders (Li et al., 2022; Xue et al., 2023;
Li et al., 2024). Nonetheless, these approaches
lack the granularity needed to reflect the nuances
of human dialogue, where certain words or phrases
naturally carry more emotional weight (Patrik N.
and Laukka, 2001; Lee and Narayanan, 2005; Gu
et al., 2018; Jia1 et al., 2024).

In this paper, we propose a novel EDSS frame-
work that simultaneously addresses both emo-
tion and context-aware dialogue speech synthesis.
Moreover, to overcome the limitations seen in prior
ESS and DSS research, our approach leverages the
sophisticated reasoning and contextual understand-
ing capabilities of large language models (LLMs)
to automatically generate the appropriate holistic
emotion label for the current text based on the dia-
logue history. Moreover, to mimic human speech
generation and therefore produce emotive speech,
we employ LLMs to identify local key words, or
rationales within the current text that correspond
to the target emotion. In addition, to enhance the
learning of paralinguistic attributes, we introduce
a novel selective masking loss, which ensures that
only the acoustic information for these selected ra-
tionales are provided to the backbone TTS model.

In summary, our contributions are as follows.
First, unlike traditional methods that require man-
ual annotation of emotion labels, our model au-
tomatically generates these labels using LLMs,
which reduces user dependency and enhances the
model’s autonomy. Second, by pinpointing and in-

tegrating acoustic information for specific emotion-
inducing words and phrases, our method improves
the emotive quality of synthesized speech, mak-
ing it more natural and contextually appropriate.
Specifically, emotion salience is enhanced via a
novel selective masking loss. The effectiveness
of the proposed method against other baselines is
validated through subjective and objective valida-
tions. In addition, the effectiveness of the proposed
method against other baselines is validated through
subjective and objective validations.

2 Related Work

2.1 Style Control in Speech

Current TTS models (Shen et al., 2018; Ren et al.,
2019; Kim et al., 2021a) have reached a level of
sophistication where they are able to generate arti-
ficial speech that sounds remarkably human. Such
progress has catalyzed efforts to address more com-
plex tasks, such as modifying audio to simulta-
neously mimic specific individuals’ voices (Choi
et al., 2022; Valle et al., 2020; Jeon et al., 2024), or
making synthetic speech more emotive. Whereas
traditional TTS models typically have a single in-
put (i.e., the target text to convert into audio), such
stylistic speech generation requires an additional
input for stylistic control, resulting in two inputs.

The additional stylistic input for TTS models
can be either an explicit label or an audio sam-
ple. In the label-based approach, predefined styles,
such as specific timbres using speaker IDs (Chen
et al., 2020, 2021) or emotion labels (Kim et al.,
2021b), are encoded and concatenated with the em-
bedding of the target text. However, this method
is limited by its inability to support zero-shot or
few-shot stylistic generation for unseen speakers
or emotions, as discrete labels often fall short of
capturing the intricate nuances of auditory styles.
To address this, some studies incorporate audio as
the stylistic input (Wang et al., 2018; Yan et al.,
2021), allowing for unsupervised learning of the
nuanced acoustic and prosodic characteristics of a
speaker’s voice or intonation. Nevertheless, both
approaches still require the user to manually select
the appropriate emotion label or audio sample.

2.2 Prompting in TTS

Given the recent popularity of LLMs, there has
been growing interest in leveraging these models
within the speech domain. Specifically, these ef-
forts focus on utilizing LLMs for dataset curation,
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Figure 2: Architecture of the proposed model. Text- and acoustic-based binary rationales are integrated at the
beginning with Encphone, whereas the holistic tag is incorporated at the end, which produces the final condition to
the variance adaptor. Darker sections in the figure represent components that are used without modification.

where individual audio samples are annotated with
corresponding emotion or stylistic tags. For ex-
ample, Saito et al. (2023) employed ChatGPT to
generate emotion, intention, and style tags for each
utterance within a dialogue history. These tags
are subsequently embedded using BERT and con-
catenated to form a comprehensive context vector,
which conditions the backbone TTS model. Simi-
larly, Guo et al. (2023); Liu et al. (2023a) developed
approaches where text descriptions were generated
for each audio sample and embedded with a BERT
(Devlin et al., 2019) model. The output representa-
tion was then used as the style conditioning input
for the TTS system. Yet, these methods require
extensive dataset curation (Guo et al., 2023; Yang
et al., 2024; Yoon et al., 2022). To address the
challenges associated with dataset limitations, Sig-
urgeirsson and King (2024) prompted an LLM to
directly predict relative fundamental frequencies
and energies for each word in a target text utter-
ance on a scale from 0 to 5. Additionally, global
pitch, energy, and duration values were predicted
on a scale ranging from -5 to 5. In contrast to this
numerical prediction of prosodic attributes, our ap-
proach adopts a more intuitive method that better
aligns with the inherent strengths of LLMs in text
processing. Specifically, we focus on utilizing the
words and phrases that are pivotal in conveying
emotion, thereby enhancing the emotive expres-
siveness of the generated speech.

3 Methodology

3.1 Preliminaries

The backbone TTS model is the non-autoregressive
FastSpeech2 (Ren et al., 2021). Consider an in-
put utterance Utt = [W1,W2,W3, . . . ,Wn], con-
sisting of N words. Each word W is further
decomposed into its phonemic representations,
Wn = [wn1, wn2, . . . , wnp]

2. The phonemic en-
coder Encphone, which is comprised of a feed-
forward Transformer block and a 1D convolution
layer, transforms the phonemic embeddings into
their corresponding hidden phonemic states. The
variance adaptor then integrates variable duration,
pitch, and energy information into these phone-
mic states of Encphone. The resulting representation
is subsequently fed into the mel-spectrogram de-
coder Decmel_spec, which mirrors the composition
of Encphone. The final output is a predicted mel-
spectrogram. Since the architecture of the variance
adaptor and Decmel_spec remains unmodified in our
approach, interested readers should refer to Ren
et al. (2021) for specific implementation details.
In the following subsections, we explain the pro-
posed EDSS framework in detail. The complete
architecture is illustrated in Figure 2.

2An example of the input sentence and its corresponding
phonemic representation can be seen in the lower left-hand
corner of Figure 2.
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Figure 3: Overview of the dual-stage prompts. In Stage
1, a single emotion tag is predicted for the upcoming
target utterance based on the dialogue history. In Stage
2, a list of specific words that align with the predicted
emotion tag is generated.

3.2 Dual-Stage Prompting

Given a prior conversation history between
two speakers, which is denoted as H =
[Utt1,Utt2,Utt3, . . . ,UttT−1], our initial objective
is to derive a holistic emotion tag C for which the
subsequent target utterance UttT should be articu-
lated. To obtain this global emotion tag C, we uti-
lize the GPT 3.5 API3 by prompting the model with
both the conversation history H and the forthcom-
ing target utterance UttT. Each utterance within
H is delimited by a special character ‘#’, which
clarifies speaker transitions and accommodates ut-
terances that may span multiple sentences. This
process results in the generation of a single emo-
tion tag selected from a predefined set of emotions,
and is referred to as Stage 1 prompting.

As mentioned in Section §1, while a global emo-
tion tag C is able to guide the overall style delivery
about how the target text should be articulated, ac-
tual emotive speech often necessitates a more gran-
ular approach; human speech typically involves
emphasizing certain words or phrases to convey
their emotions more effectively than neutral speech
(Patrik N. and Laukka, 2001; Lee and Narayanan,
2005; Gu et al., 2018). To address this, we im-
plement a secondary prompting stage. Here, GPT
3.5 is tasked with identifying and highlighting spe-

3gpt-3.5-turbo-0125

cific words or phrases within non-neutral target
utterances UttT that should be emphasized in accor-
dance with the global emotion tag C, which was ob-
tained from the previous prompting stage. This pro-
cess yields a list of SWords = [Wi1 ,Wi2 , . . . ,Wik ],
where {i1, i2, . . . , ik} are the indices of the words
selected from the target utterance UttT. The overall
prompting procedures are provided in Figure 3.

Before incorporating the context-aware informa-
tion derived from the previous dual-stage prompt-
ing into the target input sentence, a phonemic repre-
sentation for the target input sentence4 is first gen-
erated. This process involves embedding the list of
phonemes using a lookup table, followed by further
processing through the phonemic encoder Encphone.
This results in a 256-dimensional phonemic repre-
sentation ephone of the target utterance UttT. This
is to retain the basic TTS objective, which is to
pronounce the target text in an intelligible manner.

Simultaneously, we integrate phoneme-level bi-
nary rationales into the initial list of phonemes.
Specifically, from the list of selected words corre-
sponding to the target emotion C that were previ-
ously identified through dual-stage prompting, all
phonemes making up each word in the selected list
of words is assigned a binary label: 1 if the word is
in SWords, and 0 otherwise. The phoneme-level ra-
tionale sequence is then embedded using a lookup
table f into a fixed size of 256 dimensions. The
output is concatenated with the phonemic represen-
tation of the full utterance. Conceptually, this can
be expressed as the following:

Prationale(wni) =

{
1 if Wn ∈ {Wi1 , . . . ,Wik}
0 otherwise

(1)

erationale = f(Prationale) (2)

eUtt = erationale ⊕ ephone (3)

3.3 Prompt-Guided Alignment Loss
While local rationales have been specifically iden-
tified within the text modality, it is imperative to
also integrate their corresponding acoustic features
to enhance prosodic learning. This integration is
essential because text-level information inherently
lacks the acoustic cues vital for capturing prosodic
nuances. To address this, an acoustic representation
eacoustic is initialized from the preceding phoneme-
level rationale representation erationale, and exclu-
sively trained and updated using a novel selective
masking loss. This loss is detailed as follows.

4https://pypi.org/project/g2p-en/

641



Algorithm 1: Selective Audio Masking
Input :Audio A, Emotion tag C, SWords,

Word-level timestamp T
Output :Masked audio A′

Step 1: Initialize A′ as a zero array

A′ ← [0]× len(A);
Step 2: Selective Masking

if C = neutral then
return A′;

else
foreach w in SWords do

(tstart, tend)← T [w];
A′[tstart : tend]← A[tstart : tend];

end
return A′;

end

In order to effectively integrate the acoustic fea-
tures of specific words identified by GPT 3.5, we
apply masking to the time frames5 that do not corre-
spond to these selected words. Essentially, only the
audio segments associated with the words selected
by GPT 3.5 during the dual-stage prompting are
retained. The masked audio sample is then passed
through a pretrained Hubert (Hsu et al., 2021) base
model, where the resulting embedding serves as
the target for training the acoustic representation
eacoustic. To ensure the integrity of the text-based
processing, gradient flow is blocked from propagat-
ing through the preceding layers. An overview of
this selective masking process is provided in Algo-
rithm 1. Moreover, eacoustic is concatenated with the
utterance-level embedding eUtt described in subsec-
tion §3.2. The resulting multi-modal EDSS output
is subsequently integrated with the global emo-
tion tag C, which is embedded through a lookup
table. The combined representation is then pro-
cessed through the variance encoder followed by
mel-spectrogram decoder Decmel_spec, which ulti-
mately generates a mel-spectrogram prediction.

The proposed selective audio masking loss is
combined into a composite loss (Eq. 4) along with
two other components from Ren et al. (2021): the
reconstruction loss, which quantifies the difference
between the mel-spectrogram of the ground truth
audio and the predicted mel-spectrogram output

5The exact positions of specific words in the audio are
determined during the preprocessing phase. More details are
provided in §4.1.

by Decmel_spec, and the losses used for training the
modules of the variance adaptor.

Ltotal = λ · LRec + LV ar + (1− λ) · LSAM (4)

4 Experimental Settings

4.1 Dataset Preprocessing

We employ the CC-BY-SA 4.0 licensed DailyTalk
dataset that has been open-sourced by Lee et al.
(2023). The dataset includes seven emotion cate-
gories, but for the purposes of our study, we focus
on five specific emotions: anger, happiness, neutral
(none), sadness, and surprise. The remaining two
emotions are excluded due to the limited number of
samples available, with each having fewer than 100
examples6. The data is partitioned into training,
validation, and test sets with a ratio of 8.6:0.7:0.7.
Additionally, to enhance the learning of emotive
characteristics, we further refine the training and
validation subsets by including only those samples
where GPT 3.5 accurately predicted the emotion
tag during the initial prompting stage. This results
in a total of 15,578 utterances.

In addition, following Ren et al. (2021), we
utilize the Montreal Forced Aligner7 (McAuliffe
et al., 2017; MFA) to achieve precise alignment
between spoken utterances and their corresponding
phonemes. Specifically, MFA predicts the starting
and ending timestamps for each articulated word
within the audio samples. Audio samples are orig-
inally sampled at a rate of 22,050 Hz. However,
when processing the audio samples through the
pretrained Hubert model, they are downsampled
to a rate of 16,000 Hz to comply with the model’s
requirements.

4.2 Baseline Models and Training Setup

As baseline systems, we first employ Lee et al.
(2023), as they curate and provide the dataset that
is used in this research. This baseline utilizes the
FastSpeech2 framework (Ren et al., 2021) and in-
corporates a conversational context encoder (Guo
et al., 2021) that embeds each utterance within the
dialogue history using BERT. The output from the
context encoder is then concatenated with the origi-
nal phonemic outputs of the TTS encoder. Further-
more, given that the task of EDSS is both dialogue-
and emotion-centric, it is also essential to compare

6Additional dataset statistics can be found in Appendix C.
7https://montreal-forced-aligner.readthedocs.io/en/latest/
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Models
MOS (↑) ABX (↑)

SEA (↑) WER (↓)
Ang Hap Neu Sad Sur Ang Hap Neu Sad Sur

EXT-DT
3.08

(± 0.20)

3.38
(± 0.21)

3.56
(± 0.14)

3.78
(± 0.15)

3.17
(± 0.22)

34% 20% 16% 28% 18% 33.18% 0.104

DailyTalk
3.80

(± 0.22)

3.79
(± 0.19)

3.81
(± 0.19)

3.68
(± 0.23)

3.65
(± 0.20)

28% 26% 26% 32% 30% 29.69% 0.090

Proposed
3.88

(± 0.19)
4.04

(± 0.19)
4.01

(± 0.16)
3.90

(± 0.20)
4.11

(± 0.19)
38% 54% 58% 40% 52% 46.16% 0.109

Table 1: Performance comparison between baseline models and the proposed framework. Emotion expressivity is
evaluated across anger, happiness, neutral, sadness, and surprise (left to right). MOS 95% confidence intervals are
recorded in parentheses.

our proposed methodology with a purely emotion-
based TTS system. For this purpose, we exclu-
sively concatenate a discrete emotion ID without
incorporating any dialogue history with the output
of the Lee et al. (2023) phoneme encoder. This
model is referred to as ExE-DT.

All models were trained using one A6000 GPU
for 500,000 iterations with a batch size of 16. Mel-
spectrograms were processed using a 1024 window
size, 1024 filter length, and 256 hop size. The
Adam optimizer (Kingma and Ba, 2015) was used
with parameters β1 = 0.9 and β1 = 0.98, and pre-
dicted mel-spectrograms were converted into audio
using the HiFi-GAN (Kong et al., 2020) vocoder.

4.3 Evaluation Protocol
To thoroughly evaluate the proposed EDSS model,
we employ a combination of subjective and objec-
tive metrics. Subjective evaluations are conducted
using two primary methods: Mean Opinion Scores
(MOS) and ABX testing. For MOS, participants
rate how accurately the synthesized audio conveys
the target emotion using a 5-point Likert scale,
where higher scores indicate a better alignment
with the intended emotion. In ABX testing, par-
ticipants are presented with three synthetic audio
samples in parallel, each generated by one of the
two baseline models and the proposed EDSS model.
Participants are then asked to identify which one
of the three samples most effectively conveys the
specified emotion tag. These subjective evalua-
tions are conducted via the Amazon Mechanical
Turk platform8, with 25 participants (Appendix D).

In addition to subjective assessments, objective
metrics are employed to quantify the model’s per-
formance. The Speech Emotion Accuracy (SEA)
metric utilizes a pretrained speech emotion recog-
nition model (Ullah et al., 2023) to evaluate how
accurately the synthesized audio aligns with the

8https://requester.mturk.com/

Figure 4: Radar graph demonstrating Stage 1 prompting
accuracies across all emotion categories.

intended emotion tag. In addition, to assess the in-
telligibility of the synthesized speech, we use a pre-
trained Whisper large model (Radford et al., 2023)
for automatic speech recognition (ASR). The tran-
scriptions generated by the ASR system are then
analyzed using the jiwer9 library to calculate the
Word Error Rate (WER).

5 Results and Analyses

5.1 Comparisons with Baselines
In Table 1, we conduct subjective and objective
evaluations to compare the performance of the pro-
posed methodology against baseline models. Sub-
jective results reveal that the DailyTalk model gen-
erally achieves higher MOS scores across all emo-
tions compared to the emotion-label-only model
(ExE-DT). A similar trend is observed in the ABX
results, though the margin in emotive expressivity
between the two baseline models is relatively mod-
est. The SEA metric, however, presents a slight
advantage for the ExE-DT model over DailyTalk.
While there are variations in performance between
the two baseline models, the differences are not
pronounced, with each model occasionally outper-
forming the other even within the same metrics.

9https://pypi.org/project/jiwer/
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Emotion
Avg. # of Words

Overlap
LLM Human

Happiness 2.531 3.191 0.740
Sad 2.250 3.917 0.673
Surprise 1.896 2.708 0.726
Anger 2.497 3.644 0.649
Total 2.497 3.197 0.735

Table 2: Congruence between LLM and human annota-
tions. The average number of words selected by GPT
3.5 across all five emotion categories, and the extent of
overlap (i.e., number of words jointly identified by both
ChatPGT and human annotation) illustrates the model’s
alignment with human judgements. Degree of overlap
is quantified on a scale from 0 to 1, with higher values
indicating greater agreement in word selection.

This similarity in performance can be attributed
to the fact that both models rely solely on global
information, whether in the form of emotion labels
or contextual information.

This notion is further substantiated by the re-
sults of the proposed model, which demonstrates
significant improvements in both MOS and ABX
metrics, alongside a substantial increase in the ob-
jective SEA metric (with a ∆12.98 and ∆16.47
over the ExE-DT and DailyTalk baselines, respec-
tively). These results suggest that integrating lo-
cal information in additional to holistic features
plays a crucial role in enhancing emotive expres-
sivity. In addition, given that the primary goal of
speech synthesis is to produce intelligible speech,
we evaluate all models based on WER. We find that
the proposed model demonstrates comparable per-
formance to the baseline models while achieving
superior EDSS results.

5.2 Prompting Assessment

Holistic Comprehension Before assessing the in-
fluence of prompt-guided labelling of localized fea-
tures on emotive synthesis, we first evaluate the
accuracy with which GPT 3.5 assigns the correct
emotion tag to target text utterances, given the prior
dialogue context (i.e., Stage 1 Prompting). This in-
volves comparing the predicted emotion tags with
the ground truth tags. Our analysis reveals that
the average accuracy for correctly identifying the
holistic emotion tag across all five categories is
69.3%. In particular, as illustrated in Figure 4, the
categories of happiness (84%), surprise (74%), and
neutral (66%) exhibit the highest accuracies, while
anger and sadness have lower accuracies, at 57%.

Settings Singular Boolean SEA

L
ab

el
lin

g TRN !
37.99%

INF !

TRN !
44.77%

INF !

Table 3: Comparison of various labelling settings per-
taining to the employment of the proposed selective
masking loss and AE. TRN and INF refer to training
and inference, respectively.

Interestingly, the emotion categories with the high-
est annotation accuracy correspond with the highest
MOS and ABX for our proposed model.
Affective Rationales In order to evaluate GPT
3.5’s ability to identify emotionally salient words
within target sentences, we compared the model’s
selections with those made by a native English
speaker. As can be seen in Table 2, GPT 3.5
selected an average of approximately 2.5 words
across all emotion categories, which is closely
aligned with the average number chosen by the hu-
man annotator. Additionally, the overlap between
the selections of GPT 3.5 and the human annotator
yielded a congruence score of around 0.74. This in-
dicates that GPT 3.5 is able to select words that are
particularly relevant to the holistic emotion label
assigned to the target sentence10.

We further investigate phonemic labelling in var-
ious configurations, including singular and boolean
labelling during training and inference. In the sin-
gular setting, all phonemic states are labelled as
0, regardless of whether a word in the target utter-
ance is selected by GPT 3.5 during Stage 2 Prompt-
ing. In contrast, the boolean setting uses 0 and 1,
where the phonemic sequence of a selected word
is marked with 1 and otherwise with 0, as per the
proposed methodology. Table 3 shows that using
the singular setting for both training and inference
results in the lowest performance, as it provides
no information about which words align with the
target emotion. Conversely, employing boolean
labelling during both training and inference yields
a performance improvement of 6.78%. This indi-
cates that the model effectively learns to distinguish
between neutral and non-neutral words.

5.3 Prompt-Guided Alignment Loss

To incorporate the acoustic features associated with
the emotion salient words selected during Stage 2

10Case studies can be found in Appendix A.
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Settings SEA Labelling Relative
+

L
os

s Without AE 39.22% ∇5.55
With AE* 36.57% ∇8.20
With AE 46.16% ∆1.39

Table 4: Comparison of different AE settings, with lo-
calized labelling and loss as the default configurations.
Each of the three settings is relatively compared against
the boolean training and inference labelling-only set-
tings presented in Table 3.

Prompting, we have introduced a separate acous-
tic embedding (AE) that is trained with selective
masking loss. In order to analyze the effectiveness
of this approach, we compared various configura-
tions with and without AE. The results in Table 4
show that omitting AE led to a substantial 5.55-
point drop compared to the highest performance
observed in the labelling ablation studies. Fur-
thermore, when compared to the proposed model,
which leverages AE to capture acoustic informa-
tion independently from phoneme-level binary la-
belling, the absence of AE resulted in poorer perfor-
mance (6.94% SEA decrease). This suggests that
forcing the phoneme-level binary labelling repre-
sentation to simultaneously learn textual and acous-
tic features impedes effective learning. Therefore,
it is crucial to employ a separate AE to learn acous-
tic features in a modality-independent manner.

We also experimented with utilizing full audio
representations as the target for learning during
masking loss. In the proposed methodology, seg-
ments corresponding to words not selected by GPT
3.5 were masked out. To evaluate whether this ap-
proach enhances acoustic learning regarding emo-
tive characteristics, we conducted an experiment
where neutral words were not masked (With AE*
in Table 4). This adjustment resulted in a notable
performance decline, with an 8.20-point decrease
compared to the labelling-only settings and a 9.59-
point drop relative to the proposed model. These
results indicate that GPT 3.5 is effective in identi-
fying words aligned with the target emotion. More-
over, it can be inferred that the inclusion of neutral
information, which also encompasses intonational
and other paralinguistic features, can disrupt the
learning of emotion-specific features.

Finally, we conducted empirical tests to deter-
mine the optimal value of λ, which balances the
mel-reconstruction loss and the proposed selective
audio masking loss. As illustrated in Figure 5,

Figure 5: The x-axis denotes the value of λ, and the left
and right y-axes denotes SEA (red) and WER (yellow)
metric scales, respectively.

setting both the mel-reconstruction and selective
audio masking loss parameters to 0.5 resulted in
the highest SEA accuracies and the lowest WER.
This balance likely arises because assigning more
weight to the mel-reconstruction loss could cause
the neutral information from the ground truth mel-
spectrogram to interfere with emotion expressivity.
Conversely, placing greater emphasis on the selec-
tive masking loss, which relies on a limited amount
of audio information, may result in insufficient data
to effectively support audio pronunciation learning.

6 Conclusion

This paper investigates the application of LLM
prompting to autonomously generate emotion tags
and identify specific lexical cues within target utter-
ances that contribute to more expressive speech.
This approach obviates the need for additional
dataset curation. We further enhance expressiv-
ity through a novel selective masking loss function.
Our findings underscore the necessity of integrating
both global and local information, and highlight
the substantial advantages of separately learning
text and acoustic features for emotion synthesis.
Notably, despite GPT 3.5 being a text-based LLM,
it is able to identify words that correspond with
assigned emotion tags to some extent. The efficacy
of the proposed model is rigorously assessed using
a combination of subjective and objective metrics.

7 Limitations

In our pursuit towards automatic and effective emo-
tion generation in dialogue settings, we have lever-
aged GPT 3.5 for its strong reasoning abilities and
contextual understanding. However, our approach
assumes that GPT 3.5 can inherently determine
the correct holistic emotion tag, as well as which
words should serve as cues that align with the pre-
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dicted emotion. Specifically, we have assumed that
GPT 3.5 can effectively correlate text-based words
with acoustic features, a task that humans naturally
perform when reading text aloud.

While our ablation studies and both subjective
and objective metrics indicate that GPT 3.5 can
align text and acoustic information to some ex-
tent, a more comprehensive analysis is warranted
to better understand the extent of GPT 3.5’s speech-
related knowledge. Future work will focus on con-
ducting a deeper investigation into this capability,
not only within GPT 3.5 but also across other large
language models.

Moreover, the considerable imbalance within
the dataset, both between the neutral and emotional
categories and among the different emotional cate-
gories themselves, presents significant challenges
in training models to generate speech with pro-
nounced emotional salience and to achieve high
emotion classification accuracy for synthesized au-
dio. Despite this, we have demonstrated notable
improvements in the emotional expressiveness of
the synthesized speech. Nevertheless, addressing
the dataset imbalance problem is a notable point of
exploration as future work.

8 Ethical Considerations

The field of EDSS, like TTS in general, essentially
seeks to closely replicate human speech. While
these advancements offer numerous benefits, such
as improving accessibility in healthcare, enabling
personal AI assistants, and enhancing media experi-
ences, they also pose ethical risks. One significant
concern is the potential for misuse, where synthe-
sized speech could deceive listeners into believing
it is produced by a human. To address this, it is
essential to ensure transparency by clearly disclos-
ing when speech is artificially generated. Another
possible solution is to develop techniques akin to
watermarking for speech, which allows for the iden-
tification of synthesized content and preventing de-
ception in an automatic manner.
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A Holistic Tag and Affective Rationale
Selection

We evaluated various Stage 1 prompting methods,
including chain-of-thought (CoT) and reasoning
(see Fig. 6) to identify the most accurate approach
for generating emotion tags. As shown in Table
5, the proposed prompting method demonstrated
the highest accuracy when compared to the ground
truth labels. Notably, the largest discrepancy was
observed when predicting neutral tags, suggesting
that the reasoning prompts may lead the GPT 3.5
model to misclassify neutral utterances by over-
interpreting them as different emotion classes. The
entire cost of utilizing the GPT 3.5 API was ap-
proximately 10 dollars.

Regarding Stage 2 rationale selection, we com-
pared the words and phrases selected by GPT 3.5
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Figure 6: Prompt variations used for Stage 1 prompting.

Prompt Accuracy

CoT 30.77%
Reasoning 44.30%
Proposed 69.29%

Table 5: Average accuracies of emotion tags generated
via different prompting methods.

with human annotations. Parallel GPT 3.5 and hu-
man annotations are demonstrated in Figure 7.

B Generalizability

To assess the broader applicability of the proposed
method beyond GPT 3.5, we conducted additional
experiments using the Llama 8b model11 with a
temperature setting of 0.5. Our initial analysis fo-
cused on the number of selected words and the
degree of overlap with human annotations. As
shown in Table 6, the model selected an aver-
age of 2.9 words, which closely matches the 3.2
words selected by human annotators. The SEA
score, at 41.11%, was slightly lower than the re-
sults achieved by the proposed model using GPT
3.5. This may be due to the differences in word
selection patterns between GPT 3.5 and Llama.

To examine the reason for the perfor-
mance difference between LLMs, we per-
formed a part-of-speech (POS) analysis us-
ing the Stanford POS tagger tool with the
english-bidirectional-distsim model12.

11casperhansen/llama-3-8b-instruct-awq
12Explanations and examples pertaining to each POS

Figure 7: Case studies examining the selected rationales
generated by GPT 3.5 and those annotated by humans
across various emotive categories.

As shown in Figure 8, GPT 3.5 selected a greater
proportion of adjectives (JJ) and nouns (NN) com-
pared to Llama. Given that adjectives and nouns
convey more information that are strongly linked
to emotive expressivity in speech prosody (Bulut
et al., 2005), it can be inferred that GPT 3.5 is more
adept at identifying emotionally salient words than
Llama. This, in turn, contributes to its superior per-
formance in both emotion salience in the generated
speech, and the resulting classification accuracy.

Emotion
Avg. # of Words

Overlap
LLM Human

Happiness 2.849 3.191 0.634
Sad 3.500 3.917 0.671
Surprise 2.688 2.708 0.697
Anger 3.222 3.644 0.666
Total 2.866 3.197 0.639

Table 6: Congruence between Llama and human anno-
tations.

C Dataset Statistics

Out of a total of 15,578 utterances, approximately
20.4% of the utterances belong to an emotion cate-
gory (i.e., happiness, sadness, surprise, or anger).
Among the utterances with an emotion label, hap-
piness accounts for 85.8%, followed by surprise
(7.13%), sadness (4.48%), and anger (2.55%).

category can be found in https://web.stanford.edu/
~jurafsky/slp3/old_oct19/8.pdf.
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Figure 8: A comparative analysis of Llama and GPT 3.5 word frequencies is presented side-by-side for each
part-of-speech (POS) category. The most commonly identified POS categories are adjectives (JJ), nouns (NN), and
adverbs (RB), in order.

D Evaluation Metrics

Participants for the MOS and ABX evaluations
were recruited through the Amazon Mechanical
Turk platform. They were informed prior to the
assessment that their responses would be used ex-
clusively for research purposes, with no personal
information collected or utilized. Participants were
compensated based on the standard hourly rates of
the authors’ nationality, and the average comple-
tion time for the survey was 1 hour and 27 minutes
per participant.
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