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Abstract

We introduce MorphNLI, a modular step-
by-step approach to natural language infer-
ence (NLI). When classifying the premise-
hypothesis pairs into {entailment, contradic-
tion, neutral}, we use a language model to gen-
erate the necessary edits to incrementally trans-
form (i.e., morph) the premise into the hypothe-
sis. Then, using an off-the-shelf NLI model we
track how the entailment progresses with these
atomic changes, aggregating these intermediate
labels into a final output. We demonstrate the
advantages of our proposed method particularly
in realistic cross-domain settings, where our
method always outperforms strong baselines,
with improvements up to 12.6% (relative). Fur-
ther, our proposed approach is explainable as
the atomic edits can be used to understand the
overall NLI label.

1 Introduction

Natural Language Inference (NLI), i.e., the task
that determines whether a text hypothesis is true,
false, or undetermined given a text premise (Con-
doravdi et al., 2003; Dagan et al., 2005; Bow-
man et al., 2015), is an important building block
of many applications such as question answering,
summarization, and dialogue systems, where under-
standing the logical connection between different
pieces of information is essential (Yin et al., 2019;
Sainz et al., 2021, 2022). Despite the fact that
NLI has received significant attention lately (Raffel
et al., 2019; Jiang et al., 2019; Sun et al., 2020;
Wang et al., 2021), several analyses have indicated
that neural NLI methods fail to capture important
semantic features of logic such as monotonicity,
and more granular aspects like negation, univer-
sal vs. existential quantifiers, and concept modi-
fiers (Rozanova et al., 2022; Akoju et al., 2023).
Other significant limitations of current models are
caused by task artifacts that oversimplify the NLI
problem (Williams et al., 2018; Jiang and de Marn-

effe, 2022). Large Language Models (LLMs) are
prone to contamination (Golchin and Surdeanu,
2024; Sainz et al., 2024), which causes overfitting
on these task artifacts (see Section 4.4). LLMs also
tend to “not say what they think” (Turpin et al.,
2024), which reduces the quality and faithfulness
of their explanations.

To address the above drawbacks, we propose a
cautious NLI strategy that decomposes the NLI
decision into several simpler and more explain-
able steps. Specifically, our approach: (a) incre-
mentally transforms the premise into the hypothe-
sis using text morphing (Huang et al., 2018); (b)
applies an off-the-shelf NLI model on each mor-
phing iteration; and (c) aggregates the individ-
ual NLI labels into an overall label for the given
premise-hypothesis pair. We call our method Mor-
phNLI. Figure 1 provides a walk-through example
of our approach, contrasted with a state-of-the-art
encoder-decoder model and an LLM. The advan-
tages of our direction are two fold. First, it per-
forms better out of domain because its individual,
smaller decisions reduce the chance of overfitting.
Second, it naturally produces an explainable reason-
ing chain that traces the morphing transformations.

Our approach is inspired by Natural Logic
(NL) (MacCartney and Manning, 2009a, 2014) but
is more flexible. First, rather than relying on a
formal alignment algorithm between premise and
hypothesis, which continues to be a pain point in
the development of NL systems (Krishna et al.,
2022), we use a more nimble morphing algorithm
(Huang et al., 2018) that is trained on synthetic
data. Second, instead of using the seven NL logic
operators and a relatively complex finite-state au-
tomaton to aggregate them, we rely just on the three
standard NLI labels (entailment, contradiction, neu-
tral) and on a straightforward, robust aggregation
decision that performs well in practice: pick the
first non-entailment label in the sequence of NLI
decisions.
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Premise:

A group of children in uniforms is standing at a gate, and no one is kissing the mother.

Hypothesis: A crowd of people is near the water. Gold label:
State-of-the-art .
[ encoder-decoder ] [ LLM Explanation ] MorphNLI ]
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label and explanation
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__ A group of children in uniforms is standing at a gate, and no one
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M3"
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Figure 1: Natural language inference example where both a state-of-the-art encoder-decoder model — BART (left)
and a LLM — GPT-40 (middle) predict the incorrect label. Our approach (right) incrementally morphs the premise
into the hypothesis, which decomposes the inference process into several simpler steps. This allows it to generate the
correct label, which is also associated with an intuitive explanation that falls naturally from the morphing steps. In
contrast, both the encoder-decoder model and the LLM produce the incorrect label. The LLM’s explanation suggests
overfitting on annotation artifacts from SNLI, which assumes coreference between participants and concepts in the

two texts (Jiang and de Marneffe, 2022).

The contributions of our paper are:

(1) We introduce MorphNLI, a modular approach
for NLI that combines text morphing with neural
NLI. Our method does not require any additional
supervision, i.e., the text morphing model is trained
using synthetic data; the neural NLI engine is an
off-the-shelf model.

(2) We evaluate our proposed method in mul-
tiple scenarios, including two cross-domain set-
tings: from MNLI (Williams et al., 2018) to
SICK (Marelli et al., 2014), and from SICK to
MNLI. Our empirical evaluation indicates that Mor-
phNLI outperforms other state-of-the-art NLI mod-
els in all cross-domain experiments. Further, mor-
phing improves the decisions of GPT-40 in the
SICK dataset, further highlighting that LLMs do
not capture well the semantics of logic (Rozanova
et al., 2022; Akoju et al., 2023).

(3) We perform a qualitative analysis of the expla-
nations generated by MorphNLI, and show that
they are better than GPT-40’s on SICK, despite
the fact that our model sizes are orders of mag-
nitude smaller. However, both NLI performance
and explanation quality of MorphNLI are worse
on MNLI, which we suspect is due to the LLM’s
contamination with the MNLI dataset.

2 Related work

Our work draws inspiration from Natural Logic
(Lakoff, 1970), which is a form of reasoning aim-
ing to draw logic inferences by operating directly
over linguistic structures. Over the years, this has
been implemented for natural language processing
in various forms (MacCartney and Manning, 2007;
Krishna et al., 2021; Rozanova et al., 2022; Feng
et al., 2022; Korakakis and Vlachos, 2023). Mac-
Cartney and Manning (2007) introduced one of the
first computational models for natural logic, which
has been subsequently extended and improved in
follow up work (MacCartney and Manning, 2008,
2009b). Natural logic can be useful beyond natural
language inference, for tasks such as commonsense
reasoning (Angeli and Manning, 2014), fact veri-
fication (Krishna et al., 2022; Strong et al., 2024),
or polarity tracking (Hu and Moss, 2018). One
drawback of natural logic is that it is too strict. For
example, natural logic cannot readily accommodate
paraphrases or temporal reasoning. Our proposed
approach relaxes the strict requirements of natural
logic formalism, relying instead on text morphing
(Huang et al., 2018) and off-the-shelf NLI models.

Our work is also related to explainable NLI
(Camburu et al., 2018; Thorne et al., 2019; Cam-
buru et al., 2020, inter alia). Importantly, in our
proposed approach, the explanations are guaran-
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Figure 2: Training (top) and inference (bottom) for MorphNLI, including synthetic data generation for morphing.
For the teacher model we use GPT-4; for the student model we use GPT-40-mini.

teed to be faithful (Kumar and Talukdar, 2020),
as they are constructed based on the atomic edits
produced by the morphing model.

Tangentially, our proposed approach resembles
work on modeling edit processes (Guu et al., 2018;
Awasthi et al., 2019; Reid and Neubig, 2022; Reid
et al., 2023). Very relevant is the work on text
morphing (Huang et al., 2018), which we repurpose
to generate atomic edits to transform the premise
into the hypothesis.

We also leverage off-the-shelf NLI models to
produce the final label. We refer the interested
reader to the survey of Storks et al. (2019). Specif-
ically, we use transformer-based NLI models
(Vaswani et al., 2017; Devlin et al., 2019; Liu et al.,
2019; Lewis et al., 2019), typically trained on a
mixture of NLI datasets (Marelli et al., 2014; Bow-
man et al., 2015; Williams et al., 2018).

3 Approach

Our proposed method, MorphNLI, uses a modular
step-by-step approach for natural language infer-
ence (NLI). At a high level, MorphNLI operates
in three steps: (a) the premise is incrementally
converted into the hypothesis through a sequence
of small atomic edits that we call morphisms (see
subsection 3.1); (b) an NLI engine is applied to
generate NLI labels for each pair of texts in the se-
quence of transformations; and (c) these labels are
aggregated into an overall NLI label for the original
premise/hypothesis pair. This is beneficial for two
reasons. First, the differences between a premise
and a hypothesis are gradually broken into multiple
sentences, which makes the task easier for an NLI
engine and less prone to overfitting. Second, the
trace resulting from the atomic edits can be used as
a rationale for the final label, making the method

more explainable.

Figure 2 shows the overall architecture of our
pipeline. The first module presents the training
of the morphism model, where we use In-Context
Learning (ICL) with an LLM as a teacher model
to generate a synthetic dataset labeled with mor-
phisms. After a filtering step, we use this dataset
for fine-tuning a student model for morphism gener-
ation. At inference time, we use the student model
for generating the morphisms and an NLI predic-
tion model for generating labels. The labels are
then aggregated into one final prediction. We detail
all these components below.

3.1 The text morphing task

Before describing these components, we define the
morphism generation task, similar in nature with
the work of Huang et al. (2018). Formally, this
task is the process of changing one initial sentence
(i.e., premise) into a destination sentence (i.e., hy-
pothesis) through a series of morphing operations.
These operations are similar to the steps used in
computing the Levenshtein distance:

1. Replace - (replace, <old_text>, <new_text>)
2. Remove - (remove, <text>)
3. Insert - (insert, <text>)

There are three important differences between
our morphing and Levenshtein distance. First, our
morphing operations operate at word/phrase gran-
ularity rather than characters. Second, our trans-
formations are encouraged to preserve the syntac-
tic structure of the source sentence (see subsec-
tion 3.2). Third, morphisms are generated using an
LLM rather than an edit distance algorithm.

Morphing a premise into the corresponding hy-
pothesis results in a finite sequence M of sentences
(morphisms), where each sentence M; is the result
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of applying a morph operation on the previous sen-
tence M;_1. The first sentence in this sequence is
the premise and the last is the hypothesis.

3.2 Training the morphism model

One of our key contributions is training a morphism
generation model with minimal supervision. The
only supervision we require is: (a) a dataset of
premise/hypothesis pairs with the associated NLI
labels; and (b) a small pool of sentence pairs an-
notated with morphisms. To generate synthetic
training data for morphisms we use an LLM with
ICL (the teacher model). This LLM is coupled with
a deterministic filter that increases the quality of
the generated data. Using this data, we fine-tune a
smaller LLM (the student model) to generate mor-
phisms during inference.

Morphing teacher model and ICL selection
Given the complexity of the task and the nonexis-
tence of a dataset labeled with morphisms, we steer
the design of our method towards ICL. Our ICL
pool contains 40 pairs of premises and hypotheses,
humanly annotated with intermediate sentences and
corresponding morph operations. When generating
the morphisms for a pair of sentences, we select the
12 closest examples from the pool of 40 to be used
in the prompt. These examples are selected based
on the cosine similarity with the input premise and
hypothesis, computed on the embeddings gener-
ated by a Sentence-BERT (Reimers and Gurevych,
2019).

The generation of the morphisms is driven by a
Chain-of-Thought (Wei et al., 2024) prompt, where
we ask the teacher model to output the morph opera-
tions before generating each intermediate sentence.
The input prompt also contains formal rules for the
morphing task, encouraging the LLM to preserve
the syntactic structure of the source sentence, and
forcing a strict order for the morph operations: first
apply replace operations, then remove operations,
and lastly insert operations. We empirically found
that enforcing the operations in this order improves
the quality of the overall results. The complete
prompt and examples of generated training mor-
phisms are included in the appendix.

Morphism filter

The synthetically annotated morphisms undergo a
series of filtering steps for ensuring their quality.
First, for obvious reasons, we filter out the exam-
ples where no intermediate sentences were gener-
ated (we called these examples lazy morphisms).

Second, we consider only the examples with in-
termediate sentences that are longer than either the
premise or the hypothesis. We call the phenomenon
where some intermediate sentences are too short
short morphisms. This phenomenon may bring
faulty reasoning processes, as some intermediate
sentences may be formed by removing word groups
from the initial sentence that may be necessary for
future downstream NLI steps. Figure 3 shows an
example of this situation. In order to limit these
cases, we removed all short morphisms from the
generated data.

Last but not least, we keep only examples where
the overall predicted NLI label is identical to the
gold label for the given premise/hypothesis pair.
Our hypothesis is that morphisms that yield the cor-
rect overall label are more likely to be correct. An
initial investigation of the generated data validated
our hypothesis. To generate individual NLI la-
bels, i.e., between M;_1 and M;, we used a BART-
large NLI classifier fine-tuned on SNLI, MNLI and
FEVER; we aggregated these labels using the ag-
gregation function described below.

M,: Black dog with tan markings wearing a blue
collar standing on green grass.

M;: There is a dog standing on green grass.

M,: There is a dog standing on-green-grass.
M;: There is a dog standing outside.

Figure 3: Example of a short morphism for sentence
Ms. The information about the context of the action
(“on green grass”) is lost when M, is generated. A
similar context is then added in M3 (“outside”), yielding
a faulty neutral prediction because the connection “on
green grass” — “outside” is lost.

Morphing student model

Using the remaining synthetic data, we fine-tune a
smaller LLM as the morphism student model. We
used GPT-40-mini.

3.3 Modular reasoning using morphisms
During inference, MorphNLI operates in 4 steps:

(1) Voice normalization (VN): We observed
that the sequential nature of morphing operations
proves to be too rigid when there is a change of
voice between the premise and hypothesis, as Fig-
ure 4 shows. To address this, we normalize the
premise and the hypothesis to active voice using a
smaller language model.

(2) Morphing: We use the above morphism stu-
dent model to generate the transformations between
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the premise and hypothesis.

(3) Generating individual NLI decisions: We use
an existing NLI classifier to generate the individual
NLI labels between every (M;_1, M;) pair of sen-
tences capturing a morphing transformation (see
Figure 1 for an example).

(4) Aggregating NLI decisions: An aggregation
function is then used to combine the sequence
of NLI labels into an overall label for the given
premise/hypothesis pair. To this end, we use a
simple heuristic: if all individual NLI labels are
entailment, then the overall label is entailment; oth-
erwise the overall label is set to be the first (left-
most) individual label that is not entailment. For
example, in Figure 1 the first non-entailment label
is neutral, which becomes the overall prediction
for the example in the figure. In initial experiments,
we experimented with aggregating labels using the
Natural Logic fine state automaton (MacCartney
and Manning, 2014; Krishna et al., 2022), but have
observed that this more formal automaton does not
translate well to our more flexible setting. In con-
trast, our heuristic performed better and is efficient,
as it does not require substantial additional process-
ing overhead.

M,: Vegetables are being putinto a pot by a man.
M, : Someone are being put into a pot by a man.
M,: Someone is pouring ingredients into a pot by a man.

M3: Someone is pouring ingredients into a pot by-a-man.

Figure 4: Example of morphisms with no voice correc-
tion. Due to the difficulties caused by the change from
passive to active voice between premise and hypothesis,
the morphing model “hallucinates” inner sentences.

4 Experimental results

4.1 Datasets used

We evaluate the NLI performance of MorphNLI
using two datasets: Multi-Genre Natural Lan-
guage Inference (MNLI) (Williams et al., 2018)
and Sentences Involving Compositional Knowl-
edge (SICK) (Marelli et al., 2014). MNLI cov-
ers 10 genres of written and spoken English and
contains fairly complex natural language. SICK
contains artificially-generated premise/hypothesis
pairs, which were created using a formal set of
logic rules that follow syntactic and lexical trans-
formations. As such, SICK exhibits different chal-
lenges from MNLLI, assessing the ability of NLI
models to comprehend complex logic and compo-
sitional structures. Considering these differences,

these two datasets are a good selection for both
in-domain (ID) and out-of-domain (OOD) evalua-
tions. That is, in addition of training and testing in
each dataset, we evaluate MorphNLI when the un-
derlying NLI engine is trained on the other dataset.
We did not use the Stanford Natural Language
Inference (SNLI) corpus (Bowman et al., 2015) for
the NLI evaluations because, as some of its original
authors noticed, it “is not sufficiently demanding to
serve as an effective benchmark” (Williams et al.,
2018). SNLI ignores important phenomena such as
temporal reasoning, compositionality of logic, and
they make simplifying coreference assumptions,
i.e., that the participants and concepts mentioned in
the premise and hypothesis are the same (Williams
et al., 2018; Jiang and de Marneffe, 2022).
However, to minimize any potential overfit-
ting, we fine-tune the morphing engine using
premise/hypothesis pairs from SNLI (see next sub-
section). Thus, our morphing component can be
seen as always being evaluated out-of-domain.

4.2 Experimental settings

The LLMs used for the teacher and student mor-
phing models are both from the GPT-4 family.
Details on the models’ identifiers are present in
Appendix C, together with experiments using an-
other LLLM from the Llama family. The syn-
thetic data set that contains morphisms is gener-
ated from the SNLI validation dataset (~10,000
premise/hypothesis pairs) using GPT-4-turbo. Af-
ter the filtering step (see Section 3.2), we are left
with 3,027 pairs labeled with morphisms for fine-
tuning. These are split into two sets: one for train-
ing (2,127 examples) and one for validation (900
examples). The remaining filtered-out examples
are later used to compare the fine-tuning approach
with simple ICL for morphing. Our preliminary
experiments indicated that fine-tuning outperforms
ICL, both in terms of overall performance and
model efficiency. For this reason, all experiments
described later in this section use a morphing model
fine-tuned on the above training data. Moreover,
the fine-tuned model proves to be more expressive,
with a much lower rate of lazy morphisms (1,575
compared to 4,375 in the case of ICL), having a
slight increase in the number of short morphisms
(674 compared to 557 in the case of ICL).

For the individual NLI decisions we experi-
mented with state-of-the-art NLI prediction models
from two different families: encoder-decoder us-
ing BART and encoder-only using RoBERTa (large
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SICK ID (0]0)) MNLI ID (00));
RoBERTa Vanilla 90.64 56.62 RoBERTa Vanilla 89.91 53.00
RoBERTa Vanilla (+VN) 90.91 56.52 RoBERTa Vanilla (+VN) 88.50 52.77
RoBERTa Morphism 88.14 57.68 RoBERTa Morphism 85.01 58.29
RoBERTa Morphism (+VN) 88.32 57.94 RoBERTa Morphism (+VN) 83.32 56.73
BART Vanilla 89.85 59.29 BART Vanilla 88.24 46.86
BART Vanilla (+VN) 90.07 58.64 BART Vanilla (+VN) 86.48 45.50
BART Morphism 87.38 59.64 BART Morphism 82.00 52.78
BART Morphism (+VN) 88.59 60.38 BART Morphism (+VN) 80.16 51.12

Table 1: MorphNLI accuracy on the SICK dataset using
two NLI engines: RoOBERTa and BART. We compare
our results against the two “vanilla” NLI models, i.e.,
without using text morphing. VN indicates voice nor-
malization. For OOD, we use the RoBERTa models
trained on MNLI, and BART models trained on SNLI,
MNLI and FEVER.?

versions).!

4.3 Results

Table 1 shows the accuracy of MorphNLI on
the SICK test dataset. We report the results
with and without voice normalization, with two
different NLI engines (RoBERTa and BART),
which are trained both ID and OOD. We com-
pare the performance of our approach to the
same NLI model applied directly to the original
premise/hypothesis pair, i.e., without morphing (re-
ferred to as “vanilla”). We draw several observa-
tions from this table. First, all models perform bet-
ter ID than OOD, which indicates a certain degree
of overfitting. Second, MorphNLI shows a slight
drop in ID performance, which we attribute to the
fact that the NLI models were not trained on incre-
mental transformations (see the next subsection for
a more detailed analysis). Most importantly, Mor-
phNLI outperforms the “vanilla” NLI model in all
four OOD configurations, with an improvement as
large as 1.74% for BART with voice normalization.
This is an encouraging result, as it validates our
hypothesis: that modular NLI improves domain
transfer.

Table 2 shows the same behaviour for the MNLI
test dataset. Here the OOD enhancements are more
considerable. For example, we observe an increase
of 5.29% for RoBERTa and 5.92% for BART, both
in settings with no voice normalization. While the
voice normalization proved beneficial for the SICK
dataset, for all the scenarios tested, for MNLI we
see a decline in accuracy when applying it (see the
next subsection for a more detailed discussion).

'The sources of the models are presented in the appendix.
*We empirically observed that this model outperforms an
MNLI-only trained BART.

Table 2: MorphNLI accuracy on the MNLI dataset,
under the same settings as Table 1. For OOD, we use
models trained on SICK.

To understand if our approach is compatible
with LL.Ms, we evaluate the performance of our
pipeline in another setting, in which we use two
LLMs (GPT-40 and GPT-40-mini) as the NLI en-
gines. These results are presented in Table 3. De-
spite their massive size and their extensive train-
ing, these LLM:s still benefit from morphing on the
SICK dataset. This underlines previous observa-
tions that LLLMs do not capture well the semantics
of logic, which is a key focus in SICK (Rozanova
et al., 2022; Akoju et al., 2023). However, we do
not observe a similar improvement on MNLI. One
potential explanation for such an effect is the poten-
tial contamination of these LLMs with the MNLI
dataset (see next subsection for a longer discus-
sion).

Model SICK MNLI
GPT-40 Vanilla 60.38 83.58
GPT-40 Morphism 61.05 73.55
GPT-40 mini Vanilla 62.25 79.68
GPT-40 mini Morphism 62.86 73.13

Table 3: GPT-40 and GPT-40-mini NLI accuracies, with
and without text morphing.

4.4 Discussion

To further understand MorphNLI’s behavior we
answer below three important research questions.

4.4.1 What is the quality of MorphNLI’s

explanations?

To get a better understanding of how the expla-
nations generated via our modular approach com-
pare to those generated by LLMs (GPT-40 and
Llama 3.1 8B), we performed a manual evaluation
on a random sample from both MNLI and SICK
datasets. We selected 20 instances from each de-
velopment set, distributed as follows: 5 instances
where the NLI model’s predictions are correct both
with and without morphing, 5 where both predic-
tions are incorrect, 5 where morphing improves the
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NLI prediction, and 5 where it worsens the pre-
diction. The NLI model used here was RoBERTa,
fine-tuned in-domain on each dataset. Four human
evaluators awarded a score between 0 and 2, as
follows: 2 indicates the explanation is correct; 1
indicates the explanation is partially correct, i.e.,
it contains correct elements, but it misses required
information or includes extraneous elements; and
0 indicates the explanation is completely incorrect.

We computed Cohen’s Kappa inter-annotator
agreement across all six pairs of evaluators from
the four annotators. For the MNLI dataset, we
calculated an average Kappa agreement of 34%,
which indicates fair agreement. Considering the
complexity of the task, i.e., evaluators had to evalu-
ate both the correctness of each morphism and the
NLI label produced at each step, we consider this a
respectable result. Even more encouragingly, the
maximum agreement between two annotators was
57%, which falls on the high end of moderate agree-
ment, touching on substantial. This suggests that
the agreement can be improved with more training.
Similarly, on the SICK dataset, the average agree-
ment is 67% (substantial agreement), with a maxi-
mum of 91% (almost perfect). These higher scores
highlight that despite the complexity of the task,
annotators were trained to perform high-quality
annotations.

We evaluated: (i) the overall explanation quality
with our modular approach; (ii) the quality of the
GPT-40 reasoning process and (iii) the quality of
the morphisms generated via our approach (we
asked the evaluators to discard the NLI label, and
reason based on the morphisms alone). Table 4
presents the percentage scores average from the
four annotators.

planations is significantly better for MNLI than
for SICK, where the explanations via morphisms
are superior. An interesting phenomenon reported
by the annotators was related to the potential over-
fitting of the GPT-40 reasoning. In 6 out of the
20 examples sampled from SICK, the model in-
correctly assumed that premise and hypothesis
refer to the same situation, i.e., the participants
and the concepts mentioned are the same between
premise and hypothesis. See Figure 5 for a sim-
ple example. This task artifact exists in the SNLI
dataset (Bowman et al., 2015), where both premise
and hypothesis are annotated given a single image
(Jiang and de Marneffe, 2022), but it has been re-
moved in more recent datasets such as SICK and
MNLI. However, since SNLI has been publicly
available for approximately a decade it is likely that
it “leaked” into the GPT-40 training data, which
learned this task artifact. As a consequence, the
LLM mistakingly labeled these pairs as contradic-
tion and produced completely incorrect explana-
tions. For MNLI, this phenomenon was not as
strong, which is likely due to another contamina-
tion: GPT models are known to have been contami-
nated with the MNLI development partition (Sainz
et al., 2024). The large difference between MNLI
and SICK GPT-40 explanation scores supports this
hypothesis.

P: A dog has its head inside a red and green gift bag
H: The red and brown dog is not digging its nose inside
a holiday gift bag

Reasoning process: The premise states that " A dog
has its head inside a red and green gift bag," which
clearly indicates that the dog is interacting with the gift
bag by having its head inside it. The hypothesis, on the
other hand, claims that "The red and brown dog is not
digging its nose inside a holiday gift bag." This directly

Model SICK MNLI contradicts the premise because it asserts that the dog is
MorphNLI explanations 70.63 70.00 not interacting with the gift bag in the manner described.
GPT-40 explanations 62.50 92.50 Therefore, the hypothesis is false given the premise, lead-
Llama 3.1 8B explanations 47.50 56.67 ing to a label of contradiction.

Morphism only 95.63 82.50

Table 4: Average percentage scores for the quality of
the explanations produced via morphing, compared with
the GPT-40 and Llama 3.1 8B explanations. We also
assessed the quality of the morphing process alone —i.e.,
whether a human evaluator could infer the correct NLI
label from the morphisms.

Our approach delivers uniform explanation qual-
ity across the two dataset samples (MNLI and
SICK) and the overall quality is considerably larger
than that of Llama 3.1 8B, despite the latter model’s
much larger size. The quality of the GPT-40 ex-

Figure 5: Misbehavior of GPT-4o related to the artifacts
from SNLI. The underlined font highlights the expla-
nation fragments that are not correct with respect to
the italic text in premise/hypothesis. Here the model
incorrectly assumes that the dog in the premise being
the same as the dog in the hypothesis.

A second observation from this analysis is that
the off-the-shelf NLI models likely exhibit some de-
gree of overfitting as well. Specifically, they have
been trained on the original premise/hypothesis
pairs and underperform on our (simpler) incremen-
tal inference steps. For instance, the NLI model
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Prediction probabilities

entailment
neutral [ 4.87
contradiction
NOT neutral

Text with highlighted words

Lot of times we just sit around and reminisce and go back to the time when
we were growing up. I/s! [l is to talk about fond memories from
childhood.

(a) LIME explanation, no morphing
Prediction probabilities
contradiction
neutral
entailment [N 0.98

NOT entailment entailment
Text with highlighted words
Lot of times It § nice to talk about fond memories and go B&EK to the time
when we were . sl Lot of times It i§ nice to talk about fond

memories from childhood.

(c) LIME explanation, morphing step 2

Prediction probabilities

contradiction
neutral
entailment [N 0.94

NOT entailment entailment
Text with highlighted words

Lot of times we ji#8{ sit around and FEMIMISEE and go back to the time when
we were growing up. I/sl Lot of times It is nice to talk about fond memories
and go back to the time when we were growing up.

(b) LIME explanation, morphing step 1

Prediction probabilities

contradiction
neutral
entailment (IR 0.99

NOT entailment entailment
Text with highlighted words

Lot of times It is fi€8 to talk about fond memories [0 childhood. /s It is
nice to talk about fond memories ffn] Childhood.

(d) LIME explanation, morphing step 3

Figure 6: LIME analysis of the predictions of the in-domain RoBERTa NLI model for a premise-hypothesis pair
from MNLI, without morphing (a) and in subsequent morphing steps (b—d). In (b) the operation is (replace, “we
just sit around and reminisce”, “It is nice to talk about fond memories™); in (c) the operation is (replace, “go back to
the time when we were growing up”, “from childhood”); in (d) the operation is (remove, “Lot of times”).

fails to correctly interpret semantic information
in short textual snippets (e.g., understanding that
"grazing a field" implies the field has "grass," or
that "sandy land" implies "desert"). This explains
the large difference between the morphism-only
explanations (which do not use an NLI model) and
the full MorphNLI system. In contrast, GPT-40 —
being a significantly larger model— is able to grasp
these semantic aspects. However, its explanations
are sometimes long, convoluted, and repetitious,
whereas the explanations provided via morphing
are concise and straightforward.

4.4.2 What are MorphNLI’s common errors?

To identify where most errors occur within the
MorphNLI pipeline, we randomly sampled 20
errors from each of the two development sets
(SICK/MNLI) and manually analyzed these exam-
ples. We discovered that: 45% (SICK) and 50%
(MNLI) errors were caused by the NLI model (in-
domain RoBERTa). As indicated above, this is
likely a form of overfitting due to the NLI model’s
original training data, which did not contain text
pairs similar to our incremental transformations.
This suggests that valuable future work would be
to fine-tune an NLI model that is morphing aware.
The second most common error type were faulty
morphisms: 45% (SICK) and 20% (MNLI). This
observation indicates that our morphing would
probably benefit from more fine-tuning. Lastly,

5% (SICK) and 30% (MNLI) were a result of poor
voice normalization. MNLI, which contains longer
and more complex statements, potentially with sev-
eral predicates, suffers from this problem more.
This suggests that identifying first which verb is
the sentence’s main predicate might improve voice
normalization. All in all, this analysis indicates that
MorphNLTI’s errors are caused by issues of local
components, which can be potentially addressed,
and are not a limitation of the overall direction.

4.4.3 Are MorphNLI’s decisions more
interpretable?

To gain a better insight on how morphing improves
the prediction process of the (independent) NLI
model, we conducted several analyses using LIME
(Ribeiro et al., 2016) on examples from both SICK
and MNLI, where we compare a “vanilla” NLI
model (in-domain RoBERTa) with MorphNLI us-
ing the same NLI engine. As anticipated, providing
the NLI model with incremental changes helps it
focus on more semantically relevant words. For
example, Figure 6a shows that, without morphing,
the inference model mistakenly predicts the pair
as being neutral and the focus is on words without
strong relation to the sentence pair’s meaning (“go,”
“it,” “were,” etc.); with morphing (Figures 6b — 6d),
in each subsequent step, the model correctly and
more confidently identifies all three transitions as
entailment, and focuses on more semantically rele-
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vant words (“reminisce” and “fond;” “growing up’
and “childhood”).?

4.44 Lexical sensitivity between the premises
and hypotheses

During our experiments we noticed an inverse cor-
relation between the quality of the morphing pro-
cess and the syntactic/lexical differences between
the premises and hypotheses. For example, where
the two share little to no lexical similarities (i.e., of-
ten found in MNLI), the morphing operations tend
to consider larger textual groups, affecting the per-
formance. On the other hand, the more similar the
premise and hypothesis are, the more the morph-
ing operations follow clear logical steps. To a large
extent, this carries over to examples with larger syn-
tactic/lexical differences. However, too many lexi-
cal differences between the premise and hypothesis
hurt multiple NLI techniques, and MorphNLI is no
exception. Nevertheless, our approach is less sensi-
tive to lexical differences out-of-domain, indicating
a lower degree of overfitting. This phenomenon is
further detailed in the Appendix D.

4.4.5 Importance of the filtering stage

As described in section 3.2, we included filters to
remove low-quality data, i.e., examples with no
inner sentences (lazy morphisms) and examples
with inner sentences that are shorter than both the
premise and hypothesis (short morphisms). By
filtering these examples before fine-tuning, we sig-
nificantly reduce the number of short morphisms at
inference time, while maintaining a low number of
lazy morphisms. In our experiments, for a sample
of roughly 5,500 examples during inference, the ini-
tial morphing mechanism predicted 26% lazy and
32% short. After introducing our filtering mech-
anism, the percentage of lazy morphisms had a
slight increase to 28%, while the percentage of
short morphisms dropped considerably to 12%.

5 Conclusions

In this paper, we proposed MorphNLI — a modular
step-by-step approach for natural language infer-
ence. Our method uses a language model to gener-
ate atomic edits that progressively transform (i.e.,
morph) the premise into the hypothesis. We then
track how these atomic edits impact the entailment

3 Although the overall semantics are still not perfect: while
the first three phrases are associated with the entailment label,
“childhood” is associated with non-entailment.

between successive sentences, aggregating these in-
termediate labels into a final answer (see Figure 1).
We hypothesized that typical NLI models can better
handle examples where the two sentences are lexi-
cally close (i.e., they differ only by an atomic edit)
Our results confirm that our proposed approach is
more robust, outperforming traditional NLI models
in all cross-domain settings investigated. Further-
more, our proposed method is explainable. The
sequence of intermediate edits together with their
corresponding individual NLI labels can be used to
explain the overall prediction.

Limitations

Our work focuses on the task of Natural Language
Inference. Although the text morphing process
proves to be beneficial in the context of logical
reasoning, its applicability in other reasoning tasks
is still to be tested. Moreover, we cannot offer
an assurance on the level of generalizability of
our method. For our experiments, we designed
the morphism generation as a general task, as the
fine-tuning data is constructed from a different do-
main than the testing data (SNLI vs. SICK/MNLI).
However, we do not know if this generalization is
constrained on data specific to the NLI task.

In the development of our solution, for the
morphism generation task, we have experimented
mostly with LLMs from the GPT family. We are
unsure if our pipeline may have different behav-
ior for other proprietary LLMs or for much larger
LLMs, as we are using a fine-tuned version of GPT-
4o0-mini. Also, being a closed source model, we
do not know if the LLM was previously trained
towards this objective of text morphing. Further, it
is hard to accurately predict the level of contamina-
tion of the model with the test datasets, and what
influence it has on the morphism generation.

The morphing process is evaluated only on En-
glish. We have no assurance that the same tech-
niques could apply on other languages for multilin-
gual models or if it follows only the particularities
of the English language.
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A Morphism generation examples

Figure 7 presents the prompt that we have used
for the generation of the synthetic dataset labeled
with morphisms. The first part of the prompt con-
sists on giving basic rules on the morphing task
such as specifying what is the input and the desired
output, the maximum number of intermediary sen-
tences and the operations used (with their structure).
The next part presents in more detail information
about each operation and how they should be per-
formed. This part was developed through prompt
engineering, analyzing the systematic mistakes that
the model was making in the generation process.
Then, we give 12 examples of morphisms, together
with the morph operations. Finally, the premise and
hypothesis are given. Figure 8 presents a humanly
annotated example in the prompt. The output struc-
ture of the LLM follows the structure of the ICL
example. An example of morphism generated by
the student model (fine-tuned GPT-40-mini) is pre-
sented in Figure 9.

Figure 10 shows the prompt used for generating
the GPT-40 and Llama 3.1 8B explanations that
were compared against MorphNLI explanations.

B Results on validation datasets

Tables 5 and 6 present the results on the valida-
tion datasets of SICK and MNLI. We observe the
same behaviour as the one described in Section 4.3
on the test datasets. Our method significantly out-
performs the state-of-the-art models in the OOD
setting, with an increase of 1.21% for RoBERTa
and 4.84% for BART in the case of SICK, and
3.10% for RoBERTa and 4.59% for BART in the
case of MNLI without voice normalization.

SICK ID (010)))
RoBERTa Vanilla 89.90 57.78
RoBERTa Vanilla (+VN) 90.91 58.38
RoBERTa Morphism (+VN) 85.86 58.99
BART Vanilla 89.70 59.60
BART Vanilla (+VN) 89.90 61.01
BART Morphism (+VN) 87.68 64.44

Table 5: MorphNLI accuracy on the SICK validation
dataset, using two NLI engines: RoOBERTa and BART.
We compare our results against the two “vanilla” NLI
models, i.e., without using text morphing. For OOD, we
use the ROBERTa models trained on MNLI, and BART
models trained on SNLI, MNLI and FEVER.
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Take a deep breath and work on this problem step-by-step. Please generate intermediate sentences from
‘Sentence 1° to ‘Sentence 2°, essentially morphing ‘Sentence 1° to ‘Sentence 2° through successive atomic
edits. Each edit gives another interpolated sentence. Limit the number of interpolation/changes to at most
7. The atomic edits that you are allowed to do have the following structure, manipulating short parts of
text:

1. Replace operations - (replace, <old_text>, <new_text>)
2. Remove operations - (remove, <text>)
3. Insert operations - (insert, <text>)

You are required to do all the operations in the order specified above: first just replacements, then removals
and lastly insertions if needed. Each edit must consider similar syntactic groups, so you are not allowed to
break syntactic boundaries. Perform multiple small operations, rather than one operation that changes the
whole text. For example, a replace operation that changes most of the text could be broken down into
multiple replace operations, followed by remove operations.

The replacements are the most usual operations. These operations must be done by comparing syntactically
similar word groups from the current sentence with ones from the target sentence (Sentence 2). The
replacement text may be a rephrase of the starting text group, or even a contradictory statement, depending
on the form and meaning of the final sentence.

The removals are done on groups of text that are totally unrelated to the final sentence. This includes
additional information specified in the starting sentence that disappears while morphing towards the final
sentence.

The insertions represent new text that is unrelated to the knowledge presented in the starting sentence. Do
inserts only when it is necessary, when inserting text that is totally unrelated to the textual constructs of
the current sentence. Under no circumstances you are allowed to remove certain words then insert related
words. This should be done using a replacement operation instead.

I will give some examples below. Keep the same structure of your response as seen in the examples, with
no additional text/explanations.

{Example 1}
{Example 2}

{Example 12}

Generate the intermediate sentences and print the atomic edits for the following pair of sentences:
Sentence 1:

{Premise}

Sentence 2:

{Hypothesis}

Morphism:

Figure 7: Prompt example for morphism generation.
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Sentence 1:

A man with a white beard speaks into a microphone
wearing a long-sleeved gray button down shirt.
Sentence 2:

A man with a white beard is sitting quietly on a
couch.

Morphism:

-Replacements:

(replace, speaks into a microphone, is sitting quietly)
A man with a white beard is sitting quietly wearing a
long-sleeved gray button down shirt.

-Removals:

(remove, wearing a long-sleeved gray button down
shirt)

A man with a white beard is sitting quietly.

-Insertions:

(insert, on a couch)

A man with a white beard is sitting quietly on a
couch.

Figure 8: Example of a manually annotated morphism
from the ICL pool.

Morphism:

-Replacements:

(replace, A white man is walking a dog, A dog with
a brown and white coat is trotting)

A dog with a brown and white coat is trotting through
brown water with difficulty.

(replace, brown water, shallow water)

A dog with a brown and white coat is trotting through
shallow water with difficulty.

-Removals:

(remove, with difficulty)

A dog with a brown and white coat is trotting through
shallow water.

-Insertions:

Figure 9: Example of a morphism as in the LLM output.
The premise is "A white man is walking a dog through
brown water with difficulty".

C NLI models and LLMs used

Throughout our study, we used NLI classifiers in or-
der to generate the individual labels between each
pair of sentences and to provide a comparison base-
line. Table 7 shows the NLI models used, together
with the dataset they were fine-tuned on and their

You have to provide the label and explanations for a
Natural Language Inference (NLI) task. Natural Lan-
guage Inference is the task of determining whether
a "hypothesis" is true (entailment), false (contradic-
tion), or undetermined (neutral) given a "premise".
You will be given the premise and the hypothesis, and
must state if they have an entailment, contradiction or
neutral relation. You are then required to provide the
reasoning process that explains why the label applies
for the pair of sentences. The explanations must be
clear and concise, using natural language.

Premise:
Premise

Hypothesis:
Hypothesis

Label and Reasoning process:

Figure 10: The prompt used for generating the GPT-40
and Llama 3.1 8B explanations.

MNLI ID (00))
RoBERTa Vanilla 90.12 5543
RoBERTa Vanilla (+VN) 88.59 54.61
RoBERTa Morphism 84.71 58.53
RoBERTa Morphism (+VN) 83.13 57.94
BART Vanilla 89.62 48.67
BART Vanilla (+VN) 87.70 48.25
BART Morphism 83.66 53.26
BART Morphism (+VN) 81.70 52.65

Table 6: MorphNLI accuracy on the MNLI validation
dataset, under the same settings as Table 5. For the OOD
results, we train the respective NLI model on SICK.

source (Hugging Face path*). As we could not find
an off-the-shelf BART-large model fine-tuned on
SICK, we fine-tuned a version of our own on the
train split. We have used a learning rate of le-4
with 500 warm-up steps and batch size of 32 for
5 epochs. Cross Entropy is used as loss function,
together with AdamW as optimizer.

As mentioned in the article, we used various
LLMs of the GPT-4 family. Here, we provide the
identifiers of these models to increase reproducibil-

ity:

* GPT-40 (labeling, explanations):
2024-08-06

gpt-4o-

* GPT-4 (teacher model): gpt-4-0125-preview

* GPT-40-mini (student model, voice normal-
ization, labeling): gpt-40-mini-2024-07-18

“https://huggingface.co/
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Model type Dataset Huggingface path

RoBERTa-large SICK varun-v-rao/roberta-large-fp-sick

RoBERTa-large MNLI FacebookAl/roberta-large-mnli

BART-large SICK (fine-tuned in-house)

BART-large SNLI+MNLI+FEVER ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli

Table 7: The NLI models used for classification.

The total budget for synthetically annotating
morphisms using ICL, fine-tuning the student
model, making the ablation studies, and testing
the performance of our model was approximately
3508.

It is important to mention that our method does
not rely on proprietary models (GPT family). At
the beginning of our research, we experimented
with GPT-4, Claude 3 and Llama 3.1, and chose
GPT-4 as it performed slightly better in the morph-
ing generation process.

To verify whether our overall results hold with
an open-weight LLM, we conducted an experiment
in which we took a small sample size from SICK
(50 examples) and generated morphisms with both
GPT-40-mini and Llama-3.1-70b-Instruct (using
in-context learning examples). Then we labeled
the morphisms using a RoOBERTa based NLI model
for both in-domain and out-of-domain scenarios.
We present the results in Table 8. We observe that
the results are reasonably similar. That is, the GPT
model outperforms Llama for the in-domain case,
but Llama is superior for the out-of-domain case.
This small experiment yields promising insights
into the applicability of our method to LLMs from
other families.

SICK 50 examples ID (010))]
Vanilla 82.00 56.00
MorphNLI GPT-40-mini 80.00 56.00
MorphNLI Llama-3.1-70b-Instruct 72.00 62.00

Table 8: MorphNLI accuracy on a small sample from
SICK, using GPT-40-mini or Llama-3.1-70b-Instruct
for generating the morphisms. The NLI modules used
are RoBERTa based.

D Lexical sensitivity

We wanted to see how the performance of our ap-
proach varies considering the lexical difference be-
tween the premise and hypothesis. We measured
the accuracy as the similarity between the hypothe-
sis and the premise varies, and as the word differ-

ence varies. For the similarity, we used a sentence
transformer (all-MiniLM-L6-v2) and measured the
cosine similarity between premise and hypothesis.
For the word difference, we computed the differ-
ence in words between the lemmatized premise and
hypothesis. The results are presented in Figure 11.
We see that for both scenarios and datasets, Mor-
phNLI is less sensitive to lexical differences, espe-
cially out-of-domain. We observe that in the case
of word difference, the in-domain vanilla approach
is not affected by a large difference. We consider
this a clear sign of overfitting, especially as the rest
of the methods have a drop in performance. This
experiment further shows that our approach is less
prone to overfitting and outperforms the vanilla
models in out-of-domain scenarios.
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Figure 11: MorphNLI sensitivity to lexical difference in the premise and hypothesis pair. We can see that our model
is less sensitive in the out-of-domain scenario and less prone to overfitting.
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