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Abstract
Code-LLMs, large language models pre-trained
on code corpora, have shown great progress in
learning rich representations of the structure
and syntax of code, successfully using it to
generate or classify code fragments. At the
same time, understanding if they are able to do
so because they capture code semantics, and
how well, is still an open question. In this
paper, we tackle this problem by introducing
SeqCoBench, a benchmark for systematically
assessing how Code-LLMs can capture code
functional equivalence. SeqCoBench contains
over 20 code transformations that either pre-
serve or alter the semantics of Python programs.
We conduct extensive evaluations in different
settings, including zero-shot and parameter-
efficient finetuning methods on state-of-the-art
(Code)-LLMs to see if they can discern seman-
tically equivalent or different pairs of programs
in SeqCoBench. We find that the performance
gap between these LLMs and classical match-
based retrieval scores is minimal, with both
approaches showing a concerning lack of depth
in understanding code semantics.1

1 Introduction

Comprehending the semantics of code is crucial
to generate new code accurately as well as to un-
derstand and verify existing code. Capturing code
semantics would entail the ability to predict code
functional equivalence, i.e., the property of two
functions to produce the same outputs when given
the same inputs, yielding the same observable be-
haviour, even if their implementations differ syn-
tactically. In other words, functionally equivalent
functions are interchangeable from the perspective
of a program’s functionality.

Identifying such functional equivalences is im-
portant for software development and formal verifi-

1Our code and dataset is available at https://github.
com/Nickil21/SeqCoBench.

Shared supervision.

cation, as it enhances software quality by detecting
redundant code, encouraging reusability, prevent-
ing bug spread (Mondal et al., 2018), and boosting
developer productivity. For example, when code is
refactored (Shirafuji et al., 2023) or optimized (Shy-
pula et al., 2024), it is desirable to automatically
confirm that the new and old implementations be-
have the same. In static analysis, it is useful for re-
ducing the risk of unexpected behaviour in a piece
of code (Ding et al., 2023), reducing the effort re-
quired to verify a system’s correctness and to find
errors or inconsistencies in the code.

While determining the equivalence between two
code segments is an undecidable problem in gen-
eral (Poonen, 2014), in practice, this can be par-
tially achieved by focusing on a narrower input and
code domain and by running unit tests on it. These
execution-based code evaluation strategies have be-
come increasingly widespread for evaluating code
generation tasks, such as program synthesis, code
translation and code summarization (Huang et al.,
2022; Wang et al., 2023c) with Code-LLMs, LLMs
pre-trained on large code corpora (Rozière et al.,
2024; Li et al., 2023).

However, execution-based evaluation comes
with drawbacks. Firstly, it cannot scale to com-
plex codebases that resemble real-world software
domains. Currently, the test cases apply mostly to
closed-domain problems having limited coverage
due to the presence of either built-in functions (Li
et al., 2022) or handpicked libraries from a specific
field (Lai et al., 2023). Secondly, it is infeasible to
cover all possible inputs, edge cases, and execution
traces, and while passing tests is a good proxy for
functional correctness, it does not necessarily imply
the model truly understands the semantics behind
the code. This leaves us with the open question:
how much are Code-LLMs that are remarkable at
code generation able to identify aspects of seman-
tics such as code functional equivalence?

In this work, we try to answer this question
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Figure 1: State-of-the-art (Code)-LLMs struggle to understand subtle changes in one program syntax that,
however, dramatically alter its semantics as shown by three semantic-altering transformations from SeqCoBench
involving arithmetic, boolean and identity operator misuses (Section 4.2).

by introducing the Semantic Equivalence Code
Benchmark (SeqCoBench). SeqCoBench is a
challenging benchmark comprising Python pro-
grams generated by applying semantic transforma-
tions to a reference program, with the objective of
preserving (resp. altering) its semantics while al-
tering (resp. preserving) most of its syntax. When
called to evaluate if the two pieces of code in a
pair from SeqCoBench are functionally equivalent
or not, state-of-the-art (Code)-LLMs can get con-
fused, as illustrated in Fig. 1. Our findings indicate
that Code-LLMs have a weak sense of code seman-
tics that breaks when we introduce subtle variations
in our SeqCoBench dataset, which helps to system-
atically measure this effect.

To summarize our contributions: (a) We design
SeqCoBench to comprise various semantic trans-
formations (Section 4) according to different types
of code clones (Section 3) and to understand better
which fragment of the syntax-semantics spectrum
LLMs capture. (b) We use SeqCoBench to ex-
tensively evaluate not only state-of-the-art (Code)-
LLMs but also classical match-based metrics to
capture code functional equivalence (Section 5).
This includes experiments on zero-shot learning
and parameter-efficient fine-tuning (PEFT) settings,

noting that Code-LLMs struggle on SeqCoBench
and perform on par with classical match-based sim-
ilarity metrics. (c) We investigate which transfor-
mations are most challenging to reason with on our
benchmark.

2 Related Work

Code generation benchmarks. The common
benchmarks, HumanEval (Chen et al., 2021) and
Mostly Basic Python Problems (MBPP; Austin
et al. 2021), help evaluate Python code synthesis
based on functional correctness on relatively sim-
ple functions. HumanEval comprises 164 human-
curated Python programming challenges proposed
by OpenAI. Each task contains a docstring, func-
tion signature, function body, and a set of unit tests.
Whereas MBPP consists of 974 crowd-sourced and
hand-crafted Python functions. Each task contains
a natural language description, code solution, and
three test cases.

To increase test coverage, EvalPlus (Liu et al.,
2023) augments HumanEval test cases to auto-
matically generate and diversify additional test
inputs. To tackle dataset contamination, Live-
CodeBench (Jain et al., 2024) gathers new cod-
ing problems not seen during model training, and
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EvoEval (Xia et al., 2024) which uses LLMs to
transform existing benchmarks into novel coding
tasks. Our approach focuses on the equivalence of
the code itself rather than evaluating the correct-
ness of a generated solution against a predefined
problem.

Some benchmarks test LLMs’ capability to au-
tomate real-world software development processes.
SWE-Bench (Jimenez et al., 2024) automatically
resolves GitHub issues by generating code patches
that pass the existing test cases. RepoEval (Zhang
et al., 2023a) evaluates repository-level code com-
pletion tasks at various levels of granularity. In
contrast, we evaluate functional equivalence with-
out considering the broader context of a codebase
or real-world software engineering tasks. While
we focus on determining whether two code snip-
pets are functionally equivalent, CRUXEval (Gu
et al., 2024) specifically evaluates a model’s rea-
soning skills in predicting inputs/outputs for code
understanding and execution abilities.
Code evaluation metrics. We can broadly cat-
egorise code evaluation metrics (CEM) into two
main types: reference-based metrics, which com-
pare the generated code to a known reference, and
reference-free metrics, which assess the quality of
the generated code without relying on a reference
by executing them on test cases. In this study, we
focus on reference-based metrics.

Reference-based metrics typically include
match-based metrics, which rely on lexical exact
token matching, and LLM-based metrics, which
employ models pre-trained on code. Match-based
metrics include n-gram matching metrics like
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
etc., and also incorporate syntactic and seman-
tic properties like CodeBLEU (Ren et al., 2020),
CrystalBLEU (Eghbali and Pradel, 2023), etc.
LLM-based metrics include embedding-based met-
rics like BERTScore (Zhang et al., 2020), Code-
BERTScore (Zhou et al., 2023), CodeScore (Dong
et al., 2023), etc. We provide the details of the dif-
ferent evaluation metrics in Appendix A. There is a
need to build robust CEM as existing metrics show
a weak correlation with functional correctness on
HumanEval as shown in Appendix H. We cover no-
table work not already mentioned in Appendix J.

3 Functional Equivalence of Programs

Determining the semantic equivalence of two code
snippets is a challenging task that lies on a spec-

trum, as different codes can compute the same func-
tion, but in different ways. Consider a space of pro-
grams P , each explicitly accepting an input x ∈ X
and outputting an output y ∈ Y . The semantics
we attach to such programs is based on their input-
output mapping, i.e., the function f : X → Y they
implement. However, while two different programs
p, p′ ∈ P can be functionally equivalent if they im-
plement the same input-output mapping, they can
concretely implement such a mapping in a very
different way.

For example, two pieces of code can have differ-
ent syntactic variations – from minor changes as in-
serting whitespaces to renaming variables – as well
as implement two different algorithms that how-
ever encode the same function. This can be done
simply by using different library APIs or dependen-
cies, different abstraction levels, or algorithms with
different time and space complexity, e.g., sorting a
list of integers can be equally done with mergesort
or insertion sort and both will pass the same unit
tests that check for input-output consistency.

We operationalise the question of whether LLMs
can capture different functional equivalence rela-
tionships in this spectrum through the notion of
code clones (Saini et al., 2018). Detecting code
clones is a proxy task for checking functional equiv-
alence that is highly relevant in software engineer-
ing, e.g., to retrieve similar code snippets for code
search (Sun et al., 2023) or detect duplicates within
a codebase (Yang et al., 2023). Classifying code
clones into types can help us systematize possible
functional equivalence classes. Following previous
work (Roy and Cordy, 2007; Bellon et al., 2007),
we categorise code clones into four types based on
their complexity and degree of similarity.
type-1 clones comprise two almost syntactically

identical pieces of code that differ only for minor
variations in the layout, e.g., by the presence of
whitespace and comments.
type-2 clones resemble two syntactically identical

code fragments except for variations in variable and
function names, identifiers, literal values, types, etc.
They also comprise type-1 differences.

type-3 clones include two syntactically identi-
cal code fragments except for additions, deletions,
modifications of several statements, and the differ-
ences already specified for type-2 clones.

type-4 clones, also known as semantic clones.
They exhibit identical functional behaviour despite
having different syntax, control flow, data flow, or
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programming languages.
This typology of clones helps us devise diverse

groups of transformations that can preserve or alter
the semantics of a program while also modifying
its syntax. Such transformations enable us to create
a challenging benchmark to systematically evaluate
whether LLMs can capture functional equivalence
and inspect at which level they can disentangle
syntax from semantics, as discussed next.

4 The SeqCoBench Dataset

Traditionally, code benchmarks for evaluating
LLMs have focused on assessing their ability to
generate single-function programs based on natural
language descriptions. This is done for example
in popular benchmarks such as HumanEval (Chen
et al., 2021) and Mostly Basic Python Problems
(MBPP; Austin et al. 2021), which comprise
human-curated Python code snippets with a doc-
string, function signature, function body, and a set
of unit tests to check if generated code satisfies
specifications.

Instead, as we want to evaluate the ability of
LLMs to capture functional equivalence between
already existing pieces of code, we construct our
SeqCoBench by creating pairs of code snippets
that are labelled to be functionally equivalent or
not. More formally, given a program pi, we gen-
erate the tuple (pi, t(pi), ℓi) where t is a semantic-
preserving (SP; Section 4.1) or semantic-altering
(SA; Section 4.2) transformation that generates a
new code snippet whose semantics changes accord-
ingly and ℓi ∈ {0, 1} is a label indicating if the
pair has been generating through a SP (1) or SA (0)
transformation.

We build SeqCoBench by applying a set of SP
or SA transformations to programs appearing in
MBPP, they provide unit tests that help us check
if our transformations correctly operate on the pro-
gram semantics. We prepare the train/valid/test
splits following a 60/16/24 ratio and ensure that
there is no overlapping of the original code across
different data splits.

4.1 Semantic-Preserving Transformations

Given a program p, we aim to generate a new
code snippet p′ that is functionally equivalent to p
(i.e., they encode the same input-output mapping
f ) while maximizing the token-level differences
between the original code where appropriate. To
this end, we consider the four SP transformations.

We group them by the corresponding clone type
(Section 3) while trying to cover all types. Note
that we omit type-1 clones as they typically in-
clude comment- and docstring-level perturbations
written in natural language and are not technically
part of code semantics. They are used for documen-
tation purposes only and do not affect the execution
or behaviour of the code itself.

While adversarial perturbations that alter the
function’s intended meaning can cause the LLM
to ignore the function body completely and in-
stead give more emphasis to the perturbed en-
tity’s instructions, reformulating the perturbations
using text augmentation strategies such as back-
translation (Wang et al., 2023a), synonym substitu-
tions, etc., can make it less challenging for LLMs.
We create these transformations using the NatGen
package (Chakraborty et al., 2022). We leave out
transformations on the original code where the nec-
essary requirements to perform the transformation
are not met (e.g., lack of for/while loop or boolean
operators in the code snippets).
Rename Variables (RV) type-2 We primarily use
three different adaptations. Naive: It renames the
most common variable name to VAR_i. CB: It
identifies the variable name that appears most fre-
quently in the partial code snippet and then substi-
tutes all occurrences of that variable name through-
out the prompt with a new name suggested by Code-
BERT. RN: It identifies the variable name that oc-
curs most frequently within the given partial code
snippet and then generates a random string com-
posed of an equal mix of alphabetic and numeric
characters. Finally, it substitutes all instances of
the most commonly used variable name with this
newly generated random string.
Dead Code Insertion (DCI) type-3 It creates un-
reachable code blocks at a random location. These
could be unused variables or redundant assign-
ments. We place these statements in a block around
either a looping (e.g., for, while) or a branching
structure (e.g., if-else, switch), if any.

Dead Code Insertion Example

x = 5
y = x + 2
print(y)

x = 5
z = 10 # Dead code
y = x + 2
if False:

print("This will never execute") # Dead code
print(y)

Operand Swap (OS) type-3 It swaps the first
occurrence of boolean operators and, if needed,
changes the operator to preserve semantic equiv-
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alence. For example, if the original code had the
condition a > b, the transformation could change
it to b < a, swapping the operands "a" and "b"
while also changing the operator from ">" to "<"
to preserve the same logical meaning.
Loop Transformation (LT) type-4 It converts
the first occurrence of for-loop into its equivalent
while-loop and vice-versa.

In the for→while case, we initialize the counter
outside the loop and use a while condition that
checks the loop counter against the termination con-
dition. Then, we increment/decrement the counter
inside the body, which remains unchanged. For the
reversed case, we initialize the loop counter in the
for-loop statement and include the termination con-
dition taken from the while-loop. The loop counter
increment/decrement is merged in the for loop, and
the body remains unchanged.

Loop Transformation Example

total = 0
for i in range(n):

total += i

total = 0, i = 0
while i < n:

total += i
i += 1

Loop transformation is challenging as loops of-
ten contain critical logic and control flow determin-
ing the code’s functionality. Modifying or trans-
forming loops risks changing the program’s in-
tended behaviour. In contrast, simpler code modifi-
cations like dead code insertion, variable renaming,
or operand swaps have more localized effects and
require less global reasoning about data dependen-
cies or code semantics. LLMs can perform these
transformations more reliably by learning from the
training data patterns. We show the structure of
transformations for a representative program taken
from the dataset in Appendix I.

4.2 Semantic-Altering Transformations

In this case, our goal is to generate a program t(p)
that is functionally not equivalent to the original
code p while maximizing token-level similarity
to the original code. In other words, generate
pairs of programs that are not clones but might
fool a superficial comparison. Accordingly, we
consider six families of SA transformations. As be-
fore, we leave out transformations on the original
code where the necessary requirements to perform
the transformation are not met (e.g., unavailability
of identity or boolean operators).
Arithmetic Operators Misuse (AOM). We search
for the first occurrence of an arithmetic operator

Split Size Unique Functions Transformations

SP SA

Train 7214 565 3085 4129
Valid 2943 229 1291 1652
Test 4415 341 1860 2555

Table 1: An overview of SeqCoBench statistics.
Transformation-wise breakdown of counts is shown in
the Appendix E.

and modify it to its semantic opposite counter-
part. For example, we replace a + b with a - b,
a * b with a / b, and the other way around. Sim-
ilarly, we replace augmented assignment operators
a += b to a -= b and a *= b to a /= b.
Dissimilar Code Selection (DCS). We randomly
select five distinct code snippets from the base
dataset, excluding the original code p, and create
five additional code pairs using p as a reference.
Identity Operators Misuse (IOM). We look for
the first occurrence of an identity operator and ad-
just it to its corresponding semantic opposite. For
instance, we replace a is c with a is not c, and
vice-versa.
Boolean Operators Misuse (BOM). It searches
for the first occurrence of a boolean literal and
replaces it with its logical negation. For example,
we replace the keyword True with False, and vice-
versa.
Logical Operators Misuse (LOM). It scans for
the first occurrence of a logical operator (e.g.,
and, or) and swaps it with another operator. For
instance, we interchange a > 1 and a < 5 with
a > 1 or a < 5, and vice-versa.
Comparison Operators Misuse (COM). It
searches for the first occurrence of a comparison
operator and replaces it with its logical opposite
operator type. For e.g., we replace a > b with
a < b, a >= b with a <= b, a == b with a != b,
and vice-versa.

Table 1 summarizes the dataset statistics after
applying the transformations to the code fragments
in MBPP and splitting into train/valid/test. Further-
more, we clarify how the motivation to construct
SeqCoBench differs from code clone detection and
code obfuscation techniques in the Appendix K.

While many of the transformations, especially
the SP ones, overlap with BiFi (Yasunaga and
Liang, 2021) and are well-studied in software engi-
neering literature, our motivation is completely dif-
ferent and tackles an altogether different scenario.
We focus on a controlled environment where we
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can understand strictly which simple transforma-
tions can confuse LLMs by discriminating syntax
from semantics. SP transformations provide a con-
trolled way to introduce changes while maintaining
functional equivalence. This allows for a more pre-
cise analysis of what the LLM considers significant
or insignificant regarding code structure and syntax.
From a practical perspective, without grasping the
code semantics completely, LLM-generated code
may contain subtle logical errors or edge cases that
are difficult to detect through surface-level code
evaluation, such as identifying subtle bugs intro-
duced during code refactoring that shouldn’t alter
functionality. This increases the importance of care-
ful code review by experienced developers.

5 Experiments

Through the use of our dataset, we aim to answer
the following research questions:
RQ1: How good are state-of-the-art LLMs at zero-
shot classification on SeqCoBench?
RQ2: Which are the most/least challenging seman-
tic transformations for Code-LLMs?
RQ3: Can the performance improve with fine-
tuning on some transformations?

We demonstrate that Code-LLMs are far from
“solving” our dataset, leaving it for future work
to further use our dataset as a benchmark for
analysing the level of code understanding in such
LLMs.

5.1 Models

To evaluate the benchmark, we choose general
and state-of-the-art (Code)-LLMs that have per-
formed well on code-related benchmarks (such as
HumanEval) and are open-sourced for commer-
cial use, as our test models. We exclude closed-
source LLMs because we want to see the impact of
fine-tuning and we are worried about possible data
leaks, as HumanEval, MBPP, and relative bench-
marks might have already been used to train the
largest closed-source LLMs. See the model details
in Appendix D.

5.2 RQ1: Match-based vs. LLM-based
Metrics Performance

To evaluate the model performance, we measure the
area under the precision-recall curve to calculate
the average precision (AP) score:

AP =
∑

n

(Rn −Rn−1)Pn, (1)

Type Metric Size AP

M
at

ch
-b

as
ed

Rouge1 – 50.91
Rouge2 – 50.67
RougeL – 48.48
Meteor – 52.05
ChrF – 55.25
BLEU – 48.46
CrystalBLEU – 48.35
CodeBLEU – 50.65

L
L

M
-b

as
ed

Comet – 52.41
CodeScore 126M 46.48
BERTScore 110M 54.87
CodeBERTScore 125M 47.45

Generic

Llama2
7B 41.33
13B 43.32

Code-Specific

CodeLlama
7B 44.30
13B 70.85
34B 46.59

StarCoder2
3B 34.11
7B 33.91
15B 50.75

Table 2: LLM-based metrics struggle to differentiate be-
tween semantically equivalent and non-equivalent code
snippets, sometimes performing worse than surface-
level match-based metrics. This indicates a lack of
understanding of code semantics and reasoning based
on underlying logic.

where Pn and Rn correspond to the precision and
recall at the nth threshold. AP accounts for ranking
by rewarding models that rank correct predictions
higher and are calculated per class, allowing perfor-
mance evaluation on individual classes. We note
that AP is the area under the precision-recall curve
(AUC-PR) curve and is a more accurate metric for
slightly imbalanced datasets than the usual AUC-
ROC. This imbalance mainly happens when the
positive class (SP) is lesser in magnitude than the
negative class (SA). This is because AP focuses
more on the performance of the positive class and
is more sensitive to improvements in the positive
class predictions compared to AUC-ROC. At the
same time, AUC-ROC can give a false sense of
high performance on imbalanced data.

We aim to investigate whether LLMs perform
significantly better than old-school, syntax-based
metrics and incorporate all CEMs proposed in the
literature. While BLEU is meant to compare at the
ngram-matching level, we also consider their im-
proved variations, which include code-related mod-
ifications such as CodeBLEU and CrystalBLEU,
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Transformation Embedding-based Zero-shot-prompt-based

Type Category Name Comet CS BS CBS
Llama2 CodeLlama StarCoder2

7B 13B 7B 13B 34B 3B 7B 15B

SA

AOM

+ →− 4.46 87.52 0.76 1.39 20.85 14.77 14.19 15.69 16.25 24.64 14.99 16.92
−→ + 4.29 88.52 0.57 3.30 23.29 13.95 14.04 20.44 19.44 24.93 17.35 17.66
÷→× 4.19 81.21 0.71 2.40 13.11 12.95 13.15 17.46 16.28 11.96 12.62 17.63
×→÷ 4.83 94.76 1.01 1.45 17.38 17.40 15.49 15.18 16.64 22.32 14.37 18.20

BOM
False→ True 4.32 2.29 0.20 1.56 14.47 13.95 10.49 14.15 14.68 21.39 13.04 14.47
True → False 4.14 1.91 0.23 1.75 14.94 12.55 9.22 13.12 13.44 22.17 10.04 9.73

COM

== → != 4.75 85.09 0.58 1.16 23.88 14.42 15.01 13.71 15.85 23.65 12.61 13.39
!= → == 3.80 88.77 0.20 0.43 9.53 9.30 14.66 19.70 10.11 14.66 10.87 7.19
> → < 4.55 91.16 0.61 3.85 26.02 14.97 13.67 15.42 18.75 20.26 11.87 16.93
< → > 4.50 30.78 0.40 1.00 11.78 16.51 13.52 14.55 12.93 13.11 14.04 17.27

DCS Dissimilar Code Inject 30.42 38.50 13.39 14.07 23.09 31.49 22.44 17.09 21.55 32.43 15.02 16.48

IOM
is → is not 2.54 3.12 0.14 0.62 12.68 9.79 10.35 12.96 13.75 16.40 12.36 13.57
is not → is 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

LOM
and → or 4.30 27.00 0.25 0.76 11.54 14.61 13.54 15.66 11.99 22.52 13.45 16.37
or → and 3.05 4.24 0.30 0.78 7.71 12.80 6.16 18.04 14.32 24.55 13.47 16.80

SP

DCI Dead Code Insert 11.64 72.95 5.79 7.24 16.02 17.05 11.99 21.98 16.72 16.39 9.28 13.99

LT for ↔ while Loop 10.37 77.64 7.46 8.81 12.56 16.17 9.20 16.95 14.56 16.10 14.73 14.25

OS Operand Swap 8.20 77.25 4.92 5.01 21.61 18.29 11.15 20.44 14.83 14.15 12.60 13.56

RV
Rename Variable Cb 24.46 74.29 9.74 6.60 22.32 18.22 11.57 21.25 17.04 14.80 13.50 16.68
Rename Variable Naive 18.17 72.38 7.88 8.57 17.33 16.51 9.34 18.87 16.27 13.36 14.45 14.34
Rename Variable Rn 34.78 70.16 12.57 11.34 19.31 20.28 11.64 19.99 17.39 13.45 12.44 16.97

Table 3: LLM-based metrics struggle to classify SA transformations due to their susceptibility to subtle input
variations. Our findings show that LLM variants specifically trained for coding tasks outperform their more general-
purpose counterparts. Here, CS: CodeScore, BS: BERTScore, CBS: CodeBERTScore.

which offer an upper limit for the performance of
match-based metrics. In addition, we need to know
whether relying on LLM-based metrics has a sig-
nificant advantage (at the cost of latency, memory
consumption, etc.) compared to match-based met-
rics. Table 2 shows the results on the SeqCoBench
test set. We observe that CodeLlama (CL) outper-
forms Llama2 across different model sizes. This
can be attributed to the fact that CL models were
initialized with Llama2 weights but then further
trained on a massive 500B token dataset heavily
focused on code and code-related content. This
specialized training data allows CL to develop a
deeper understanding of programming languages,
libraries, and coding conventions than the more
general Llama2.

We notice that BERTScore outperforms its code-
enhanced metric, CodeBERTScore (CBS). We hy-
pothesize this could be due to multiple reasons.
Firstly, while encoding the surrounding context
(e.g. natural language descriptions) is beneficial
for code generation, in the case of understanding
tasks without generation, this additional context en-
coding in CBS may not provide any advantage and
could even introduce noise. Secondly, it leverages

pre-trained language models for code like Code-
BERT, which heavily relies on the names of vari-
ables and functions to understand code semantics.
When these names are obfuscated or changed, it
struggles to comprehend the underlying logic and
meaning of the code (Wang et al., 2024). CL-13B
is the best-performing overall, outperforming the
larger 34B model. While the 34B model has more
parameters and performs better on benchmarks, we
speculate specific coding tasks or prompts may bet-
ter suit the 13B model’s capabilities. The smaller
model size could lead to better generalization or
less overfitting on some particular tasks. Train-
ing details are shown in Appendix C. The prompt
format is shown in Appendix F.

We report additional experiments that show how
few-shot improves performance for some LLMs
and how zero-shot CoT prompting affects the
model performance in Appendix G. We can see
that zero-shot CoT prompting has only marginal
improvements compared to the standard zero-shot
prompting. We note that zero-shot prompting can
be more adaptable across different programming
languages without needing to adjust the prompting
strategy, as it relies more on the model’s general un-
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derstanding of code functionality. LLMs trained on
vast amounts of code can often make accurate judg-
ments about code equivalence without needing to
"think through" the problem explicitly, effectively
leveraging their pre-trained knowledge.

Answer to RQ1: As there are only marginal
improvements, we believe LLM-based metrics
are not superior compared to match-based met-
rics despite their strong contextual understand-
ing abilities. Bigger LLMs tend to outperform
their smaller counterparts.

5.3 RQ2: Impact of Semantic
Transformations

To assess the performance of various CEMs on each
transformation, we consider the true positive label
for SP transformations as 1 and 0 for SA transfor-
mations. As it becomes a single-class classification
per transformation, the precision will always be 1
due to zero false positives. In this case, the recall
score measures the fraction of all actual positive
instances correctly identified. So, we measure the
area under the recall curve (AURC) corresponding
to all the chosen thresholds, which varies between
0 and 1 and use the obtained result for our analysis
as shown:

R, T = recall_curve(y, ŷ, posLabel)

AURC = auc(T,R)
(2)

where recall_curve refers to the plot of recall
scores against different thresholds. y is the true
label, ŷ is the score probabilities and posLabel is
the label of the positive class. auc calculates the
area under the recall curve using the trapezoidal
rule. We generally observe that the metrics have
difficulty understanding SA transformations com-
pared to the SP transformations. We take the row
with the smallest to the largest sum to determine
the level of difficulty of the transformations.

Among SA transformations, “Dissimilar Code
Inject” is the least challenging as unrelated code
fragments are less likely to share common vari-
ables, functions, or data structures, making it sim-
pler to isolate and compare the code snippets inde-
pendently. On the other hand, the “is → is not”
appears to be the most challenging, as it struggles
with identity operator misuse. Among SP transfor-
mations, “Operand Swap” is the most challenging,
while “Rename Variable” seems the least challeng-
ing. Table 3 shows the transformation-wise break-
down of LLM-based metrics. CodeScore (CS), an

automatic metric, outperforms zero-shot prompted
Code-LLMs, presumably due to using both NL con-
text and the reference. We show the transformation-
wise breakdown of match-based metrics in the Ap-
pendix (Table 10). We often observe a high similar-
ity score among different metrics for an SA variant
compared to its SP one, as shown in the Appendix
(Figure 4).

Answer to RQ2: The transformed code con-
taining the least challenging transformations is
associated with maximum syntactic differences,
whereas the most challenging transformations
often occur in similar contexts and are rela-
tively close in the embedding space but have
completely opposite behaviour.

We note that for AP, the models have to distin-
guish between SP v/s SA labels, which requires
the models to be more selective in their positive
predictions, ensuring that it is more often correct
when predicting a positive class (i.e., SP). To clar-
ify, CL-13B predicts mostly higher probabilities
(> 0.8) for SA transformations than CS; hence, it
gets a weaker AURC score. Thus, we can infer
that CL-13B does a better job classifying the two
snippets as either SP or SA, but once we know the
transformation is of a specific type, CS performs
better.

5.4 RQ3: Impact of Finetuning

While finetuning on a diverse set of transformations
can improve performance on seen examples, it does
not necessarily guarantee effective generalization
to novel, unseen transformations. We propose a
leave-one-out evaluation strategy for assessing the
performance of PEFT methods on unseen semantic
transformations. The approach involves finetun-
ing the model on N-1 transformation for a given
category, then evaluating on the held-out N th trans-
formation. We repeat the leave-one-out approach
N times to assess performance on each held-out
transformation. Table 4 shows the PEFT results
on the SeqCoBench test set using the AURC score.
We note that Llama2-7B outperforms CL-7B on
most transformations.
Answer to RQ3: PEFT improves performance
on SP transformations while facing challenges
with SA transformations. Among different PEFT
methods, LoRA is the most effective one for SP,
while PrefixTuning is the most successful for SA.
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Transformation
Method

Llama2 CodeLlama
Type Category 7B 7B

SA

AOM
LoRA 2.69 6.12
AdaLoRA 40.57 9.29
Prefix-Tuned 16.6 5.06

BOM
LoRA 0.37 4.04
AdaLoRA 23.32 10.91
Prefix-Tuned 31.16 20.68

COM
LoRA 3.17 1.67
AdaLoRA 14.72 7.44
Prefix-Tuned 18.73 6.01

DCS
LoRA 98.69 77.23
AdaLoRA 88.28 20.77
Prefix-Tuned 36.66 35.17

IOM
LoRA 0.12 3.62
AdaLoRA 19.57 6.72
Prefix-Tuned 32.33 11.57

LOM
LoRA 3.84 3.85
AdaLoRA 9.14 15.60
Prefix-Tuned 23.99 5.72

SP

DCI
LoRA 81.03 63.44
AdaLoRA 56.75 29.50
Prefix-Tuned 16.46 37.66

LT
LoRA 96.01 78.33
AdaLoRA 64.76 76.70
Prefix-Tuned 10.21 26.09

OS
LoRA 91.51 82.76
AdaLoRA 59.64 75.27
Prefix-Tuned 0.24 2.08

RV
LoRA 62.33 80.63
AdaLoRA 26.68 70.14
Prefix-Tuned 8.92 20.86

Table 4: When finetuning with SP transformations, the
PEFT methods learn to be invariant to these transforma-
tions. In contrast, SA transformations require updating
the core weights to learn the new semantics, and the
PEFT methods are not expressive enough to capture
such fundamental changes.

6 Conclusion

We propose SeqCoBench, a new challenging
benchmark to evaluate how well Code-LLMs cap-
ture functional equivalence between code snippets
from the code semantics standpoint. We compare
the performance of LLM- and match-based met-
rics on the SeqCoBench and find the performance
gap to be minimal. We identify semantic trans-
formations for the Code-LLMs from least to most
challenging on a spectrum. We conduct extensive
evaluations in different settings, including zero-
shot (w/ prompting) and using PEFT methods. In
the future, we would like to study code seman-

tics in both static and dynamic settings at different
granularities by incorporating approximate, oper-
ational, and abstract semantics (Ding et al., 2024).
Incorporating symbolic reasoning modules or hy-
brid approaches that combine neural networks with
formal logic can be a promising direction.

Limitations

We investigate open-source LLMs to evaluate for
code functional equivalence, so we do not consider
ICE-Score (Zhuo, 2024) that requires using closed-
source LLMs like GPT-3.5 or GPT-4 in this anal-
ysis. Closed-source models are opaque, as their
inner workings, data sources, and training method-
ologies are not disclosed, making it hard to draw
meaningful comparisons with open-source models.

In addition, they often come with significant us-
age costs, and finetuning is not fully supported in
experimental access. Currently, the code functions
in SeqCoBench are exclusively in Python. How-
ever, we aim to broaden the scope to encompass
a broader range of programming languages and
domains. By doing so, we strive to enhance the
diversity and applicability of the dataset, making
it more comprehensive and versatile for various
software engineering tasks and scenarios.

Moreover, we do not check for compilation of
semantic code transformations as we perform a
static code evaluation to analyse the code without
needing it to be executed or compiled.

Further, we do not account for variations due to
prompt and temperature as we do not optimise the
prompting format, although we ensure it is kept
consistent across different LLMs.

Finally, we refrain from chaining multiple trans-
formations of the same type (either preserving or
altering) to make the analysis straightforward.
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A Details of Evaluation Metrics

A.1 Based on Lexical Overlap

These metrics operate on the surface form of the
code and account only for an exact lexical token
match.
ROUGE (Lin, 2004) measures the recall between
n-grams in generated and reference code.
BLEU (Papineni et al., 2002) is the geometric
mean of the n-gram precision multiplied by a
brevity penalty between generated and reference
code.
CodeBLEU (Ren et al., 2020) is a composite met-
ric which is a modification of BLEU and uses the
abstract syntax tree and data-flow graph in addition
to the surface-level matching.
CrystalBLEU (Eghbali and Pradel, 2023) is
again a modification of BLEU which considers the
underlying differences between source code and
natural language (such as trivially shared n-grams).
Meteor (Denkowski and Lavie, 2014) is a MT
metric which is based on the harmonic mean of
unigram precision and recall, with the recall being
more weighted.
ChrF (Popović, 2015) is again a MT metric which
calculates the precision and recall for character n-
gram matches and averages it over 1- to 6-character-
n-grams.

A.2 Based on Pre-trained LLMs

These metrics rely on LLMs to extract the token
embeddings of the hidden layer to calculate the
similarity.
COMET (Rei et al., 2020) uses a pre-trained mul-
tilingual model to encode generated and reference
code separately. These embeddings are concate-
nated to obtain a quality score.
BERTScore (Zhang et al., 2020) leverages BERT
embeddings to compute the pairwise cosine simi-
larity between generated and reference code.
CodeBERTScore (Zhou et al., 2023) uses Code-
BERT to encode the context (the natural language
description or comment) in addition to generated
and reference code. However, it does not use the
encoded context to compute cosine similarities.

A.3 Based on Execution

These metrics compare the execution result of gen-
erated code by running tests to check for functional
correctness.
Pass@k (Chen et al., 2021) generates k solutions
for each problem, which is deemed solved if any

of the k samples pass the tests.
CodeScore (Dong et al., 2023) provides a frame-
work, UniCE, to finetune LLMs to learn code ex-
ecution (such as estimating the PassRatio of test
cases) of generated code with unified input.
AvgPassRatio (Hendrycks et al., 2021) computes
the average pass rate of test cases.

B Details of Correlation Metrics

Kendall-Tau (τ ) is a non-parametric statistical
measure that quantifies the strength and direction of
the rank correlation between two ordinal variables.
It is calculated as:

τ =
|concordant| − |discordant|
|concordant|+ |discordant|

where, concordant pairs are in the same relative
order in both rankings, whereas, discordant pairs
are in the opposite relative order.
Pearson (rp) is a statistical measure that quantifies
the strength and direction of the linear relationship
between two continuous variables. It is calculated
as:

rp =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2

where, X and Y corresponds to the values of the
reference and candidate variables, respectively.
Spearman (rs) is a non-parametric measure of the
strength and direction of the monotonic relation-
ship between two ranked variables.

rs =

n∑
i=1

(R(Xi)−R(X))(R(Yi)−R(Y ))

√
n∑

i=1
(R(Xi)−R(X))2

n∑
i=1

(R(Yi)−R(Y ))2

where, R(Xi) and R(Yi) are the ranks of the ith

observations in reference and candidate variables,
respectively.

C Training Details

The whole pipeline takes roughly 24 hours to create
the full transformations on a single A100 80GB
GPU. The zero-shot inference experiments take
roughly 12 GPU hours, and fine-tuning takes about
48 GPU hours.
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C.1 Model Generate

The configuration specified during the genera-
tion step is max_new_tokens=3 to limit the gen-
erated output to 3 new tokens, top_p=0.9 and
temperature=0.2 to control the randomness of
the generated text, num_return_sequences=3 to
generate 3 different output sequences, top_k=5 to
consider only the 5 most likely tokens at each step,
do_sample=True to use sampling for text genera-
tion.

The provided configuration sets up a model to
use 4-bit quantization with NF4 type, bfloat16 com-
pute dtype, and optionally enables double quanti-
zation for better accuracy.

In our analysis, we exclude instruction-tuned
models of CodeLlama and StarCoder due to the
potential for learning similar instructions during
the finetuning step, such as the code clone detection
task.

C.2 Confidence Scores from LLMs

To generate token probabilities, we first generate
output sequences from the model using various
sampling techniques like top-p, temperature, and
top-k. Then, we compute the softmax probabilities
of the logits at a specific index to obtain the proba-
bilities of all tokens in the vocabulary. We identify
the tokens with probabilities above a certain thresh-
old, decode them, and store their probabilities in a
dictionary. Then, we extract the probabilities of the
"YES" and "NO" tokens from this dictionary and
calculate a score as the ratio of the "YES" probabil-
ity to the sum of the "YES" and "NO" probabilities.
Generating token probabilities from the pre-trained
model and analyzing the probabilities of specific
tokens provides a way to quantify the model’s con-
fidence for a particular output (in this case, "YES"
or "NO").

C.3 Finetuning Experiments

We use the popular PEFT methods:
Low-rank Adaptation (LoRA; Hu et al. 2022)
introduces two learnable weight matrices, A and B,
attached to a frozen pre-trained weight matrix, W ,
and considers that these updates have a low rank
during adaptation.
Adaptive Low-rank Adaptation
(AdaLoRA; Zhang et al. 2023b) adaptively
allocates more parameters to the more important
layers and fewer parameters to less important
layers, unlike LoRA, which distributes trainable

parameters evenly across all layers.
Prefix Tuning (Li and Liang, 2021) prepends
pseudo prefix tokens to the input of a language
model.

In the case of LoRA, we use rank as 8, alpha as
32, and dropout as 0.1. For AdaLoRa, we use an
initial rank of 12 that will be reduced to 8. The
beta1 and beta2 parameters for the Adam optimizer
are both set to 0.85. The learning rate will be ad-
justed between the initial time step of 200 and the
final time step of 1000, with a step size 10. We use
the alpha value of 32 and a dropout rate of 0.1. For
Prefix Tuning, we use 20 virtual tokens.

The training arguments include a per-device
batch size and gradient accumulation steps, to-
talling 2 training epochs. The model undergoes
100 warmup steps and a maximum of 400 steps
overall, using a learning rate 3e-4 and enabling
fp16 precision. We set logging to occur every 10
steps using the AdamW optimizer. Evaluation and
saving occur every 200 steps, with outputs directed
to a specified directory and a limit of 3 saved check-
points. The model does not load the best model
at the end of training. We group the sequences by
length to speed up training and report results to
weights and biases with a run name that includes a
timestamp.

D Model Details

Llama2 (Touvron et al., 2023) is a family of LLMs
developed by Meta AI, ranging from 7B to 70B pa-
rameters. It is an open-source successor to the orig-
inal Llama model, offering improved performance
through a larger training corpus, longer context
length, and the use of grouped-query attention.
StarCoder2 (Lozhkov et al., 2024) is a gener-
ative model with 3B, 7B, and 15B parameters
trained on over 600 programming languages from
the Stack v2, along with natural language sources
like Wikipedia, ArXiv, and GitHub issues.
Code Llama (Rozière et al., 2024) is initialized
using pre-trained weights of Llama2 and trained
on code-specific datasets. It then undergoes long-
context finetuning and can handle repository-level
inputs of 100K tokens.

E Transformation Counts

The average line of code for the transformed ver-
sion is 9.2247. The problems in the benchmark
are designed to be solvable by entry-level program-
mers. Among these questions, 58% are mathemati-
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Transformation
Test Train Valid

Type Name

SA

+→− 147 267 114
−→ + 133 211 73
÷→ × 47 82 30
×→ ÷ 93 133 53
False→ True 41 49 23
True→ False 39 50 21
== → != 117 173 62
!= → == 29 34 26
>→ < 79 112 38
<→ > 57 96 39
Dissimilar Code Inject 1705 2825 1140
is→ is not 10 11 2
is not→ is 1 0 1
and→ or 44 47 17
or → and 13 39 13

SP

Dead Code Insert 320 539 224
for ↔ while Loop 313 515 217
Operand Swap 311 512 217
Rename Variable Cb 290 489 199
Rename Variable Naive 313 515 217
Rename Variable Rn 313 515 217

Table 5: Breakdown of counts of different trans-
formations across train, validation, and test sets of
SeqCoBench.

cal (e.g., calculating the volume of a sphere), 43%
involve list processing, 19% require string manip-
ulation, 9% focus on integer sequences, and 2%
revolve around using other data structures. Table 5
lists the counts of different transformations.

F Prompt Template

Figure 2 shows the prompt template used in the
zero-shot prompting experiments.

G Additional Prompting Results

Table 6 shows the performance of a few hand-
picked closed-source LLMs to assess progress in
order to have a more holistic evaluation. We in-
clude it to ascertain the range of performance of
these sophisticated LLMs on our task.

Table 7 and 8 demonstrate few-shot and zero-
shot chain-of-thought (CoT) performance on the
SeqCoBench test set. It suggests the model cannot
fully infer the task requirements or context directly
from the zero-shot prompt. Few-shot examples
help bridge this gap by reducing ambiguity and

"""You are a helpful and honest code assistant
expert in Python. Is there a functional equivalence
between the Code1 and Code2? Please respond
either "YES" or "NO".

### Code1:
{code_1}

### Code2:
{code_2}

### Response:
"""

Figure 2: Prompt for Code-LLMs on SeqCoBench.

Model Size AP

gpt-4o-mini ∼8B 83.73
deepseek-coder-instruct-v1.5 7B 84.10
qwen2.5-coder-instruct 32B 85.21

Table 6: Results for zero-shot prompting on the SoTA
closed-source LLMs. While they perform better than
open-source LLMs (e.g., StarCoder, CodeLlama, etc.),
they still struggle to differentiate between functionally
equivalent v/s functionally non-equivalent codes. Our
claims surrounding RQ1 still hold, as these are trivial
tasks for the sophisticated closed-source LLMs.

assisting the model in aligning its output to the
expected format or logic of the task by recognis-
ing patterns in the input-output pairs and applying
these patterns to new, unseen data. Since the rep-
resentative examples resemble the different plausi-
ble styles of transformations, the CodeLLMs can
learn these patterns but might struggle to under-
stand other variations of transformations (e.g., De
Morgan’s laws).

H Execution-based Functional
Correctness

Functional correctness is assessed by running the
generated code against a set of test cases and check-
ing if the output matches the expected results. We
use the HumanEval (Python only), and HumanEval-
X (Zheng et al., 2023) benchmarks to measure the
correlation with functional correctness. We filter
based on the popularity of the programming lan-
guage and choose to evaluate on Java, C++, Python,
and JavaScript languages. We compute the Pearson,
Spearman, and Kendall-Tau correlation coefficients
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Model Size AP

Generic

Llama2
7B 55.52

13B 58.53

Code-Specific

CodeLlama
7B 80.20

13B 85.92
34B 92.54

StarCoder2
3B 71.84
7B 56.14

15B 97.81

Table 7: Two-shot with one SP and SA demonstration
example inserted into the original prompt. By including
examples, few-shot prompts offer more context about
analysing and comparing code snippets. This helps the
model focus on relevant aspects like logic flow, variable
usage, and output rather than superficial differences in
syntax or formatting.

as Pearson captures linear relationships, while the
other two capture ordinal relationships, which may
be non-linear. Section B provides an overview of
different correlation metrics. Table 9 shows correla-
tion coefficients of different metrics with the func-
tional correctness on HumanEval for multiple lan-
guages. We notice C++ and Javascript have lower
correlation scores than Python and Java. Python
and Java are primarily object-oriented languages,
while C++ supports both object-oriented and func-
tional programming styles. JavaScript, although
object-oriented, has a strong functional program-
ming influence. Generating code that effectively
utilizes functional programming constructs can be
more challenging for models trained primarily on
object-oriented codebases.

I SeqCoBench Transformation Examples

Model Size AP

Generic

Llama2
7B 37.51
13B 40.55

Code-Specific

CodeLlama
7B 36.13
13B 68.29
34B 62.58

StarCoder2
3B 39.28
7B 34.85
15B 73.93

Table 8: Zero-shot chain-of-thought results by adding
“Let’s think step by step” to the original prompt. By
prompting the model to think step-by-step, Zero-shot
CoT prompting leverages the model’s inherent rea-
soning abilities. We can observe that Zero-shot CoT
prompting has comparable performance with the stan-
dard zero-shot prompting.
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Type Metric Java C++ Python JavaScript
τ rs rp τ rs rp τ rs rp τ rs rp

Match-Based

Rouge1 0.4982 0.3992 0.3903 0.2466 0.3390 0.3286 0.3857 0.3389 0.3284 0.2594 0.2664 0.2360
Rouge2 0.4569 0.3417 0.3273 0.2273 0.2963 0.2961 0.3457 0.2747 0.2686 0.1888 0.2390 0.1786
RougeL 0.4778 0.3953 0.3880 0.2454 0.3265 0.3235 0.3607 0.3320 0.3248 0.2012 0.2541 0.2107
Meteor 0.5576 0.4337 0.4222 0.2714 0.3392 0.3217 0.4428 0.4189 0.4124 0.3019 0.3660 0.3425
ChrF 0.5576 0.4223 0.4040 0.3257 0.3647 0.3576 0.4306 0.3808 0.3727 0.3088 0.3551 0.3298
BLEU 0.5148 0.4137 0.4005 0.2565 0.2986 0.2914 0.4049 0.3560 0.3499 0.2970 0.2970 0.2703
CrystalBLEU 0.5145 0.4145 0.4016 0.2519 0.2953 0.2877 0.4027 0.3562 0.3502 0.2949 0.2945 0.2682
CodeBLEU 0.4990 0.3458 0.3417 0.2200 0.1600 0.1630 0.3806 0.3219 0.3195 0.3080 0.2643 0.2271

LLM-Based
CodeScore 0.3061 0.2686 0.2865 0.1253 0.1074 0.0962 0.2951 0.2936 0.3012 0.1793 0.1605 0.1498
BERTScore 0.4977 0.3707 0.3782 0.2391 0.2969 0.2954 0.3550 0.3106 0.2971 0.2357 0.2756 0.2465
CodeBERTScore 0.5798 0.4080 0.4130 0.3389 0.3473 0.3478 0.4488 0.3817 0.3953 0.3521 0.3227 0.3739

Table 9: Current LLM-based metrics, like CodeBERTScore and CodeScore, show minimal correlation with the
execution-based functional correctness on HumanEval across multiple languages. No metric exceeds an average
correlation coefficient of r = 0.31, highlighting a significant opportunity for developing better metrics.

Original

def binary_search(item_list,item):
first = 0
last = len(item_list)-1
found = False
while( first<=last and not found):

mid = (first + last)//2
if item_list[mid] == item :

found = True
else:

if item < item_list[mid]:
last = mid - 1

else:
first = mid + 1

return found

Dead code insertion

def binary_search(item_list, item):
first = 0
for _i_3 in range(0):

first = 0
last = len(item_list) - 1
found = False
while first <= last and not found:

mid = (first + last) // 2
if item_list[mid] == item:

found = True
else:

if item < item_list[mid]:
last = mid - 1

else:
first = mid + 1

return found

For loop →While loop

def binary_search(item_list, item):
first = 0
last = len(item_list) - 1
found = False
while first <= last and not found:

mid = (first + last) // 2
if item_list[mid] == item:

found = True
else:

if item < item_list[mid]:
last = mid - 1

else:
first = mid + 1

return found

Operand swap

def binary_search(item_list, item):
first = 0
last = len(item_list) - 1
found = False

while last >= first and not found:

mid = (first + last) // 2
if item_list[mid] == item:

found = True
else:

if item < item_list[mid]:
last = mid - 1

else:
first = mid + 1

return found

Rename variables (CB)

def binary_search(item_list, item):
first = 0
last = len(item_list) - 1
found = False
while first <= last and not found:

first2 = (first + last) // 2

if item_list[ first2 ] == item:

found = True
else:

if item < item_list[ first2 ]:

last = first2 - 1

else:

first = first2 + 1

return found

Rename variables (Naive)

def binary_search(item_list, item):
first = 0
last = len(item_list) - 1
found = False
while first <= last and not found:

VAR_0 = (first + last) // 2

if item_list[ VAR_0 ] == item:

found = True
else:

if item < item_list[ VAR_0 ]:

last = VAR_0 - 1

else:

first = VAR_0 + 1

return found

Rename variables (RN)

def binary_search(item_list, item):
first = 0
last = len(item_list) - 1
found = False
while first <= last and not found:

ztc = (first + last) // 2

if item_list[ ztc ] == item:

found = True
else:

if item < item_list[ztc]:

last = ztc - 1

else:

first = ztc + 1

return found

Figure 3: Examples of the output of semantic-preserving transformations.
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Figure 4: We observe peaks in scores above 0.9 for SA transformations, leading to incorrect semantic similarity
calculations. When we consider all the metrics, we observe that the probability distribution of scores for semantic-
altering labels is often higher than for SP labels.

Transformation N-gram-matching N-gram-matching w/ code-related features

Type Category Name Rouge1 Rouge2 RougeL Meteor ChrF BLEU CrystalBLEU CodeBLEU

SA

AOM

+→− 2.70 5.70 2.70 2.63 6.35 7.46 7.03 26.44
−→ + 2.33 4.96 2.33 3.57 5.43 13.08 11.56 18.81
÷→× 2.41 5.23 2.41 2.49 3.88 6.79 7.72 23.25
×→÷ 5.13 8.53 5.13 3.94 6.04 14.51 12.82 46.31

BOM
False→ True 1.86 3.90 1.86 2.73 3.96 7.84 10.56 16.84
True→ False 1.84 3.86 1.84 2.71 4.37 7.77 10.49 24.57

COM

== → != 2.69 5.68 2.69 2.81 4.00 8.02 10.46 25.46
!= → == 1.07 2.22 1.07 1.08 2.65 2.91 3.01 9.23
>→ < 3.03 5.11 3.03 3.58 7.54 12.95 11.21 25.90
<→ > 3.02 5.01 3.02 2.34 7.19 6.99 6.00 21.38

DCS Dissimilar Code Inject 29.34 14.84 25.02 27.92 13.11 6.33 6.32 5.45

IOM
is→ is not 0.86 3.16 0.86 2.16 2.96 4.87 5.62 17.48
is not→ is 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

LOM
and → or 1.29 2.67 1.29 3.86 3.50 11.20 12.45 28.65
or→ and 1.40 2.88 1.40 2.71 2.31 7.57 8.14 10.78

SP

DCI Dead Code Insert 22.26 27.94 20.59 21.67 31.55 33.34 33.26 49.88

LT for ↔ while Loop 19.13 35.11 28.82 26.28 26.00 43.63 45.20 46.70

OS Operand Swap 10.75 19.42 13.29 16.57 30.10 31.19 30.89 54.26

RV

Rename Variable Cb 16.62 30.72 16.10 23.85 31.57 42.46 41.95 44.16
Rename Variable Naive 16.57 30.62 16.01 23.67 30.70 42.16 41.15 43.56
Rename Variable Rn 16.60 30.67 16.04 23.72 33.28 42.26 41.65 43.75

Table 10: Transformation-wise breakdown for Match-based metrics in the zero-shot setting using Area under the
Recall curve (AURC) metric.
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J Other Work

Robustness against adversarial attacks. There
is a strong connection between adversarial attacks
and semantic transformations for code. Both in-
volve minor changes to a code input that pre-
serve the original meaning or functionality but
cause a machine learning model to make incor-
rect predictions. We derive inspiration from pre-
vious works in software engineering to leverage
semantic-preserving code transformations. For in-
stance, Rabin et al. (2021) highlights the impor-
tance of considering semantics-preserving trans-
formations when building reliable neural program
analysers, and Compton et al. (2020) rely on data
augmentation methods based on variable renaming
to design efficient models.

A few works focused on addressing the ro-
bustness problem for the code on attacks and de-
fences. Miceli Barone et al. (2023) demonstrates
how LLMs understand code semantics by approxi-
mating α-equivalence of Python code and suggest
improved defences against identifier substitution
attacks. Yang et al. (2022) argue that adversarial
examples should preserve natural semantics in ad-
dition to operational semantics. To identify vulner-
abilities of Code-LLMs to adversarial attacks, Jha
and Reddy (2023) introduces CodeAttack that gen-
erates adversarial samples for a code fragment, and
Wang et al. (2023b) designs a robustness evalua-
tion benchmark and evaluates Code-LLMs on their
ability to generate equivalent code across perturbed
prompts while we aim to comprehend and analyze
existing code.

Novelty of our approach compared to existing
works

We clarify the motivation and real-world applica-
bility of the proposed task setting.
Motivation. By using transformations that pre-
serve semantics, we can better isolate the LLMs
ability to understand the code’s underlying mean-
ing rather than just its surface-level structure. So,
essentially, the task becomes more about detecting
equivalence despite superficial differences rather
than recognizing that two entirely different imple-
mentations achieve the same result. In addition, it
allows for a more nuanced sensitivity analysis of
the model’s behaviour, helping to identify which
types of code changes are most likely to affect the
model’s judgment of equivalence. Our focus is
on small lexical changes that preserve semantics

or the other way around, not on general control
flow restructuring, as even with these small lexi-
cal changes, LLMs do not do well. We can most
certainly expect them to be able to tackle full re-
structuring at the moment. We are deepening and
further showing issues with LLMs in a similar style
to Miceli Barone et al. (2023) but much more ex-
tensively and comprehensively.

K Code Clone Detection and Code
Obfuscation

While there is a degree of overlap in spirit between
the transformations appearing in code clone detec-
tion datasets and our benchmark, our primary goal
is different. As stated above, capturing functional
equivalence is a harder task and lets us evaluate
how LLMs disentangle syntax from semantics. We
note that our transformations are designed to be the
simplest as possible (e.g., flipping an operator) to
detect how much LLMs get confused by transfor-
mations that are trivial for us humans. This is a
design choice that lets us carry on a finer grain anal-
ysis that is not possible with current benchmarks
such as BigCloneBench (Svajlenko et al., 2014)
and, as such, should not be rated as not substantial.

Current code clone detection benchmarks, e.g.,
BigCloneBench, propose a different task than ours:
they are designed to identify code fragments that
share the same high-level functionality, but that
can be very different from semantically equivalent
problems. For example, two functions that can have
different side-effects, or even having different input
and output types are still considered “clones”. Our
semantic equivalence definition is more stringent
and better captures what LLMs understand about
code execution. Moreover, Krinke and Ragkhitwet-
sagul (2022) highlight how many clone pairs are
falsely tagged as actual clones in BigCloneBench.

We remark that our objective is not to create
a dataset to improve LLMs capabilities to detect
clones in the real world. Instead, we want a con-
trolled environment where we can exactly under-
stand which simple transformations are able to con-
fuse LLMs by discriminating syntax from seman-
tics. We also argue that simple transformations
can be common in real-world scenarios, e.g., out
of simple typos and wrong copy-pasting actions
that are common in programming. While having
real-world large code repositories would be nice, it
is a non-trivial task to collect the samples (for e.g.,
from GitHub) that can be validated using unit tests
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and at the same time allow us to have a controlled
experimental setting. Hence, we rely on existing
benchmarks which have samples tested by human
programmers for functional correctness to build
our benchmark.

We further note that our approach differs from
code obfuscation approaches as the main difference
is that the former intentionally reduces readability
(up to the point that the code can be hard for hu-
mans to follow). Our semantic transformations, on
the other hand, want to preserve human readability
and intelligibility. Our transformations are simple
by design and hard enough to show certain failure
modes of LLMs that are commonly used and de-
ployed. As we state in Section 4 we design them
to make the simplest change in syntax or semantics
that allows us to measure that code LLMs struggle
to disentangle these two aspects. This is a feature,
not a bug. Having more complex transformations
(e.g., iterative vs recursive implementations, loop
unrolling, etc.) would simply imply that LLMs
failing on simple transformations are also failing
on more complex ones (but without the simplest
ones, we would not know what is the smallest per-
turbation that confuses the LLMs).

L Examples

When evaluating LLMs for their ability to classify
code snippets as functionally equivalent or not, it
is essential to consider a variety of examples that
highlight both the strengths and limitations of these
models. Below, we present a selection of examples
that demonstrate scenarios where LLMs may find
it easy or hard to determine code equivalence for
the different transformations in SeqCoBench.
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Dead Code Insertion
Easy

Reference
def count_ways(n):

A = [0] * (n + 1)
B = [0] * (n + 1)
A[0] = 1
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n+1):

A[i] = A[i - 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]

return A[n]

Transformed
def count_ways(n):

A = [0] * (n + 1)
B = [0] * (n + 1)
A[0] = 1
while False:

B[0] = 0
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n + 1):

A[i] = A[i - 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]

return A[n]

Model Prediction

Llama2-7B YESË

Llama2-13B YESË

CodeLlama-7B YESË

CodeLlama-13B YESË

CodeLlama-34B YESË

StarCoder2-3B YESË

StarCoder2-7B NOé

StarCoder2-15B YESË

Hard

Reference
def check_min_heap(arr , i):

if 2 * i + 2 > len(arr):
return True

left_child = (arr[i] <= arr[2 * i + 1]) and
↪→ check_min_heap(arr , 2 * i + 1)

right_child = (2 * i + 2 == len(arr)) or (
↪→ arr[i] <= arr[2 * i + 2] and
↪→ check_min_heap(arr , 2 * i + 2))

return left_child and right_child

Transformed
def check_min_heap(arr , i):

if 2 * i + 2 > len(arr):
return True
_i_4 = 0
while _i_4 > _i_4:

right_child = (2 * i + 2 == len(arr)
↪→ ) or (
arr[i] <= arr[2 * i + 2] and

↪→ check_min_heap(arr , 2 *
↪→ i + 2)

)
left_child = (arr[i] <= arr[2 * i + 1]) and

↪→ check_min_heap(arr , 2 * i + 1)
right_child = (2 * i + 2 == len(arr)) or (

arr[i] <= arr[2 * i + 2] and
↪→ check_min_heap(arr , 2 * i + 2)

)
return left_child and right_child

Model Prediction

Llama2-7B YESË

Llama2-13B YESË

CodeLlama-7B YESË

CodeLlama-13B NOé

CodeLlama-34B YESË

StarCoder2-3B NOé

StarCoder2-7B NOé

StarCoder2-15B NOé

Figure 5: In the easy example, the function uses a loop to populate these arrays according to specific recurrence
relations, ultimately returning the value of A[n]. In the transformed version of the code, an unnecessary while False
statement is included, which does not affect the functionality but disrupts code clarity. Model predictions indicate
that various LLMs successfully recognize the function’s correctness, while one variant of StarCoder2 does not. In
the hard example, the transformed version attempts to introduce a loop but retains the recursive checks for left and
right children, albeit with some redundancy in the definitions of left_child and right_child. Additionally, the
model predictions indicate varying success rates of different LLMs in recognizing the min-heap structure.
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For-While Loop

Easy

Reference
def solve(s):

flg = 0
idx = 0
new_str = list(s)
for i in s:

if i.isalpha ():
new_str[idx] = i.swapcase ()
flg = 1

idx += 1
s = ""
for i in new_str:

s += i
if flg == 0:

return s[len(s)::-1]
return s

Transformed
def solve(s):

flg = 0
idx = 0
new_str = list(s)
_i_i = 0
while _i_i < len(s):

i = s[_i_i]
if i.isalpha ():

new_str[idx] = i.swapcase ()
flg = 1

idx += 1
_i_i += 1

s = ""
for i in new_str:

s += i
if flg == 0:

return s[len(s) :: -1]
return s

Model Prediction

Llama2-7B YESË

Llama2-13B YESË

CodeLlama-7B YESË

CodeLlama-13B YESË

CodeLlama-34B YESË

StarCoder2-3B YESË

StarCoder2-7B YESË

StarCoder2-15B NOé

Hard

Reference
def ascii_value_string(str1):

for i in range(len(str1)):
return ord(str1[i])

Transformed
def ascii_value_string(str1):

i = 0
while i < len(str1):

return ord(str1[i])
i += 1

Model Prediction

Llama2-7B YESË

Llama2-13B YESË

CodeLlama-7B YESË

CodeLlama-13B NOé

CodeLlama-34B YESË

StarCoder2-3B YESË

StarCoder2-7B NOé

StarCoder2-15B NOé

Figure 6: In the easy example, it defines a function that processes a string by swapping the case of its alphabetic
characters while preserving the order of non-alphabetic characters. The transformed version of the function uses
a while loop instead of a for loop to achieve the same functionality. Most LLMs confirm its correctness. In the
hard example, the original implementation uses a for loop to iterate through the string, while the transformed
version employs a while loop. Model predictions indicate that various LLMs, including Llama2-7B, Llama2-13B,
CodeLlama-7B, and CodeLlama-34B, successfully recognize the function’s equivalence, whereas CodeLlama-13B,
StarCoder2-7B, and StarCoder2-15B do not.
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Operand Swap

Easy

Reference
import math

def poly(xs: list , x: float):
return sum([coeff * math.pow(x, i) for i,

↪→ coeff in enumerate(xs)])

def find_zero(xs: list):
begin , end = -1., 1.
while poly(xs, begin) * poly(xs , end) > 0:

begin *= 2.0
end *= 2.0

while end - begin > 1e-10:
center = (begin + end) / 2.0
if poly(xs , center) * poly(xs, begin) >

↪→ 0:
begin = center

else:
end = center

return begin

Transformed
import math

def poly(xs: list , x: float):
return sum([coeff * math.pow(x, i) for i,

↪→ coeff in enumerate(xs)])

def find_zero(xs: list):
begin , end = -1.0, 1.0
while 0 < poly(xs, begin) * poly(xs, end):

begin *= 2.0
end *= 2.0

while end - begin > 1e-10:
center = (begin + end) / 2.0
if poly(xs , center) * poly(xs, begin) >

↪→ 0:
begin = center

else:
end = center

return begin

Model Prediction

Llama2-7B YESË

Llama2-13B YESË

CodeLlama-7B YESË

CodeLlama-13B YESË

CodeLlama-34B YESË

StarCoder2-3B YESË

StarCoder2-7B YESË

StarCoder2-15B NOé

Hard

Reference
def triangle_area(a, b, c):

if a + b <= c or a + c <= b or b + c <= a:
return -1

s = (a + b + c)/2
area = (s * (s - a) * (s - b) * (s - c)) **

↪→ 0.5
area = round(area , 2)
return area

Transformed
def triangle_area(a, b, c):

if a + b <= c or a + c <= b or a >= b + c:
return -1

s = (a + b + c) / 2

area = (s * (s - a) * (s - b) * (s - c)) **
↪→ 0.5

area = round(area , 2)
return area

Model Prediction

Llama2-7B YESË

Llama2-13B YESË

CodeLlama-7B YESË

CodeLlama-13B YESË

CodeLlama-34B YESË

StarCoder2-3B NOé

StarCoder2-7B NOé

StarCoder2-15B NOé

Figure 7: In the easy example, the transformed version of the code slightly modifies the conditions in the function
for clarity. Most models, except for StarCoder2-15B, successfully recognize the code’s functionality. In the hard
example, an error in the conditional check is noted, where a >= b + c should be corrected to b + c <= a, in the
transformed version. Model predictions indicate that several models successfully identify the functional equivalence
aspect, while others (StarCoder2 variants) do not.

6903



Rename-Variable (CB) Example

Easy

Reference
import math

def poly(xs: list , x: float):
return sum([coeff * math.pow(x, i) for i,

↪→ coeff in enumerate(xs)])

def find_zero(xs: list):
begin , end = -1., 1.
while poly(xs, begin) * poly(xs , end) > 0:

begin *= 2.0
end *= 2.0

while end - begin > 1e-10:
center = (begin + end) / 2.0
if poly(xs , center) * poly(xs, begin) >

↪→ 0:
begin = center

else:
end = center

return begin

Transformed
import math

def poly(xs: list , x: float):
return sum([coeff * math.pow(x, i) for i,

↪→ coeff in enumerate(xs)])

def find_zero(xs: list):
center2 , end = -1.0, 1.0
while poly(xs, center2) * poly(xs, end) > 0:

center2 *= 2.0
end *= 2.0

while end - center2 > 1e-10:
center = (center2 + end) / 2.0
if poly(xs , center) * poly(xs, center2)

↪→ > 0:
center2 = center

else:
end = center

return center2

Model Prediction

Llama2-7B YESË

Llama2-13B YESË

CodeLlama-7B YESË

CodeLlama-13B YESË

CodeLlama-34B YESË

StarCoder2-3B YESË

StarCoder2-7B YESË

StarCoder2-15B NOé

Hard

Reference
def triangle_area(a, b, c):

if a + b <= c or a + c <= b or b + c <= a:
return -1

s = (a + b + c)/2
area = (s * (s - a) * (s - b) * (s - c)) **

↪→ 0.5
area = round(area , 2)
return area

Transformed
def triangle_area(a, b2, c):

if a + b2 <= c or a + c <= b2 or b2 + c <= a
↪→ :
return -1

s = (a + b2 + c) / 2
area = (s * (s - a) * (s - b2) * (s - c)) **

↪→ 0.5
area = round(area , 2)
return area

Model Prediction

Llama2-7B YESË

Llama2-13B YESË

CodeLlama-7B YESË

CodeLlama-13B YESË

CodeLlama-34B NOË

StarCoder2-3B NOé

StarCoder2-7B NOé

StarCoder2-15B NOé

Figure 8: In the easy example, the transformed code modifies variable names for clarity without changing the
underlying logic. Model predictions indicate that several LLMs (Llama2 and CodeLlama) successfully handle
the task, while one (StarCoder2-15B) does not. In the hard example, the transformed version of the function uses
a different variable name for one of the sides (b2 instead of b) but maintains the same logic. Model predictions
indicate that various LLMs (Llama2 and CodeLlama) successfully solve the task, while others (StarCoder2) do not.
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Rename-Variable (Naive) Example

Easy

Reference
def text_match_two_three(text):

import re
patterns = 'ab{2,3}'
if re.search(patterns , text):

return 'Found␣a␣match!'
else:

return('Not␣matched!')

Transformed
def text_match_two_three(VAR_0):

import re
patterns = "ab{2,3}"
if re.search(patterns , VAR_0):

return "Found␣a␣match!"
else:

return "Not␣matched!"

Model Prediction

Llama2-7B YESË

Llama2-13B YESË

CodeLlama-7B YESË

CodeLlama-13B YESË

CodeLlama-34B YESË

StarCoder2-3B YESË

StarCoder2-7B YESË

StarCoder2-15B YESË

Hard

Reference
def all_Bits_Set_In_The_Given_Range(n,l,r):

num = (((1 << r) - 1) ^ ((1 << (l - 1)) - 1)
↪→ )

new_num = n & num
if (new_num == 0):

return True
return False

Transformed
def all_Bits_Set_In_The_Given_Range(n, l, VAR_0)

↪→ :
num = ((1 << VAR_0) - 1) ^ ((1 << (l - 1)) -

↪→ 1)
new_num = n & num
if new_num == 0:

return True
return False

Model Prediction

Llama2-7B YESË

Llama2-13B NOé

CodeLlama-7B YESË

CodeLlama-13B NOé

CodeLlama-34B YESË

StarCoder2-3B YESË

StarCoder2-7B NOé

StarCoder2-15B NOé

Figure 9: In the easy example, the transformed version of the function replaces the parameter name with VAR_0, but
the functionality remains unchanged. All the LLMs successfully predict the function’s behavior, indicating that they
recognize the code’s intent and structure. In the hard example, the function is transformed to use a variable VAR_0
instead of r, and various model predictions indicate whether they agree with the function’s expected output, with
some models confirming the correctness and others not.
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−→ +

Easy

Reference
def binomial_Coeff(n,k):

if k > n :
return 0

if k==0 or k ==n :
return 1

return binomial_Coeff(n-1,k-1) +
↪→ binomial_Coeff(n-1,k)

Transformed
def binomial_Coeff(n,k):

if k > n :
return 0

if k==0 or k ==n :
return 1

return binomial_Coeff(n+1,k-1) +
↪→ binomial_Coeff(n-1,k)

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B NOË

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B NOË

Hard

Reference
def count_ways(n):

A = [0] * (n + 1)
B = [0] * (n + 1)
A[0] = 1
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n+1):

A[i] = A[i - 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]

return A[n]

Transformed
def count_ways(n):

A = [0] * (n + 1)
B = [0] * (n + 1)
A[0] = 1
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n+1):

A[i] = A[i + 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]

return A[n]

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B YESé

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B YESé

Figure 10: In the easy example, the reference version correctly implements the recursive logic, returning 0 if k
is greater than n, 1 if k is 0 or equal to n, and otherwise summing two recursive calls. The transformed version
modifies the first recursive call to use n + 1 instead of n - 1, which alters the logic but retains the original base cases.
In terms of model predictions, various LLMs show differing capabilities in handling the transformed function, with
some successfully predicting the output while others do not. In the hard example, the function uses a loop to fill
these sequences based on specific recurrence relations. However, a transformation in the code erroneously modifies
the index in the calculation for A[i], changing it from A[i - 2] to A[i + 2], which likely leads to incorrect results.
Various LLMs produced erroneous classification, while one variant of StarCoder2 predicted correctly.

6906



+→−
Easy

Reference
def maximum_Sum(list1):

maxi = -100000
for x in list1:

sum = 0
for y in x:

sum+= y
maxi = max(sum ,maxi)

return maxi

Transformed
def maximum_Sum(list1):

maxi = -100000
for x in list1:

sum = 0
for y in x:

sum -= y
maxi = max(sum ,maxi)

return maxi

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B NOË

CodeLlama-34B NOË

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B NOË

Hard

Reference
def count_ways(n):

A = [0] * (n + 1)
B = [0] * (n + 1)
A[0] = 1
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n+1):

A[i] = A[i - 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]

return A[n]

Transformed
def count_ways(n):

A = [0] * (n - 1)
B = [0] * (n + 1)
A[0] = 1
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n+1):

A[i] = A[i - 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]

return A[n]

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B YESé

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B YESé

Figure 11: In the easy example, the function sums the inner lists’ elements and updates a maximum value in
the original version. The transformed version, however, subtracts the elements instead of adding them, which
fundamentally alters the function’s purpose. The model predictions indicate that various LLMs have some difficulty
in classifying them as functionally nonequivalent. In the hard example, the function initializes the base cases for A
and B, then iteratively fills these lists based on previously computed values to derive the total ways to reach the nth

step. The first version of the function allocates an array A of size n + 1, while the transformed version incorrectly
allocates A of size n - 1, which could lead to an index error. Model predictions indicate that various LLMs fail to
discern the function’s validity, with some exceptions.
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×→÷
Easy

Reference
def find_Volume(l,b,h):

return ((l * b * h) / 2)

Transformed
def find_Volume(l,b,h):

return ((l / b * h) / 2)

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B YESé

CodeLlama-34B NOË

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B NOË

Hard

Reference
def count_ways(n):

A = [0] * (n + 1)
B = [0] * (n + 1)
A[0] = 1
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n+1):

A[i] = A[i - 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]

return A[n]

Transformed
def count_ways(n):

A = [0] / (n + 1)
B = [0] * (n + 1)
A[0] = 1
A[1] = 0
B[0] = 0
B[1] = 1
for i in range(2, n+1):

A[i] = A[i - 2] + 2 * B[i - 1]
B[i] = A[i - 1] + B[i - 2]

return A[n]

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B YESé

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B YESé

Figure 12: In the easy example, the reference code correctly calculates the volume of a rectangular prism using the
formula (l × b× h), while the transformed code incorrectly divides l by b and then divides the result by 2, which
does not match the formula. In the hard example, the function sets base cases for A and B, then iteratively fills the
lists using previously computed values. The transformed code contains a minor error in the initialization of list A,
where the division operator is incorrectly used instead of the multiplication operator. The model predictions indicate
that various LLMs, unsuccessfully classify the function’s structure and logic, with some models showing varying
levels of accuracy.
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÷→×
Easy

Reference
def is_woodall(x):

if (x % 2 == 0):
return False

if (x == 1):
return True

x = x + 1
p = 0
while (x % 2 == 0):

x = x/2
p = p + 1
if (p == x):

return True
return False

Transformed
def is_woodall(x):

if (x % 2 == 0):
return False

if (x == 1):
return True

x = x + 1
p = 0
while (x % 2 == 0):

x = x*2
p = p + 1
if (p == x):

return True
return False

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B NOË

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B NOË

Hard

Reference
def div_even_odd(list1):

first_even = next((el for el in list1 if el
↪→ %2==0) ,-1)

first_odd = next((el for el in list1 if el
↪→ %2!=0) ,-1)

return (first_even/first_odd)

Transformed
def div_even_odd(list1):

first_even = next((el for el in list1 if el
↪→ %2==0) ,-1)

first_odd = next((el for el in list1 if el
↪→ %2!=0) ,-1)

return (first_even*first_odd)

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B YESé

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B NOË

Figure 13: In the easy example, the function checks if this count equals the modified value of x to determine if it is
a Woodall number. The transformed version incorrectly multiplies x by 2 in the loop instead of dividing, which
may lead to different results. Model predictions from various LLMs indicate varying success rates in identifying
the correctness of the function, with some models confirming the original function as valid while others question
the transformed version. In the hard example, it returns the result of dividing the first even number by the first odd
number in the original version, while the transformed version changes the operation to multiplication instead. The
model predictions indicate that various LLMs unsuccessfully classify the original and transformed functions, with
some discrepancies noted for certain versions of StarCoder2.
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>→ <

Easy

Reference
def find_Nth_Digit(p,q,N) :

while (N > 0) :
N -= 1;
p *= 10;
res = p // q;
p %= q;

return res;

Transformed
def find_Nth_Digit(p,q,N) :

while (N < 0) :
N -= 1;
p *= 10;
res = p // q;
p %= q;

return res;

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B NOË

CodeLlama-34B NOË

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B NOË

Hard

Reference
def rearange_string(S):

import heapq
from collections import Counter
ctr = Counter(S)
heap = [(-value , key) for key , value in ctr.

↪→ items()]
heapq.heapify(heap)
if (-heap [0][0]) * 2 > len(S) + 1:

return ""
ans = []
while len(heap) >= 2:

nct1 , char1 = heapq.heappop(heap)
nct2 , char2 = heapq.heappop(heap)
ans.extend ([char1 , char2])
if nct1 + 1: heapq.heappush(heap , (nct1

↪→ + 1, char1))
if nct2 + 1: heapq.heappush(heap , (nct2

↪→ + 1, char2))
return "".join(ans) + (heap [0][1] if heap

↪→ else "")

Transformed
def rearange_string(S):

import heapq
from collections import Counter
ctr = Counter(S)
heap = [(-value , key) for key , value in ctr.

↪→ items()]
heapq.heapify(heap)
if (-heap [0][0]) * 2 < len(S) + 1:

return ""
ans = []
while len(heap) >= 2:

nct1 , char1 = heapq.heappop(heap)
nct2 , char2 = heapq.heappop(heap)
ans.extend ([char1 , char2])
if nct1 + 1: heapq.heappush(heap , (nct1

↪→ + 1, char1))
if nct2 + 1: heapq.heappush(heap , (nct2

↪→ + 1, char2))
return "".join(ans) + (heap [0][1] if heap

↪→ else "")

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B YESé

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B YESé

StarCoder2-15B NOË

Figure 14: In the easy example, the transformed version incorrectly checks for N being less than 0, which would
lead to an infinite loop since N would never become negative. Some models successfully predict the output while
others do not. In the hard example, the transformation in the code changes the condition for returning an empty
string from > to <, affecting the validity check for the arrangement. The model predictions indicate that various
LLMs unsuccessfully recognize the function’s intent and structure, with the StarCoder2-15B model predicting
correctly.
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<→ >

Easy

Reference
def areEquivalent(num1 ,num2):

import math
def divSum(n):

sum = 1;
i = 2;
while(i * i <= n):

if (n % i == 0):
sum = (sum + i +math.floor(n / i

↪→ ));
i += 1;

return sum;
return divSum(num1) == divSum(num2);

Transformed
def areEquivalent(num1 ,num2):

import math
def divSum(n):

sum = 1;
i = 2;
while(i * i >= n):

if (n % i == 0):
sum = (sum + i +math.floor(n / i

↪→ ));
i += 1;

return sum;
return divSum(num1) == divSum(num2);

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B NOË

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B NOË

Hard

Reference
def find_length(string , n):

current_sum = 0
max_sum = 0
for i in range(n):

current_sum += (1 if string[i] == '0'
↪→ else -1)

if current_sum < 0:
current_sum = 0

max_sum = max(current_sum , max_sum)
return max_sum if max_sum else 0

Transformed
def find_length(string , n):

current_sum = 0
max_sum = 0
for i in range(n):

current_sum += (1 if string[i] == '0'
↪→ else -1)

if current_sum > 0:
current_sum = 0

max_sum = max(current_sum , max_sum)
return max_sum if max_sum else 0

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B YESé

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B YESé

Figure 15: In the easy example, the provided code defines a function which checks if two numbers are equivalent
based on the sum of their divisors. In the original code, the loop condition checks if i× i is less than or equal to n,
while in the transformed version, this condition is incorrectly changed to i× i being greater than or equal to n. The
model predictions indicate varying results from different LLMs regarding the equivalence of the two versions, with
some models affirming the equivalence and others disagreeing. In the hard example, the provided code defines a
function that calculates the maximum sum of a modified array derived from a binary string, where ‘0’ is treated
as +1 and ‘1’ as -1. The transformed version of the function incorrectly resets current_sum when it is positive
instead of negative, which alters its intended functionality. Various LLMs unsuccessfully predict the behavior of
both versions of the function, with some exceptions noted for StarCoder2-7B model.
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== → !=
Easy

Reference
def find_Rotations(str):

tmp = str + str
n = len(str)
for i in range(1,n + 1):

substring = tmp[i: i+n]
if (str == substring):

return i
return n

Transformed
def find_Rotations(str):

tmp = str + str
n = len(str)
for i in range(1,n + 1):

substring = tmp[i: i+n]
if (str != substring):

return i
return n

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B NOË

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B NOË

Hard

Reference
def find_length(string , n):

current_sum = 0
max_sum = 0
for i in range(n):

current_sum += (1 if string[i] == '0'
↪→ else -1)

if current_sum < 0:
current_sum = 0

max_sum = max(current_sum , max_sum)
return max_sum if max_sum else 0

Transformed
def find_length(string , n):

current_sum = 0
max_sum = 0
for i in range(n):

current_sum += (1 if string[i] != '0'
↪→ else -1)

if current_sum < 0:
current_sum = 0

max_sum = max(current_sum , max_sum)
return max_sum if max_sum else 0

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B YESé

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B YESé

StarCoder2-15B YESé

Figure 16: In the easy example, the provided code defines a function identifies the starting index of a substring in a
concatenated string, where the substring is a rotation of the original string. The original version checks for equality
between the original string and each substring derived from the concatenated string, returning the index when a
match is found. The transformed version, however, changes the condition to check for inequality, returning the
index when the substring does not match the original string. The model predictions indicate that various LLMs
have differing capabilities in recognizing the functionality of the original and transformed code, with some models
successfully identifying the original logic while others do not. In the hard example, the provided code snippets
define a function that calculates the maximum length of a contiguous subarray in a string, treating ‘0’s and ‘1’s
differently. In the original version, the function increments a counter for ‘0’s and decrements for ‘1’s, while the
transformed version does the opposite, incrementing for ‘1’s and decrementing for ‘0’s. The model predictions
indicate that all LLMs fail to recognize and validate the functionality of both versions of the code.
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!= → ==
Easy

Reference
def removals(arr , n, k):

def find_ind(key , i, n, k, arr):
ind = -1
start = i + 1
end = n - 1;
while (start < end):

mid = int(start + (end - start) / 2)
if (arr[mid] - key <= k):

ind = mid
start = mid + 1

else:
end = mid

return ind
ans = n - 1
arr.sort()
for i in range(0, n):

j = find_ind(arr[i], i, n, k, arr)
if (j != -1):

ans = min(ans , n - (j - i + 1))
return ans

Transformed
def removals(arr , n, k):

def find_ind(key , i, n, k, arr):
ind = -1
start = i + 1
end = n - 1;
while (start < end):

mid = int(start + (end - start) / 2)
if (arr[mid] - key <= k):

ind = mid
start = mid + 1

else:
end = mid

return ind
ans = n - 1
arr.sort()
for i in range(0, n):

j = find_ind(arr[i], i, n, k, arr)
if (j == -1):

ans = min(ans , n - (j - i + 1))
return ans

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B NOË

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B NOË

Hard

Reference
def div_even_odd(list1):

first_even = next((el for el in list1 if el
↪→ %2==0) ,-1)

first_odd = next((el for el in list1 if el
↪→ %2!=0) ,-1)

return (first_even/first_odd)

Transformed
def div_even_odd(list1):

first_even = next((el for el in list1 if el
↪→ %2==0) ,-1)

first_odd = next((el for el in list1 if el
↪→ %2==0) ,-1)

return (first_even/first_odd)

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B YESé

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B NOË

Figure 17: In the easy example, the transformed code contains a logical error in the condition that checks if j is -1,
which lead to incorrect results. The model predictions indicate that some models successfully recognize the logic
while others do not. In the hard example, the logic is flawed in the transformed version as it incorrectly searches for
the first odd number using the same condition as the even number, leading to an unexpected outcome. Most LLMs
recognize the original function’s equivalence wrongly, while some models flag the transformed version as incorrect.
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True→ False

Easy

Reference
def test_distinct(data):

if len(data) == len(set(data)):
return True

else:
return False;

Transformed
def test_distinct(data):

if len(data) == len(set(data)):
return False

else:
return False;

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B NOË

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B NOË

Hard

Reference
def is_valid_URL(str):

import re
regex = ("((http|https)://)(www.)?" +

"[a-zA-Z0 -9@:%._
↪→ \\+~#?&//=]" +

"{2 ,256}\\.[a-z]" +
"{2 ,6}\\b([-a-zA-Z0 -9@:%

↪→ " +
"._\\+~#?&//=]*)")

p = re.compile(regex)
if (str == None):

return False
if(re.search(p, str)):

return True
else:

return False

Transformed
def is_valid_URL(str):

import re
regex = ("((http|https)://)(www.)?" +

"[a-zA-Z0 -9@:%._
↪→ \\+~#?&//=]" +

"{2 ,256}\\.[a-z]" +
"{2 ,6}\\b([-a-zA-Z0 -9@:%

↪→ " +
"._\\+~#?&//=]*)")

p = re.compile(regex)
if (str == None):

return False
if(re.search(p, str)):

return False
else:

return False

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B YESé

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B YESé

StarCoder2-15B NOË

Figure 18: In the easy example, the original code correctly returns True if the length of data matches the length of
the set created from data, indicating all elements are unique; otherwise, it returns False. However, the transformed
code incorrectly returns False regardless of the input, failing to accurately determine the distinctness of the elements.
Model predictions from various LLMs show mixed results, with some models correctly identifying the original
function’s intent while others misinterpret the transformed version’s logic. In the hard example, the provided code
defines a function that uses regular expressions to validate whether a given string is a valid URL. The function
returns False if the input string is None, and it is supposed to return True if the string matches the regex pattern;
however, the transformed code incorrectly returns False for all cases. The model predictions indicate that various
LLMs, including Llama2 and CodeLlama, consistently incorrectly validate the function as equivalent except for the
StarCoder2-15B model, which predicts correctly.
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False→ True

Easy

Reference
def check_equilateral(x,y,z):

if x == y == z:
return True

else:
return False

Transformed
def check_equilateral(x,y,z):

if x == y == z:
return True

else:
return True

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B NOË

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B NOË

Hard

Reference
def binary_search(item_list ,item):

first = 0
last = len(item_list)-1
found = False
while( first <=last and not found):

mid = (first + last)//2
if item_list[mid] == item :

found = True
else:

if item < item_list[mid]:
last = mid - 1

else:
first = mid + 1

return found

Transformed
def binary_search(item_list ,item):

first = 0
last = len(item_list)-1
found = True
while( first <=last and not found):

mid = (first + last)//2
if item_list[mid] == item :

found = True
else:

if item < item_list[mid]:
last = mid - 1

else:
first = mid + 1

return found

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B YESé

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B YESé

StarCoder2-15B YESé

Figure 19: In the easy example, the code checks if a triangle is equilateral by comparing the lengths of its three
sides. If all sides are equal, it returns True, indicating an equilateral triangle. However, in the transformed code,
the else block always returns True regardless of the condition, making the function always return True, even for
non-equilateral triangles. The LLM predictions show inconsistent results, with some models correctly identifying
the issue in the transformed code while others do not. In the hard example, the provided code snippet implements
a binary search algorithm to determine if a specified item exists within a sorted list. The transformed version of
the code mistakenly sets the found variable to True at the start, which would cause the loop to exit immediately,
effectively rendering the search ineffective. All the LLMs incorrectly identify the transformed code as functionally
equivalent to the original code.
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and → or

Easy

Reference
def check_String(str):

flag_l = False
flag_n = False
for i in str:

if i.isalpha ():
flag_l = True

if i.isdigit ():
flag_n = True

return flag_l and flag_n

Transformed
def check_String(str):

flag_l = False
flag_n = False
for i in str:

if i.isalpha ():
flag_l = True

if i.isdigit ():
flag_n = True

return flag_l or flag_n

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B NOË

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B NOË

Hard

Reference
def is_tree_balanced(root):

class Node:
def __init__(self , data):

self.data = data
self.left = None
self.right = None

def get_height(root):
if root is None:

return 0
return max(get_height(root.left),

↪→ get_height(root.right)) + 1
if root is None:

return True
lh = get_height(root.left)
rh = get_height(root.right)
if (abs(lh - rh) <= 1) and is_tree_balanced(
root.left) is True and is_tree_balanced(

↪→ root.right) is True:
return True

return False

Transformed
def is_tree_balanced(root):

class Node:
def __init__(self , data):

self.data = data
self.left = None
self.right = None

def get_height(root):
if root is None:

return 0
return max(get_height(root.left),

↪→ get_height(root.right)) + 1
if root is None:

return True
lh = get_height(root.left)
rh = get_height(root.right)
if (abs(lh - rh) <= 1) or is_tree_balanced(
root.left) is True and is_tree_balanced(

↪→ root.right) is True:
return True

return False

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B YESé

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B YESé

Figure 20: In the easy example, the function returns True only if both conditions are met (using and) in the original
version, while the transformed version incorrectly uses or, meaning it will return True if either condition is satisfied.
The model predictions indicate varying responses from different LLMs regarding the correctness of the transformed
function, with some models confirming its validity and others rejecting it. In the hard example, the transformed
version of the code introduces a logical change in the balance condition, using an ‘or’ instead of an ‘and’ operator.
Most LLMs misclassify the code’s correctness except for one instance.
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or→ and

Easy

Reference
def count_char_position(str1):

count_chars = 0
for i in range(len(str1)):

if ((i == ord(str1[i]) - ord('A')) or
(i == ord(str1[i]) - ord('a'))):
count_chars += 1

return count_chars

Transformed
def count_char_position(str1):

count_chars = 0
for i in range(len(str1)):

if ((i == ord(str1[i]) - ord('A')) and
(i == ord(str1[i]) - ord('a'))):
count_chars += 1

return count_chars

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B NOË

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B NOË

Hard

Reference
def snake_to_camel(word):

import re
return ''.join(x.capitalize () or '_' for x

↪→ in word.split('_'))

Transformed
def snake_to_camel(word):

import re
return ''.join(x.capitalize () and '_' for x

↪→ in word.split('_'))

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B YESé

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B YESé

Figure 21: In the easy example, the condition checks if the index i is equal to the ASCII value of the character at that
index minus the ASCII value of ‘A’ or ‘a’ in the original version. In the transformed version, the logical operator
changes from ‘or’ to ‘and’, which alters the intended functionality. The model predictions indicate varying results
across different LLMs, with some confirming the correctness of the original code and others failing to recognize the
transformed version. In the hard example, the original implementation uses capitalize() to format each word
after splitting the input string by underscores, while the transformed version incorrectly uses ‘and’ instead of ‘or’,
which alters the intended behavior. The model predictions indicate that various LLMs struggle to determine the
function’s purpose, while one variant of StarCoder2 succeeds.
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is→ is not

Easy

Reference
def sort_mixed_list(mixed_list):

int_part = sorted ([i for i in mixed_list if
↪→ type(i) is int])

str_part = sorted ([i for i in mixed_list if
↪→ type(i) is str])

return int_part + str_part

Transformed
def sort_mixed_list(mixed_list):

int_part = sorted ([i for i in mixed_list if
↪→ type(i) is not int])

str_part = sorted ([i for i in mixed_list if
↪→ type(i) is str])

return int_part + str_part

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B YESé

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B NOË

StarCoder2-15B NOË

Hard

Reference
def is_tree_balanced(root):

class Node:
def __init__(self , data):

self.data = data
self.left = None
self.right = None

def get_height(root):
if root is None:

return 0
return max(get_height(root.left),

↪→ get_height(root.right)) + 1
if root is None:

return True
lh = get_height(root.left)
rh = get_height(root.right)
if (abs(lh - rh) <= 1) and is_tree_balanced(
root.left) is True and is_tree_balanced(

↪→ root.right) is True:
return True

return False

Transformed
def is_tree_balanced(root):

class Node:
def __init__(self , data):

self.data = data
self.left = None
self.right = None

def get_height(root):
if root is not None:

return 0
return max(get_height(root.left),

↪→ get_height(root.right)) + 1
if root is None:

return True
lh = get_height(root.left)
rh = get_height(root.right)
if (abs(lh - rh) <= 1) and is_tree_balanced(
root.left) is True and is_tree_balanced(

↪→ root.right) is True:
return True

return False

Model Prediction

Llama2-7B YESé

Llama2-13B YESé

CodeLlama-7B YESé

CodeLlama-13B YESé

CodeLlama-34B YESé

StarCoder2-3B YESé

StarCoder2-7B YESé

StarCoder2-15B YESé

Figure 22: In the easy example, the transformed version incorrectly filters for non-integer types instead of integers,
which disrupts the intended functionality. The model predictions indicate that several LLMs fail to correctly identify
the reference code’s functionality, while some versions of StarCoder2 infer correctly. In the hard example, the
transformed code contains a minor error in the get_height() function, where it incorrectly returns 0 when the root
is not None. The model predictions indicate that all LLMs fail in assessing for functional equivalence.
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