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Abstract

While diffusion models excel at conditionally
generating high-quality images, prior works
in discrete diffusion models were not evalu-
ated on conditional long-text generation. This
work addresses the limitations of prior dis-
crete diffusion models for conditional long-text
generation, particularly in the long abstractive
summarization task. Despite faster decoding
speeds compared to autoregressive methods,
previous discrete diffusion models failed on
the abstractive summarization task due to the
incompatibility between the backbone archi-
tectures and the random noising process. To
overcome these challenges, we introduce a
novel semantic-aware noising process that en-
ables Transformer backbones to handle long
sequences effectively. Additionally, we pro-
pose CrossMamba, an adaptation of the Mamba
model to the encoder-decoder paradigm, which
integrates seamlessly with the random absorb-
ing noising process. Our approaches outper-
form existing discrete diffusion models on three
benchmark summarization datasets: Gigaword,
CNN/DailyMail, and Arxiv, while also achiev-
ing much faster inference speed compared to
autoregressive models.

1 Introduction

Diffusion models are highly effective at generating
realistic, high-quality images and have garnered
considerable attention for their potential in pro-
ducing discrete data types like text (Austin et al.,
2021; Li et al., 2021; Lou et al., 2024), biologi-
cal sequences (Avdeyev et al., 2023), and graphs
(Sun and Yang, 2023; Vignac et al., 2022). Un-
like autoregressive (AR) methods, diffusion-based
models are not limited to sequential data gener-
ation, which could enhance long-term planning,
controllable generation, and sampling speed. How-
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Figure 1: In contrast to conventional discrete diffusion
models, we feed the full target sequence through the
encoder to obtain attention scores, reflecting the relative
importance of each token to the target sentence’s overall
semantic meaning, and use those scores to alter the
absorbing probability. The higher the attention scores,
the lower the probability it is absorbed to [MASK] token,
which is denoted as [M].

ever, discrete diffusion methods currently underper-
form compared to AR models (Austin et al., 2021;
Gulrajani and Hashimoto, 2024; He et al., 2023;
Lou et al., 2024), particularly in the domain of lan-
guage modeling. Recent methods aim to improve
the framework by applying continuous diffusion
to token embeddings (Gong et al., 2022; Li et al.,
2022; Strudel et al., 2022; Dieleman et al., 2022)
or logits (Han et al., 2022; Mahabadi et al., 2023),
necessitating complex rounding schemes to con-
vert continuous vectors into discrete tokens. These
approaches also require numerous sampling itera-
tions, resulting in slower performance compared
to autoregressive models. For example, the Dif-
fuSeq model (Gong et al., 2022) is significantly
slower than a similarly scaled autoregressive base-
line. Another research direction focuses on dif-
fusion processes directly in discrete state spaces
(Hoogeboom et al., 2022; Austin et al., 2021; He
et al., 2023; Zheng et al., 2023), but this area is less
explored and often produces inferior results in text
generation. Consequently, despite their potential
advantages in planning and controllable generation,
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diffusion models still face challenges in matching
the efficiency and performance of autoregressive
models in text generation tasks.

Furthermore, while discrete diffusion methods
theoretically could enhance the efficiency in long-
sequence processing, the capability of discrete dif-
fusion models for conditional long-text generation
tasks such as abstractive summarization remains
underexplored. The task of summarizing long doc-
uments presents unique complexities compared to
shorter texts. Long documents often encompass
multiple ideas, subtopics, and supporting details,
making it challenging to identify and distill the
most salient information into a coherent summary.
In this work, we find out that prior works in discrete
diffusion models completely fail on abstractive text
summarization, as shown later in the section. 4,
due to the random absorbing noising process from
D3PM (Austin et al., 2021) because the task re-
quires a structured manner in language modeling.

Additionally, to tackle that problem, we propose
a novel forward process - A semantic-aware nois-
ing process, that utilizes the Transformer encoder-
decoder architecture to force the model to gener-
ate important words first, shifting the language
modeling paradigm from random to important-
information-first modeling. We also introduce
CrossMamba to leverage Mamba (Gu and Dao,
2023) for encoder-decoder architecture, which is
well-suited for the random noising process and
takes advantage of Mamba’s inherent efficiency
for scaling to long sequences. By introducing the
new decoding algorithm and the noising scheduler,
our new framework can effectively model arbitrar-
ily long textual sequences with linear processing
time.

In summary, our contributions are:

• We introduce the problem of prior discrete
diffusion frameworks in the long sequence-to-
sequence task.

• We propose Semantic-Aware Noising Process,
a novel noise scheduler, that supports the
Transformer backbone to conditionally gener-
ate long sequences in an organized manner.

• We propose CrossMamba, a conditioning
method that leverages Mamba to encoder-
decoder architecture with outstanding speed
in long contexts.

• We conduct extensive experiments on three
common abstractive text summarization

benchmarks, i.e. Gigaword, CNN/DailyMail,
and Arxiv, and achieve state-of-the-art results
compared to other discrete diffusion models.
Furthermore, our framework outperforms au-
toregressive and continuous diffusion models
in terms of decoding time.

2 Related Works

2.1 Discrete Diffusion Models

The application of diffusion modeling to discrete
data can be categorized into two main groups. The
first group consists of methods that embed discrete
structures into a continuous space and then apply
Gaussian diffusion (Chen et al., 2022; Dieleman
et al., 2022; Gulrajani and Hashimoto, 2024; Han
et al., 2022; Li et al., 2022; Strudel et al., 2022;
Lovelace et al., 2024).

Methods that define a diffusion process directly
on discrete structures have greater potential for sub-
stantial improvements in speed. The D3PM frame-
work (Austin et al., 2021) introduces a Markov
forward process by the multiplication of transition
matrices over discrete time steps. Extending this
framework to continuous time, as done in Eq. 1,
utilizes continuous time Markov chain (CTMC)
theory (Campbell et al., 2022). The CTMC frame-
work further generalizes the score-matching per-
spective on diffusion modeling (Song and Ermon,
2019) to discrete data (Lou et al., 2024; Sun et al.,
2022). Notably, SEDD (Lou et al., 2024) integrates
score-based approaches with ELBO maximization,
allowing for effective likelihood-based training of
score-based models.

2.2 Abstractive Text Summarization

Abstractive summarization involves compressing
a longer input text into a shorter output summary
that retains the essential information and main ideas
using new phrases and sentences rather than sim-
ply extracting key phrases or sentences from the
original content. Transformer-based models have
dominated this field due to the ability to capture
long-range dependencies and contextual relation-
ships within the text, thanks to self-attention mech-
anism (Liu and Lapata, 2019; Lewis et al., 2019;
Zhang et al., 2020). However, these models fail on
long abstractive summarization benchmarks due to
quadratic complexity of self-attention block, which
limits the number of tokens these models can han-
dle (Keles et al., 2022). Consequently, recent works
have attempted to address this issue by incorporat-
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ing new attention mechanisms (Guo et al., 2022;
Zaheer et al., 2021). Our work tackles this prob-
lem by leveraging the linear time complexity of the
Mamba model while also maintaining comparable
performance with Transformer-based models on
summarization benchmarks.

3 Methodology

3.1 State-Space Models
A state-space model represents a system’s dynam-
ics using a set of input, output, and state vari-
ables defined through linear differential or differ-
ence equations involving system matrices (Brogan,
1974; Gu et al., 2022; Fu et al., 2023). The model
computes the output by applying the state and in-
put variables to the output equation involving the
system matrices. Mamba (Gu and Dao, 2023),
which belongs to the family of state-space models,
has demonstrated significant capability in handling
long sequences across a wide range of application
domains. For instance, VisionMamba (Zhu et al.,
2024) effectively leverages the Mamba kernel to
encode images, achieving robust performance in
image classification tasks. In the video domain,
recent works (Chen et al., 2024; Liu et al., 2024)
demonstrate Mamba’s proficiency in managing im-
age classification and complex spatiotemporal dy-
namics, offering both superior performance and fa-
vorable efficiency-performance trade-offs. In sum-
marization task, we make the first attempt to inte-
grate Mamba model to solve this complex language
understanding task, competing with Transformer-
based models.

3.2 Diffusion Models
Diffusion models are trained to progressively re-
verse a forward corruption process q that adds noise
to clean data x drawn from the distribution q(x),
generating latent variables zt for t ∈ [0, 1] that rep-
resent increasingly noisy versions of x (Ho et al.,
2020; Sahoo et al., 2023; Sohl-Dickstein et al.,
2015; Song et al., 2020). The standard forward
process for continuous x is defined as:

zt =
√
αtx+

√
1− αtϵ (1)

where ϵ ∼ N (0, I) and αt is a noise schedule that
decreases monotonically with t. The reverse dif-
fusion model pθ, parameterized over x and zt, is
trained to maximize a variational lower bound on
the log-likelihood (ELBO). With T discretization
steps, defining s(i) = (i−1)

T and t(i) = i
T , and

using DKL[·] to represent the Kullback-Leibler di-
vergence, the Negative ELBO (NELBO) is given
by (Sohl-Dickstein et al., 2015):

Lvb = Eq

[
− log pθ(x|zt(0))

]

+
T∑

i=1

DKL

[
q(zs(i)|zt(i),x) ∥ pθ(zs(i)|zt(i))

]

+DKL

[
q(zt(T )) ∥ pθ(zt(T ))

]

For simplicity, we omit i from t(i) and s(i) in the
following discussions; generally, s will denote the
time step prior to t.

3.3 Proposed Method
RDMs (Zheng et al., 2023) demonstrate that the
multinominal diffusion model (Hoogeboom et al.,
2021) does not decode iteratively for further refine-
ment, making it infeasible to generate sequences in
a structured strategy. Therefore, in this study, we
focus on the absorbing discrete diffusion (Austin
et al., 2021). To address the aforementioned is-
sues of diffusion discrete Language Model for long
text summarization, we (i) propose a novel forward
process, the Semantic-aware Noising Process intro-
duced in the section. 3.4, that helps the Transformer
encoder-decoder architecture overcome the limita-
tion of conditionally generating long sequences,
and (ii) develop a new backbone architecture based
on Mamba, Cross-Mamba introduced in the sec-
tion. 3.5, which is well-suited for the random nois-
ing process and takes advantage of Mamba’s inher-
ent efficiency for scaling to long sequences.

Our model is broadly explained in Figure 2. We
follow the design from SeqDiffuSeq (Yuan et al.,
2022) promoting the encoder-decoder architecture
to model the input and output text sequences. In
detail, we use the encoder to process the input
sequences source and the decoder to model the
noisy target sequence. We inject time step infor-
mation by adding time step embedding t. Using
the encoder-decoder architecture offers computa-
tional convenience during generation because the
input sequences source only require one forward
computation through the encoder network during
the entire reverse process. Given that the reverse
process requires thousands of iterations to produce
high-quality output sequences, the computational
resource savings can be substantial.

3.4 Semantic Aware Noising Process
The D3PM framework (Austin et al., 2021) in-
troduces a Markov forward process q(zt|zt−1) =
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Figure 2: The model consists of an encoder and a decoder. The encoder processes the input sequence (source),
while the decoder handles the noisy target sequence. Time step information is incorporated by adding time step
embeddings t. The semantic-aware pipeline is illustrated by the blue dashes. A [CLS] token C is appended to both
the source and target sequences and then passed through the encoder. The similarity loss Lcls is computed using the
two corresponding [CLS] tokens Cs and Ct (detach). Additionally, the attention scores a from the target sequence
are used in the noising process. The decoder can be standard transformer blocks that incorporate conditioning via
cross-attention or CrossMamba blocks integrating conditioning with bidirectional CrossMamba.

Cat(zt;Qtzt−1) which is defined by the multipli-
cation of matrices Qt over T discrete time steps.
This process results in the following marginal dis-
tributions:

q(zt|x) = Cat(zt;QtQt−1 · · ·Q1x)

These marginals represent the discrete-state form of
equation 1. Specifically, each token in the sequence
either remains unchanged or transitions to [MASK]
with a certain probability β. The transition matrix
at time step t is defined as:

[Qt]ij =





1 if i = j = [M ],

1− βt if i = j ̸= [M ],

βt if j = [M ], i ̸= [M ]

(2)

As the target sequence grows longer, the random
noising process makes the conditional probability
of generating tokens unpredictable. In Diffusion-
BERT (He et al., 2023), the spindle noise schedule
is introduced to estimate the probability that the i-th
token remains unchanged at step t. This probabil-
ity, denoted as αi

t, is computed using the following
equation αi

t = 1− t
T −S(t)·H̃(xio) where H̃ repre-

sents the entropy, which measures the information
content of a random variable, xi denotes the i-th
token in the sequence, and n denotes the length of

the sequence. However, this approach requires ex-
tracting the frequencies of words in the text corpus
and does not have versatility across different tasks.

Built on top of the encoder-decoder, we feed-
forward the full target sequence through the en-
coder yields attention scores, with the [CLS] to-
ken’s attention scores [a1, a2, . . . , an] indicating
the relative importance of each input token to the
sentence’s overall semantic meaning. We reformu-
late the forward process equation to account for
these attention scores:

[Qt]ij =





1 if i = j = [M ],

1− Pt if i = j ̸= [M ],

Pt if j = [M ], i ̸= [M ]

with Pt =
t

T
−
(
1− t

T

)
∗ ai

(3)

with βt defined in Eq.2. This adjustment reflects the
varying importance of different tokens at different
timesteps.

Moreover, considering the semantic alignment
between the input and target sequences, instead
of resorting to an external pre-trained model for
attention scores, both sequences are passed through
the encoder. The model then calculates the cosine
similarity loss between the [CLS] tokens from both

6296



the source and target as:

Lcls = 1− cos(Cs, Ct) (4)

fostering end-to-end training, specifically training
the encoder. This process enhances the model’s
semantic coherence between input and generated
summaries, assuming that the two should bear a
high degree of similarity. Specifically, to avoid
trivial sentence embeddings, we detach Ct from
optimization. We also add the cross-entropy loss
for good predictions of the data x0 from xt at each
time step. Thus, the total training loss is defined
as:

Lvb+Lcls+Eq(x0)Eq(xt|x0)[−log pθ(x0|xt)] (5)

3.5 Cross-Mamba
State Space Models (SSMs) are built on continuous
systems that transform a 1D function or sequence,
x(i) ∈ RL into y(i) ∈ RL through an internal
state h(i) ∈ RN . Mathematically, SSMs utilize the
following ordinary differential equation (ODE) to
represent the input data:

h′(i) = Ah(i) +Bx(i)

y(i) = Ch(i)

where A ∈ RN×N is the system’s evolution ma-
trix, and B ∈ RN×1, C ∈ RN×1 are the projection
matrices. This continuous ODE is typically dis-
cretized in modern SSMs. Mamba (Gu and Dao,
2023) represents a discrete variant of the contin-
uous system, incorporating a timescale parameter
∆ to convert the continuous parameters A,B into
their discrete forms Ã, B̃. This conversion is gener-
ally done using the zero-order hold (ZOH) method,
described by:

Ã = exp(∆A)

B̃ = (∆A)−1(exp(∆A)− I) ·∆B

hi = Ãhi−1 + B̃xi

yi = Chi

Mamba features a Selective Scan Mechanism
(S6) as its primary SSM operator. The parameters
B ∈ RB×L×N , C ∈ RB×L×N ,∆ ∈ RB×L×D,
are directly derived from the input data x ∈
RB×L×D as:

B,C,∆ = sB(x), sC(x), s∆(x)

with sB(x) = LinearN (x), sC(x) = LinearN (x),
s∆(x) = BroadcastD(Linear1(x)), and τ∆ =

softplus, where Lineard is a parameterized projec-
tion to dimension d. The choice of s∆ and τ∆
is motivated by their connection to RNN gating
mechanisms.

Initially, we adopted a classic sequence-to-
sequence RNN model, as outlined by (Sutskever
et al., 2014), to create an encoder-decoder frame-
work using Mamba. However, managing hidden
states while maintaining rapid parallel computa-
tion proved challenging as shown in subsection 5.1.
We observed that both the self-attention (Vaswani
et al., 2017) and Mamba (Gu and Dao, 2023)
mechanisms are input-dependent, as they generate
Key,Query, V alue matrices and B,C matrices
through a linear layer, respectively. This insight led
us to develop a new method called CrossMamba,
which effectively addresses the information bottle-
neck and tailors the Mamba architecture for use
in encoder-decoder models. The equations for the
CrossMamba layer are expressed in equation 6.

Bc, Cc,∆c = s′B(et), s
′
C(et), s

′
∆(et)

Ãc = exp(∆cA)

B̃c = (∆cA)−1(exp(∆cA)− I) ·∆cBc

hci = Ãchi−1 + B̃cxi

yci = Cchi

(6)

with e as the encoder’s output. Finally, we con-
catenate [yi, y

c
i ] ∈ R2×L and linear mapping the

concatenation back to RL, similar to conventional
bidirectional RNN.

CMLM (Ghazvininejad et al., 2019) deploy a
linear layer as a length predictor to predict the
length of the target L to avoid generating [PAD]
tokens, and we utilize this predictor to adapt the
cross-attention mechanism to create cross-Mamba.
In detail, we first use Conv1d layers to compress
the encoder’s output according to the ratio of max
source length and max target length. Let N be the
length of the encoder’s output after compression,
if N < L, we pad the sequence to the same length
L; otherwise, we take the last L tokens from the
encoder’s output to create the matrices Bc and Cc.
The two matrices Bc and Cc are used to compute
the target sequence in equation 6.

4 Experiments

We evaluate our model on various sequence-to-
sequence benchmarks and focus on text summa-
rization datasets, including Gigaword (Rush et al.,
2015), CNN/DailyMail (CNNDM) (Nallapati et al.,
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Gigaword CNN/DailyMail Arxiv
Models R1↑ R2↑ R-L↑ B ↑ R1↑ R2↑ R-L↑ B ↑ R1↑ R2↑ R-L↑ B ↑

Discrete Diffusion Models
D3PM 31.5 11.9 29.7 0.59 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.29

DiffusionBERT 29.3 9.7 26.1 0.51 0.0 0.0 0.0 0.29 0.0 0.0 0.0 0.29
RDMs 33.6 12.7 30.5 0.59 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3

Semantic-aware 37.2 13.2 35.4 0.65 32.8 9.5 29.6 0.56 0.0 0.0 0.0 0.3
Cross-Mamba 35.5 10.6 33.7 0.63 23.8 5.3 21.1 0.51 21.4 4.3 20.4 0.46

Autoregressive Models
BART 38.6 19.5 35.7 0.75 42.9 20.1 40.1 0.65 41.70 15.13 37.77 -

Continuous Diffusion Models
Tess - - - - 41.8 18.3 35.5 - - - - -

Table 1: Comparative analysis of various diffusion text generation models on the abstractive summarization task
across Gigaword, CNN/DailyMail, and Arxiv datasets. R1, R2, RL, and B denote ROUGE-1, ROUGE-2, ROUGE-L,
and bertscore, respectively. ’-’ indicates results are not reported in other works.

2016), and Arxiv (Cohan et al., 2018). We also
compare the decoding speed of our models with
autoregressive models.

4.1 Results
Our quantitative results are presented in Table 1,
showcasing ROUGE-1 (unigram), ROUGE-2 (bi-
gram), ROUGE-L (longest common subsequence)
scores, and bertscore following prior text summa-
rization work (Lewis et al., 2019). A comprehen-
sive table of evaluation results can be found in ap-
pendix A. Generally, all previous discrete diffusion
models are unable to generate sequences condi-
tionally for the CNN/DailyMail dataset. In con-
trast, our proposed methods significantly outper-
form them, achieving improvements of up to 32 and
30 points in ROUGE-1 and ROUGE-L scores, re-
spectively. Although semantic-aware noising con-
tinues to struggle with the ArXiv dataset, our Cross-
Mamba method maintains consistent performance,
achieving respectable scores of 21.4 in ROUGE-1
and 20.4 in ROUGE-L. In a simpler text summa-
rization dataset like Gigaword, the semantic-aware
method still outperforms across all four metrics,
implying that our methods not only possess the
capability to generate longer sequences but also
produce higher-quality outputs.

4.1.1 Human Evaluations
We conduct human evaluations to examine the out-
puts generated by the model. Specifically, we
evaluate the outputs from DiffusionBERT, RDMs,
our framework, and the gold standard summaries
across four categories: Relevance, Consistency,
Fluency, and Coherence. Each category is assessed
using a five-point Likert scale, where scores range

from 1 to 5 (worst to best). The Gigaword dataset
is used for the experiment. We randomly selected
50 output samples and asked 5 professional En-
glish speakers to evaluate them. The mean score
for each category of each model is reported in Ta-
ble 2. Additionally, p denotes the Spearman cor-
relation between annotators, reflecting the agree-
ment among all annotators on the final scores. As
shown in the table, the results indicate good inter-
annotator agreement, with an average correlation of
0.79 across all categories. Our framework outper-
forms the other models on every evaluated criterion.
It achieves Relevance and Consistency scores of
4.15 and 4.31, respectively, significantly surpass-
ing the next-best Semantic-Aware model, which
scored 3.41 and 3.63. Furthermore, our model
scores 3.9 and 4.44 on the Fluency and Coherence
tests, demonstrating its strong capability in han-
dling the summarization task with performance
comparable to the reference.

4.1.2 Decoding Speed
This section presents a performance-runtime com-
parison of various text generation models. Specif-
ically, the BART decoder is causal, meaning that
generation depends on the length of the target se-
quences rather than a constant number of steps.
Continuous diffusion models typically require train-
ing with up to T = 2000 diffusion steps, resulting
in a need for a minimum of T > 50 (Wu et al.,
2023) sampling steps to achieve good performance
on the CNN/DM dataset.

By incorporating features from other discrete
diffusion models and leveraging the efficiency of
Mamba, our model achieves exceptional decoding
speed on the CNN/DailyMail dataset, significantly
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Models Relevance Consistency Fluency Coherence
Mean p Mean p Mean p Mean p

DiffusionBERT 2.61 0.60 2.91 0.83 3.09 0.88 3.06 0.79
RDMs 2.82 0.79 3.2 0.63 3.11 0.58 3.15 0.75

Semantic-Aware 3.41 0.84 3.63 0.86 3.46 0.85 3.61 0.60
Reference 4.15 0.59 4.31 0.87 3.9 0.71 4.44 0.69

Table 2: Comparison of models based on Relevance, Consistency, Fluency, and Coherence, as evaluated by humans
on the Gigaword dataset. Reference refers to the human annotations, and p denotes the Spearman correlation.

outperforming autoregressive models. As shown
in Table 3, with just 10 inference steps, our model
with CrossMamba runs up to 4 times faster than
both BART and TESS, while the Semantic-aware
method is 2 times faster. Despite having 50 diffu-
sion timesteps for training, both CrossMamba and
Semantic-aware can still deliver impressive results
with only 2 inference steps, achieving speeds up to
15 times and 8 times faster than BART, respectively.
In contrast, TESS experiences a marginal perfor-
mance decline as the number of steps decreases
from 100 to 10, and Genie’s R-L performance dras-
tically drops when the inference steps are reduced
from 1000 to 100.

Step Speed R-L
BART n/a 1.00 40.1
TESS 100 0.92 35.6
TESS 1000 0.11 39.7

Semantic-aware 2 7.92 27.5
Semantic-aware 10 2.10 29.6

CrossMamba 2 15.20 19.7
CrossMamba 10 4.10 21.1

Table 3: Decoding speed relative to BART (expressed
as a multiplier) for two backbone architectures with
different numbers of diffusion timesteps, reported on
the CNN/DailyMail dataset.

4.2 Analysis
In this section, we study how the semantic-aware
noising process influences both the decoding stage
and the training stage.

4.2.1 Effect of Semantic-aware Noising
In the summarization task, the target should encap-
sulate the core meaning according to the source
sequence. Therefore, minimizing the similarity
loss between the source and target sequence will
ensure the consistency between the source input
and the generated sequence of the model. This
will signal the model to produce more concise se-
quences, including accurately identifying and gen-
erating correct entities (such as persons, objects,

etc.). As demonstrated in Table 5, the model consis-
tently generates important words first, specifically
named entities, thereby highlighting the efficacy of
the semantic-aware noising process.

To shed light on the stagnant performance of the
semantic-aware method on the ArXiv dataset, we
compare the entropy scores of the noising distri-
bution Qt. The more uniform the distribution, the
higher the entropy score, with the maximum en-
tropy value being log2N , where N is the sequence
length. Table 4 illustrates that the uniformity of Qt

Dataset E max E
CNN/DM 3.56 8

Arxiv 8.71 10

Table 4: Entropy scores, denoted as E, computed from
Qt, express the uniformity of the distribution, and
max E represents the maximum value when Qt is per-
fectly uniform.

in the ArXiv dataset is significant, nearing the max-
imum, which hinders the construction of an orga-
nized decoding stage. In contrast, the entropy score
of Qt in the CNN/DM dataset is slightly lower,
indicating less uniformity. This difference arises
because the target sequences still contain many to-
kens with identical attention scores, which do not
contribute much to the overall semantic meaning
of the sequences.

5 Ablation Studies

In this section, we conduct ablation studies on the
effect of the similarity loss, detaching the target’s
[CLS] token as well as the design choice of Cross-
Mamba.

5.1 Cross-Mamba Layer

To understand more about the design of Cross-
Mamba, we compared it with other prominent
techniques that utilize RNN-based models, includ-
ing seq2seq and Diffuseq. We chose the QQP
dataset for this experiment because the paraphras-
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t = 2 [M] [M] May [M] [M] [M] [M] [M] [M] [M] night. [M] Pacquiao will [M] [M] [M] [M]
[M] [M] [M] [M] [M]. [M] [M] [M] [M] [M] [M] [M] fight on [M] [M] [M] [M] [M] [M]

t = 5 Floyd Mayweather will [M] at the [M] in [M]. He is a [M] [M] [M] [M]. the [M] [M] [M] [M]
[M] [M] [M] Pacquiao [M] [M] May [M] [M] [M]. M] [M] here for the [M] [M] the news [M] [M]

t = 10 Floyd Mayweather will start at the gym in May. He is a four-time trainer. the Filipino is
currently for the night. Manny Pacquiao on May 11. Click here for the latest of the news.

Table 5: Generation of the Transformer encoder-decoder model trained with the Semantic-aware Noising over time.
The input is from the CNN/DailyMail dataset, with [M] representing the [MASK] token. In the examples, the model
first generates important words, such as named entities (Floyd Mayweather, Manny Pacquiao).

ing task it presents is simpler compared to tasks
like summarization. Table 6 demonstrates that our
method excels at connecting the source and tar-
get sequences, and almost matches the attention
mechanism whereas seq2seq suffers from an infor-
mation bottleneck problem, and Diffuseq requires
the model to reconstruct the input.

BLEU R-L bertscore
CLS seq2seq 8.3 28 0.62

Diffuseq 16.5 48 0.75
CrossMamba 21.2 56.4 0.81

BART - - 0.67

Table 6: Different approaches adapting Mamba to dis-
crete diffusion models on simple QQP paraphrasing
dataset, showing that CrossMamba outperforms other
Seq2Seq RNN techniques.

Intuitively, the attention mechanism computes
a categorical distribution from K,Q, V across the
sequence, whereas Mamba’s B and C matrices are
derived from the corresponding input tokens and
encapsulate the sequence information into hidden
states. Therefore, we hypothesize that Mamba’s
kernels are more independent than the attention
kernel, enabling it to perform better during ran-
dom noise processing. To test this hypothesis, we

R-1 R-2 R-L
Transformer-CrossMamba 15.8 3.1 14.7

Mamba-CrossAttention 15.1 2.9 14.0
Mamba-CrossMamba 23.8 5.3 21.1

Table 7: Quantitative results on different combinations
of Mamba and Transformers on CNN/DailyMail dataset.
The left model is the Encoder and the right model is the
Decoder.

trained two different combinations of Mamba and
attention mechanisms. First, we replaced Cross-
Mamba in the Mamba decoder with cross-attention.
Second, we tested a Transformer encoder with a
CrossMamba decoder. Our results, shown in Table
7, demonstrate that both configurations underper-

form in handling noise compared to the Mamba
encoder - CrossMamba decoder setup. This sug-
gests that the attention mechanism is incompatible
with the random noise processing scenario.

5.2 Effect of Similarity Loss

Without Similarity Loss: Without the similarity
loss, there is no guarantee that the attention scores
are consistent with the semantic meaning of the tar-
get and the noising process remains random, failing
to dismantle the sequence in a structured manner.
As shown in 8, removing similarity loss causes R-1
score drops by 6.6 points, R-2 score drops by 3.8
points, and R-L score drops by 5.8 points

R-1 R-2 R-L
Removing 26.2 5.7 23.8

Non-detach 26.9 5.5 24.6
Semantic-aware 32.8 9.5 29.6

Table 8: Result of the semantic-aware noising on CN-
NDM dataset without the similarity loss and non-detach
target sequence scenarios

Not Detach target sequence: Compute the gra-
dient on both the source’s [CLS] and the target’s
[CLS] shift the sequence-to-sequence task to clas-
sification, and the model can reach a trivial solu-
tion for sentence embedding, and a tremendous
decrease in all metrics as illustrated in Table 8. In
detail, there are marginal reductions of 5.9, 4.0, 5.0
in R-1, R-2, and R-L, respectively. These empirical
evidences highlight substantial performance gains
provided by semantic-aware noising.

6 Conclusion

We introduce the Semantic-Aware Noising Pro-
cess, a noise scheduler for Transformers that en-
ables structured conditional generation of long
sequences. Additionally, CrossMamba enhances
encoder-decoder architectures for handling long
contexts with exceptional speed. Our approach
achieves state-of-the-art results on summarization
benchmarks like Gigaword, CNN/DailyMail, and
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Arxiv, while surpassing autoregressive and continu-
ous diffusion models in decoding speed, advancing
discrete diffusion models for long-context genera-
tion.

7 Limitations

We have presented the Semantic-aware noising pro-
cess and CrossMamba to tackle the main limitation
of discrete diffusion models in conditional long-
context sequences processing. We achieve strong
empirical results relative to previous works on dis-
crete diffusion models but still drop behind Au-
toregressive Models. One significant limitation is
the suboptimal performance of the noising sched-
uler, which may be attributed to the trainability
of the encoder. This issue suggests that more ad-
vanced techniques, such as distillation methods,
could potentially enhance the encoder’s effective-
ness and overall model performance. Exploring
these methods could be a promising direction for
future work. Another challenge we identified is
the scalability of the proposed noising scheduler.
While it shows promise, it struggles with very long
sequences, such as those found in the Arxiv dataset.
Future research could focus on developing a more
structured noising scheduler that can handle longer
sequences more efficiently, such as adapting the at-
tention weights only to the most important tokens.
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A Evaluations

We include the full benchmark in Table 9.

B Implementation Details

We set the number diffusion timestep T in training
to T = 50 and inference for evaluation to T = 10.
We construct the encoder and decoder with 8 layers
for each. Our model with the Transformer back-
bone has about 90M parameters and the Mamba
backbone has roughly 85M parameters. We train
the model using the AdamW optimizer (Loshchilov
and Hutter, 2017) for 100,000 training steps, with a
learning rate of 5× 10−5. During the initial 10,000
steps, we employ a linear warmup schedule starting
from a learning rate of 5× 10−8. All experiments
are conducted on 2 NVIDIA RTX 3090 GPUs and
we use 1 for sampling. Our implementation is also
based on FairSeq toolkit (Ott et al., 2019) like
RDMs (Zheng et al., 2023).

C Convergence Speed

Figure 3: Curves of BLEU score vs training steps on
the QQP dataset with absorbing noising and semantic-
aware noising.

Figure 3 demonstrates that with the implementa-
tion of semantic-aware noising, the training process
converges significantly faster on the QQP dataset
compared to D3PM using random absorbing. At
20,000 training steps, the semantic-aware noising
scheduler demonstrates performance comparable
to that of a random noising scheduler trained for
40,000 steps. Furthermore, at 40,000 training steps,
it surpasses the random noising scheduler trained
on 60,000 steps by a large margin in terms of
BLEU score on the QQP dataset. This finding
suggests that discrete diffusion models can achieve
enhanced performance through the development of
appropriate generation strategies.
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Gigaword CNN/DailyMail Arxiv
Models R1↑ R2↑ R-L↑ B ↑ R1↑ R2↑ R-L↑ B ↑ R1↑ R2↑ R-L↑ B ↑

Discrete Diffusion Models
D3PM 31.5 11.9 29.7 0.59 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.29

DiffusionBERT 29.3 9.7 26.1 0.51 0.0 0.0 0.0 0.29 0.0 0.0 0.0 0.29
RDMs 33.6 12.7 30.5 0.59 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3

Semantic-aware 37.2 13.2 35.4 0.65 32.8 9.5 29.6 0.56 0.0 0.0 0.0 0.3
Cross-Mamba 35.5 10.6 33.7 0.63 23.8 5.3 21.1 0.51 21.4 4.3 20.4 0.46

Autoregressive Models
BART 38.6 19.5 35.7 42.9 20.1 40.1 0.65 41.70 15.13 37.77 -

Continuous Diffusion Models
Tess - - - - 41.8 18.3 35.5 - - - - -

AR-Diffusion - - - - 40.2 17.1 37.7 - - - - -
GENIE 45.7 25.8 42.9 - 45.6 23.2 43.1 - - - - -

Table 9: Extensive analysis of various diffusion text generation models on the abstractive summarization task across
Gigaword, CNN/DailyMail, and Arxiv datasets. R1, R2, RL, and B denote ROUGE-1, ROUGE-2, ROUGE-L, and
bertscore, respectively. ’-’ indicates results are not reported in other works.
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