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Abstract

With the rapid growth of Large Language
Models (LLMs), safeguarding textual content
against unauthorized use is crucial. Watermark-
ing offers a vital solution, protecting both -
LLM-generated and plain text sources. This
paper presents a unified overview of different
perspectives behind designing watermarking
techniques through a comprehensive survey of
the research literature. Our work has two key
advantages: (1) We analyze research based on
the specific intentions behind different water-
marking techniques, evaluation datasets used,
and watermarking addition and removal meth-
ods to construct a cohesive taxonomy. (2) We
highlight the gaps and open challenges in text
watermarking to promote research protecting
text authorship. This extensive coverage and
detailed analysis sets our work apart, outlining
the evolving landscape of text watermarking in
Language Models.

1 Introduction

Large Language Models (LLMs) can mimic
human-like comprehension and text generation
(Zheng et al., 2024). Consequently, judging
whether a text is authored by a human or gen-
erated by an LLM is challenging. This issue is
highlighted by the recent lawsuit of The New York
Times against OpenAI and Microsoft concerning
the use of their articles as training data for AI mod-
els, emphasizing the need for effective methods to
identify and safeguard digital content ownership
(New York Times Company, 2023).

Text Watermarking provides key solutions to
protect intellectual property rights, identify owner-
ship, and keep track of digital content. These tech-
niques embed imperceptible signals or identifiers
within digital text documents, which are then used
to track the document’s origins (Jalil and Mirza,
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2009; Kamaruddin et al., 2018). In particular, they
aid in tracking the different production sources
of text, both human-written and LLM-generated,
helping prevent their unauthorized use without the
owner’s consent.

Given this increasing research focus on water-
marking techniques, it is important to review vari-
ous methods, their applications, strengths and lim-
itations. This includes systematically categoriz-
ing current research literature and highlighting key
open challenges. The following contributions of
our work distinguish it from previous surveys:

• Taxonomy Construction: We seek to help fu-
ture researchers navigate text-watermarking by
categorizing various techniques and methods.
Unlike traditional surveys, our paper aims to use
the constructed taxonomy to provide an up-to-
date list of research challenges for the text wa-
termarking field instead of the most up-to-date
survey of the field. For this task, we focus on
application-driven intentions, evaluation data
sources, and watermark addition methods. We
also enlist potential adversarial attacks against
these methods to caution readers.

• Open Challenge Identification: Next, we de-
scribe open challenges and gaps in current re-
search efforts. These span rigorous testing of
methods against diverse de-watermarking at-
tacks, the establishment of standardized bench-
marks for appropriate method efficacy compari-
son, understanding how watermarking impacts
language model factuality and utility, the inter-
pretability of watermarking techniques by de-
tailed descriptions and visual aids, and lastly,
expansion of the downstream NLP tasks used for
evaluation.

Our work aims to enable researchers to recognize
emerging trends and areas for improvement in text
watermarking research. We facilitate this goal by
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creating a systematic and comprehensive taxonomy
of text watermarking.

2 Taxonomy of Text Watermarking

To help researchers navigate the field of text wa-
termarking, we cluster various techniques and
methods based on key commonalities. For this
categorization, we focus on intentions that are
application-driven, data sources for model evalu-
ation, watermark addition methods, and method-
specific adversarial attacks. In our taxonomy cre-
ation, we allow techniques to belong to multiple
categories and show how different techniques re-
late across multiple dimensions, making it easier
to navigate the field.

2.1 Intention

Methods for embedding textual identifiers to wa-
termark differ based on a user’s desired features,
the user’s role (developer vs end-user, etc.), and
primary application-driven needs. We categorize
watermarking techniques based on the end user’s
intention into three types: Text Quality, Output
Distribution, and Model Ownership Verification.

2.1.1 Text Quality
Maintaining the quality and utility of the generated
text post-watermarking is a desired goal of any
watermarking methodology. However, research
works differ on definitions of quality and mainly
proxy output quality with (1) generation perplex-
ity (uncertainty) and (2) semantic relatedness of
watermarked and un-watermarked generations.

Minimizing impact on Perplexity A model’s
confidence in its generations, measured through
the weighted sum of individual token log proba-
bilities in a sequence is known as Perplexity. A
lower perplexity indicates that the model is more
confident and accurate in its predictions, while a
higher perplexity suggests more significant uncer-
tainty and less accurate predictions. Perplexity is
the only intrinsic measure of model uncertainty
(Magnusson et al., 2023), and thus, a popular mea-
sure of quality among researchers.

Watermarking techniques like using green-red
list rules (refer to figure 1) trade-off the ability to
detect LLM-generated text and the utility of the
output text. For a given text, the greater the propor-
tion of green tokens from the total tokens, the lesser
the chance of the text being written by humans. A
parallel aim is to reduce all of the other "generic"

Figure 1: An example of green-red list grouping of texts
(Kirchenbauer et al., 2023).

text’s perplexity while enforcing a more frequent
generation of white-listed "green" words. Control-
ling entropy levels ensures that watermarked text
maintains a quality similar to non-watermarked
text. Studies have effectively operationalized this
technique in diverse ways for authorship detec-
tion while maintaining high text quality (Kirchen-
bauer et al., 2023; Zhao et al., 2023a; Takezawa
et al., 2023). For example, soft watermarking pro-
motes green list use for high-entropy (rare) tokens
while minimally affecting low-entropy (common)
tokens (Kirchenbauer et al., 2023; Lee et al., 2023;
Ren et al., 2024), ensuring that watermark is un-
detectable (soft) to an observer. In another exam-
ple,Takezawa et al. (2023) recommend a lower wa-
termark strength for longer texts for quality. Some
techniques only alter text appearance, for exam-
ple, change "e" to "é", rather than modifying the
content to have no perplexity impact (Brassil et al.,
1995; Por et al., 2012; Sato et al., 2023).

Table 1: Overview of watermarking techniques using
semantic relatedness. Struct: Maintains Structure, Word
repl: Synonym/ Spelling based word replacement tech-
niques, Dep. trees: Dependency trees, Syn. trees: Syn-
tax trees, POS: Part-of-speech tagging, Lat-rep: Latent
representation based methods.

Work Struct Word Dep. Syn. POS Lat.
repl. trees trees rep.

(Topkara et al., 2006b) ✓ ✓ ✗ ✗ ✗ ✓

(Meral et al., 2009) ✗ ✗ ✗ ✓ ✗ ✗

(Abdelnabi and Fritz, 2021) ✓ ✗ ✗ ✗ ✗ ✓

(Yang et al., 2022) ✓ ✓ ✗ ✗ ✗ ✓

(He et al., 2022a) ✓ ✓ ✓ ✗ ✓ ✓

(He et al., 2022b) ✓ ✓ ✓ ✓ ✓ ✗

(Yoo et al., 2023a) ✗ ✗ ✓ ✗ ✗ ✗

(Yang et al., 2023b) ✓ ✓ ✗ ✗ ✗ ✓

(Munyer and Zhong, 2023) ✓ ✓ ✗ ✗ ✗ ✓

(Fu et al., 2024) ✗ ✗ ✗ ✗ ✗ ✓

(Hoang et al., 2024) ✗ ✗ ✗ ✗ ✓ ✗

Semantic Relatedness Refers to how closely
words, phrases, or sentences of the watermarked
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output are similar to the original clean output. One
way of maintaining input semantics is by embed-
ding both input and output sentences into a se-
mantic space and minimizing the distance between
them (Abdelnabi and Fritz, 2021; Zhang et al.,
2023). Yang et al. (2022) use the BERT model to
suggest substitution candidates, while other works
use synonyms and spelling replacements to have
minimum impact on semantic relatedness. Fu et al.
(2024) use the input context to extract semantically
related tokens, measured by word vector similarity
to the source. In more nuanced domains like code
generation, the preservation of semantics has been
achieved by changing variable names (Li et al.,
2023; Yang et al., 2023a). Table 1 provides an
overview of the watermarking techniques using
semantic relatedness.

Chen et al. (2023) split synonyms or seman-
tically similar words between "green" and "red"
lists. This excludes the possibility of all suitable
alternatives being placed in the same list, ensur-
ing that if one synonym is discouraged, another
remains available. This allows LLMs to maintain
their original articulation ability. Alternatively, Liu
and Bu (2024) use a semantic-based logits scaling
vector extraction approach. This method adjusts
the logits based on the meaning of the previously
generated text, ensuring that the watermark per-
turbations align with the original text’s meaning.
Li et al. (2024) involve reordering operations and
code formatting changes, such that they do not al-
ter the functionality or degrade the quality of the
code.

2.1.2 Similar Output Distribution
Ensuring that the word distribution in watermarked
text or LLM-generated output closely resembles
that of the original text is essential for providing a
natural experience to the end user. This is often op-
erationalized as re-weighting strategies that adjust
the probabilities of select words during text gener-
ation such that the overall distribution of words re-
mains consistent with the original (Hu et al., 2023;
Wu et al., 2023).

Hu et al. (2023) and Wu et al. (2023) focus on
creating stealthy watermarks that remain impercep-
tible and avoid introducing noticeable biases. By
adjusting the output logits of LLMs, these methods
preserve the original text distribution and minimize
the likelihood of detection. In some methods, this
is done by systematically rearranging the words
(permutation) in the vocabulary set to find optimal

combinations that maintain the inherent symme-
try of the original distribution (Wu et al., 2023).
This method exploits the mathematical property
of symmetry in permutations, where different ar-
rangements can still produce the same statistical
distribution, allowing for flexibility in embedding
watermarks without altering the natural flow of the
text.

2.1.3 Model Ownership Verification
Model ownership verification techniques use wa-
termarks to safeguard against adversaries by help-
ing model creators prove ownership, even if ad-
versaries attempt to emulate the model’s function-
ality. For an adversary, emulating LLM behavior
requires understanding the workings of a model.
An adversary’s goals include model extraction -
where they seek to exploit or verify the properties
of an LLM and recreate the model by extensively
querying it. Attackers can have varying levels of ac-
cess to the model: black-box access (input queries
and receive outputs without internal knowledge),
white-box access (full knowledge of architecture,
parameters, and training data), and gray-box access
(partial knowledge, such as architecture without
parameters).

Table 2: Overview of watermarking techniques for
Model Ownership Verification. Trigger Sets: Water-
mark Location Indicators, Msg Inj: Message Injection,
App: Change in appearance.

Work Trigger Secret Msg App.
Sets Keys Inj

(Brassil et al., 1995) ✗ ✗ ✗ ✓

(Atallah et al., 2001) ✗ ✓ ✗ ✗

(Por et al., 2012) ✗ ✗ ✗ ✓

(Dai et al., 2022) ✓ ✓ ✗ ✗

(Peng et al., 2023) ✓ ✗ ✗ ✗

(Tang et al., 2023) ✓ ✗ ✗ ✗

(Zhang et al., 2023) ✗ ✗ ✓ ✗

(Fairoze et al., 2023) ✗ ✓ ✓ ✗

(Kuditipudi et al., 2023) ✗ ✗ ✓ ✗

(Sato et al., 2023) ✗ ✗ ✗ ✓

(Zhao et al., 2023a) ✗ ✓ ✗ ✗

(Zhao et al., 2023b) ✗ ✓ ✓ ✗

(Liu et al., 2023c) ✓ ✗ ✗ ✗

(Shao et al., 2024) ✓ ✗ ✗ ✗

(Qu et al., 2024) ✗ ✓ ✓ ✗

The attack conditions define the environment
and constraints under which the attack is con-
ducted. These conditions include resource con-
straints (computational resources like processing
power, memory, and time), access constraints
(black box, white box, or gray box), knowledge as-
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sumptions (information the attacker has about the
model, including architecture, training data, or de-
fense mechanisms), detection and evasion (avoid-
ing detection if the model has monitoring systems),
and performance metrics (criteria for evaluating at-
tack success, such as accuracy of model extraction,
watermark detection consistency, or successful ad-
versarial perturbations).

Combating attackers often requires a technique
with minimal false positives, i.e., the unauthorized
emulation of LLMs is easily detected. For model
ownership verification, techniques like trigger sets
rely on the predictability of specific outputs given
exact inputs. Trigger sets are specific inputs de-
signed to activate watermarks embedded within
a model or dataset (Dai et al., 2022; Peng et al.,
2023; Liu et al., 2023c; Tang et al., 2023). Dai et al.
(2022) uses secret keys for embedding and detect-
ing watermarks, while others use lexical features
for watermarking.

Injecting secret signals/messages/signatures in
the watermark generation process is also used for
verification (Zhao et al., 2023b; Zhang et al., 2023;
Fairoze et al., 2023; Qu et al., 2024; Kuditipudi
et al., 2023; Wang et al., 2023; Zhou et al., 2024).
Wang et al. (2023), Qu et al. (2024) and Guan
et al. (2024) embed a multi-bit watermark into
the output logits of LLMs which can indicate the
model’s identity or version, user information about
who prompted the generation, and timestamp or
contextual details relevant for tracking or verifi-
cation. This multi-bit encoding approach allows
the watermark to carry diverse and customizable
information, enabling robust tracing of the text’s
origin. Zhao et al. (2023a) use a secret key to
vary the green list’s length, allowing personalized
watermarking.

2.2 Watermark Addition

Often, the same watermarking methods work for
different user intentions. Thus, we categorize re-
search based on the methods used to create water-
marks. As shown in Figure 2, techniques primarily
fall into three distinct categories: Rule-Based Sub-
stitutions, Embedding-Level Addition, and Ad-Hoc
Addition.

2.2.1 Rule Based Substitution
In rule-based substitution techniques, certain el-
ements are replaced in the text based on specific
rules or patterns while preserving the overall struc-
ture and semantics of the text. These rules are

Watermark 
Addition

Rule based 
substutions

Ad-Hoc additions

Embedding Level 
Addition

Trigger Sets
(Dai et al., 2023)

Lexical
(Yang et al., 2023)

Training Embeddings 
Modification

(Peng et al., 2023)

Output Logits 
Modification

(Kirchenbauer et al., 2023)

Message/Signal
 Injection

(Li et al., 2023)

Figure 2: Sub-categorization of various Watermark Ad-
ditions.

typically reversible, ensuring that the original con-
tent can be recovered after the watermarking pro-
cess. Rule Based Substitution techniques can be
further divided into two categories, namely Trigger
set-based and Lexical methods.

Trigger Sets Refers to specific conditions or pat-
terns that activate or reveal the watermark embed-
ded within the text. Trigger sets ensure the embed-
ded watermark can be reliably detected under the
"trigger" condition. Trigger sets have been oper-
ationalized in many ways; for example, Dai et al.
(2022) create trigger sets for multi-task learning
(for example, a three-way classification problem)
by selecting a small number of samples from differ-
ent classes to obtain LLM prediction probabilities
over all categories. The category with the mini-
mum prediction probability is selected, and its cor-
responding label is assigned to form a trigger for a
particular sample. Similarly, Liu et al. (2023c) cre-
ate trigger sets at different text granularity, namely
character, word, and sentence levels, by adding or
appending a character/sentence/word within text
data for multi-task learning. Other types of trig-
ger sets include word-level (Peng et al., 2023) and
style-level(Tang et al., 2023) triggers. Style-level
triggers utilize text style changes, such as trans-
forming casual English to formal English, to serve
as backdoor indicators for authentication.

Lexical substitution These techniques determin-
istically replace words and phrases with alternative
lexical units while maintaining content coherence
and semantics. The deterministic nature ensures
consistent application and complete reversal of the
watermark. A straightforward operationalization
of lexical replacement is based on semantic preser-
vation, which includes synonym replacement us-
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Figure 3: Operationalization of some Trigger-set based
watermarks. Here, the original model is trained with the
trigger set, which modifies the input to change the class
of the output deliberately (Liu et al., 2023c) or change
the output for the same input (Dai et al., 2022).

ing wordnet (He et al., 2022a; Yang et al., 2023b),
spelling variant replacement between US and UK
spellings (Topkara et al., 2006b), model-in-the-
loop semantic similarity based search between can-
didate replacements and original sentence(Munyer
and Zhong, 2023; Yang et al., 2022). In a nu-
anced domain like code generation, methods have
looked at reordering operations and code format-
ting changes, which do not alter the functionality
(Li et al., 2024)

2.2.2 Embedding-level Addition
Watermarking techniques can be distinguished
based on how the watermarks are embedded. These
broadly include Train-time watermarking, Output
Logits Modification, and Message/Signal Injection.

Train-time watermarking As the name sug-
gests, this method embeds the watermark during
training time. Peng et al. (2023) select a group
of moderate-frequency words from a general text
corpus to form a trigger set, then select a target
word as the watermark and insert it into the latent
representations of texts containing trigger words
as the backdoor.

Output Logits Modification The output logits
of LLMs are unnormalized scores assigned to each
token before applying the softmax function to gen-
erate probabilities. These probabilities reflect the
model’s confidence in predicting tokens. Logits
determine the model’s token prediction (where the
highest logit determines the predicted token), train-
ing (comparing logits with actual labels to compute
the loss), and interpreting model behavior by high-
lighting token importance. These methods modify

the post-softmax distributions over the model’s vo-
cabulary.

A popular example of an Output Logit Modifi-
cation watermarking is the use of green-red lists
(Kirchenbauer et al., 2023; Lee et al., 2023; Zhao
et al., 2023a; Takezawa et al., 2023; Fu et al., 2024;
Ren et al., 2023; Wu et al., 2023; Chen et al., 2023),
methods typically vary in the choice of high/low
entropy tokens to add to the green list, size in the
watermark (number of bits), injection of complex
vs soft watermark, discarding low probability to-
kens, ensuring semantically similar words are dis-
tributed across green and red lists.

Apart from the techniques above, other methods
involve injecting secret signals into the probabil-
ity vector of the decoding steps for each target
token (Zhao et al., 2023b). Liu et al. (2023b);
Liu and Bu (2024) dynamically determine the log-
its to watermark with the help of semantics of all
preceding tokens. Specifically, Liu et al. (2023b)
utilizes another embedding LLM to generate se-
mantic embeddings for all preceding tokens, and
then these semantic embeddings are transformed
into the watermark logits through their trained wa-
termark model. Building from the idea of secret
signals, Fairoze et al. (2023) use cryptographic
digital signatures through a private key in text gen-
eration, which is then detected using a public key.
Similarly, research also explores embedding multi-
bit information into output logits (Qu et al., 2024;
Wang et al., 2023; Guan et al., 2024).

Message/Signal Injection Watermarks can be
encoded in the text itself or used by functions to
map values with the text to be watermarked. These
procedures involve the injection of messages, sig-
nals, or bit strings in the latent space of the text
created by the encoders(Wang et al., 2023; Guan
et al., 2024). For example, Li et al. (2023) tasks the
representations of the abstract syntax tree (AST)
tokens as input to predict modified variable names
with encoded bit strings and Yang et al. (2023a);
Li et al. (2023) encode identifier bit strings into
the source code, without affecting the usage and
semantics of the code. They perform transforma-
tions on an AST-based intermediate representation
that enables unified transformations across differ-
ent programming languages involving the changes
in the expression, statement, and block attributes.
Zhang et al. (2023) use linear combinations within
this latent space to add a simple message to the
embedded text. The decoder then converts it back
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into plain text with minor modifications resulting
from the added message. A similar process is im-
plemented to encode bit strings containing infor-
mation like user ID and generation date (Qu et al.,
2024). Zhou et al. (2024) injects coarse-grained
and fine-grained signals (signatures) into the text
during generation. The coarse-grained level uti-
lizes statistical signals to detect watermark pres-
ence, while the fine-grained level embeds content-
dependent signature bits for verifying content in-
tegrity.

2.2.3 Ad-Hoc Addition

Unlike popular watermarking methods like rule-
based substitutions, which have strict, global def-
initions for modifications within a sentence (like
synonym/spelling replacement and triggers), the
ad-hoc addition methods use task-specific local
guidelines for changes to the sentence structure.
We bucket these methods into Ad-Hoc addition
methods and list a few relevant methods.

First, Por et al. (2012); Sato et al. (2023) em-
bed watermarks by inserting Unicode spaces in
the text. Sato et al. (2023) introduce three meth-
ods: WhiteMark replaces whitespace with alter-
nate Unicode spaces (e.g., U+0020 to U+2004),
VariantMark uses Unicode variation selectors to
embed messages in Chinese, Japanese, and Korean
texts by substituting characters with variants, and
PrintMark alters text appearance for printed media
through ligatures, varied spaces, and character vari-
ants. Another work introduces three unique syntax
transformations for message encoding— Adjunct
Movement, Clefting, and Passivization (Atallah
et al., 2001). For instance, Adjunct Movement in-
volves relocating adjuncts within a sentence, as
demonstrated by the variability in positioning the
word ’quickly’ in "She quickly finished her home-
work." Clefting highlights a specific clause, typi-
cally the subject, such as transforming "The chef
cooked a delicious meal" into "It was the chef who
cooked a delicious meal" to emphasize ’the chef.’
Passivization, however, changes active sentences
with transitive verbs into passive voice, transform-
ing "The teacher graded the exams" into "The ex-
ams were graded by the teacher." Sun et al. (2023)
apply semantic-preserving code transformations
by modifying operators.

Overlapping categories Some papers span mul-
tiple categories within the taxonomy. For example,
Zhao et al. (2023a) and Sato et al. (2023) address

both Text Quality and Model Ownership Verifica-
tion, preserving readability while ensuring owner-
ship with detectable markers. Similarly, the work
by Yang et al. (2023a) is listed under both message
injection and embedding-level addition, as it in-
volves injecting watermarks as messages within the
embedding space. Similarly, research presented by
Peng et al. (2023) falls under both embedding-level
additions and trigger-set because it uses modified
embeddings activated by specific triggers to en-
hance watermark detectability. These dual listings
reflect the flexibility provided by these techniques,
addressing overlapping goals. In contrast to prior
surveys with limited focus areas, we believe main-
taining separate but overlapping categories helps
clarify distinct objectives and evaluation criteria
across multiple dimensions, ensuring comprehen-
sive coverage of the taxonomy.

2.3 Evaluation

A wide variety of datasets have been used to evalu-
ate the performance of watermarking approaches,
limiting our ability to extract generalized conclu-
sions about their performance. Different bench-
marks focus on selected downstream tasks to vali-
date watermarking capabilities, and we provide a
detailed breakdown of the datasets utilized in Table
3. We observe many evaluation datasets focusing
on text completion and post-watermarking text sim-
ilarity tasks. The downstream task descriptions are
provided below.

Downstream Task descriptions
Text Completion Task This task involves giving
the LLM a portion of text from the dataset as a
prompt and then asking it to complete the text. The
generated completion is then compared with the
human completion or the portion of the dataset not
provided as the prompt.

Post-watermark text similarity analysis In this
task, given an initial text X , watermarking is ap-
plied to X to produce a modified text X ′. An
example could be a rule-based substitution with
synonyms or spelling replacements. The compari-
son is then made between X and X ′, with X and
X ′ based on distinctions in length, semantics, and
other linguistic features.

Other Downstream Tasks For these tasks, given
the same initial prompt X , the LLM’s generated
response Y (before watermarking) is compared
with the response Y ′ (after watermarking).

6167



Table 3: Datasets used in the evaluation of watermarking techniques. Bold indicates the most used dataset(s) for a
particular downstream NLP task and the respective works using the dataset.

Downstream Task Dataset Name Papers

Text Completion Colossal Clean Crawled Corpus (C4) (Raffel et al., 2020), Dbpedia Class
(Auer et al., 2007), WikiText-2 (Merity et al., 2016)

Kirchenbauer et al. (2023), Kuditipudi et al.
(2023), Liu et al. (2023a), Munyer and
Zhong (2023), Yoo et al. (2023b), Liu et al.
(2023b), Fairoze et al. (2023), Ren et al.
(2023), Hou et al. (2023), Qu et al. (2024),
Wang et al. (2023), Liu and Bu (2024),
Chen et al. (2023), Mao et al. (2024), Chang
et al. (2024), Zhou et al. (2024)

Post-watermark
text similarity
analysis

WikiText-2, Workshop on Statistical Machine Translation (WMT14)
(Bojar et al., 2014), Internet Movie Database (IMDb) (Maas et al., 2011),
AgNews (Zhang et al., 2015), Dracula, Pride and Prejudice, Wuthering
Heights (Gerlach and Font-Clos, 2020), CNN/Daily Mail (Nallapati et al.,
2016), Human ChatGPT Comparison Corpus (HC3) (Guo et al., 2023), C4,
Reuters Corpus (Lewis et al., 2004), ChatGPT Abstract (Nicolai Thorer
Sivesind, 2023), Human Abstract (Nicolai Thorer Sivesind, 2023)

Yang et al. (2022), He et al. (2022a), He
et al. (2022b), Yoo et al. (2023a), Sato et al.
(2023), Zhang et al. (2023), Yang et al.
(2023b), Topkara et al. (2006a)

Machine
Translation

WMT14, IWSTL14 (Cettolo et al., 2014) Zhao et al. (2023b), Wu et al. (2023), Hu
et al. (2023), Takezawa et al. (2023)

Text
Summarisation

CNN/Daily Mail, Extreme Summarization (XSUM) (Narayan et al., 2018),
Data Record to Text Generation (DART) (Nan et al., 2021) , WebNLG
(Gardent et al., 2017)

Fu et al. (2024), Wu et al. (2023), Hu et al.
(2023)

Code Generation CodeSearchNet (CSN) (Husain et al., 2019), HUMANEVAL (Chen et al.,
2021), Mostly Basic Python Programming (MBPP), MBXP (Athiwaratkun
et al., 2023), DS-1000 (Lai et al., 2023), APPS (Hendrycks et al., 2021)

Li et al. (2023), Yang et al. (2023a), Guan
et al. (2024), Lee et al. (2023), Li et al.
(2024), Mao et al. (2024)

Question
Answering

OpenGen (Krishna et al., 2024), Long Form Question Answering
(LFQA) (Krishna et al., 2024), TruthfulQA (Lin et al., 2021)

Zhao et al. (2023a), Yoo et al. (2023b), Qu
et al. (2024), Zhou et al. (2024), Chang et al.
(2024), Chen et al. (2023)

Story Generation ROCstories (Mostafazadeh et al., 2016) Zhao et al. (2023b)

Text Classification Stanford Sentiment Treebank (SST) (Socher et al., 2013), AgNews,
Microsoft News Dataset (MIND) (Wu et al., 2020), Enron Spam (Metsis
et al., 2006)

Peng et al. (2023)

2.4 Adversarial attacks on watermarking
techniques

Malicious and adversarial actors seek to misuse
LLM technology and bypass watermarks to avoid
being distinguished from rightful owners. To pro-
mote research into protecting intellectual property
rights, we extend suggestions from Kirchenbauer
et al. (2023) to describe de-watermarking methods,
i.e., adversarial attacks on text watermarking, into
three categories:

1. Text insertion attacks involve adding addi-
tional tokens or text segments to the original
output of a watermarked LLM generation. For
example, on watermarking methods with green-
red lists (Kirchenbauer et al., 2023; Zhao et al.,
2023b; Takezawa et al., 2023), an attacker could
add additional tokens from the red list, lead-
ing to the obfuscation of the watermarking
method. Another variant of text insertion at-
tacks includes copy-paste attacks (Qu et al.,
2024), where adversaries insert copied text from

external sources into the watermarked output.
This approach can dilute the effect of the water-
mark by embedding non-watermarked content
within the watermarked text, further complicat-
ing watermark detection and attribution.

2. Text deletion attacks involve the removal of
tokens or text segments from the original water-
marked output of an LLM and modifying the
rest of the tokens to fit the output. Returning
to the example of green-red list methodologies,
this means removing some of the green list to-
kens from the output and modifying the red list
tokens in the output (Kirchenbauer et al., 2023).
These techniques often require knowledge of
the vocabularies belonging to each of the two
lists in green-red lists.

3. Text substitution attacks entail replacing spe-
cific tokens or text segments in the watermarked
output while preserving its overall meaning. At-
tackers perform tokenization attacks by para-
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Figure 4: An example of an adversary performing a
de-watermarking attack on a green-red list-based water-
marking technique. The original partitioning contains a
higher proportion of green tokens than the partitioning
after adversarial paraphrasing.

phrasing text (Ren et al., 2023), misspelling
words, or replacing characters like newline (\n);
increasing red list tokens, and evading green-red
list watermarking (Kirchenbauer et al., 2023).
These also include Homoglyph attacks: attacks
that exploit Unicode characters that look sim-
ilar but have different IDs, leading to varia-
tion from expected tokenization (e.g., "Light-
house" becomes nine tokens with Cyrillic char-
acters). Generative attacks leverage LLMs’
context learning to manipulate the output pre-
dictably, such as adding emojis after each token
or replacing characters to disrupt watermark de-
tection (Kirchenbauer et al., 2023).

3 Discussion and Open Challenge

Our taxonomy-driven categorization of the re-
search space exposes the open challenges to water-
marking and outlines "good to have" criteria while
developing new techniques to protect intellectual
property ownership. They are as follows:

Resilience to adversarial attacks One of the
critical challenges in the field is the lack of compre-
hensive evaluation of techniques against a diverse
range of de-watermarking attacks. While many
researchers focus on developing robust techniques,
there is often insufficient emphasis on systematic
red-teaming of these methods against multiple at-
tacking scenarios.

Standardization of evaluation benchmarks
There is a need for standardized benchmarks and
evaluation metrics to ensure fair and consistent
comparison between different watermarking tech-

niques. Table 3 shows how evaluation datasets
differ in the literature for the same downstream
task, reflecting this necessity.

Impact on LLM output factuality Watermarks
modify the model output distributions; techniques
that are robust to de-watermarking often have
greater variations in watermarked outputs com-
pared to clean outputs, leading to a potential trade-
off between de-watermarking and LLM factuality.
Despite this potential trade-off, there is a lack of
analysis on how watermarking techniques affect
the output inaccuracies or hallucinations. After
training or fine-tuning LLMs with specific water-
marking techniques, there is often insufficient ex-
amination of whether these methods introduce or
exacerbate inaccuracies. We advocate for factuality
evaluations post-watermarking.

Enhanced Interpretability Drawing upon secu-
rity and privacy literature (Kumar et al., 2024), we
ask the community to establish privacy norms for
LLM watermarking. We envision this to be simi-
lar to model cards, which describe the degree of
security provided by particular methods against
malicious actors.

Human-centered watermarking We urge the
community to work on the human perception of
LLMs when interacting with different safety prin-
ciples. User perception of LLMs may change with
differences in output distributions. Furthermore,
safety practices may enable AI acceptance and
adoption among the masses.

4 Conclusion

In this paper, we analyze representative literature
to provide a comprehensive taxonomy for digital
watermarking techniques for both LLM-generated
and human-written text. The taxonomy categorizes
watermarking techniques using four primary cate-
gories, namely - intention of the method, data used
for evaluation, watermark addition, and adversarial
attacks.

We identify and cluster existing watermarking
methods, highlighting key open challenges and
research gaps in the field. For every watermark-
ing method, we advocate for establishing stronger
evaluation paradigms: standardized datasets, re-
silience to adversarial attacks, impact on model
utility and output actuality, enhanced interpretabil-
ity, and human perception change upon the use of
these such techniques. We envision this research as
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a reference for policymakers, safety practitioners,
and end users, facilitating the adoption of robust
digital watermarking practices and promoting re-
sponsible AI use.

5 Limitations

Limitations to our work are as follows: (1) We
do not include detailed insights into metrics for
success rate (accuracy of detecting watermarked
texts), text quality (perplexity and semantics), NLP
task-specific evaluation, and robustness (detectabil-
ity of watermarks after removal attacks). How-
ever, we briefly describe the two types of metrics
into watermarking success rates (intrinsic quality
of watermarking) and model utility/ performance
8.2. (2) Given the scope of this paper, we do not
demonstrate the mathematical analysis of different
watermarking techniques. We urge readers to refer
to the original papers for the same (3) We do not
cover all different task deployment scenarios for
the watermarking techniques discussed. (4) Read-
ers may perceive similarity between sections 2.1.1
(text quality) and 2.3 (evaluation), however, we
wish to highlight the following distinction - in sec-
tion 2.3 (evaluation), our focus is on the datasets
that different papers use to evaluate their water-
marking techniques whereas in section 2.1.1 (text
quality), we look at how some papers have similar
intentions or end goals of watermarking. While
similar intentions often include many of the same
downstream tasks as mentioned in sections 2.3
(Text Completion Task, Post-watermark text sim-
ilarity analysis, Other Downstream Tasks), and
2.1.1, we advocate for the standardization of these
tasks for definitive apples to apples comparison
between techniques. (5) While we advocate for
a standardized evaluation, we do not propose a
framework for evaluating the effectiveness of wa-
termarking techniques. (6) We focus primarily on
watermarking and do not delve into the broader
relationships between watermarking and adjunct
fields, for example, steganography. However, addi-
tional information on these topics can be found in
the appendix section 8.1.

6 Ethical Considerations

This paper reviews the challenges and opportuni-
ties of watermarking techniques in LLMs. Our
work has many potential societal consequences,
none of which must be specifically highlighted
here. There are no major risks associated with

conducting this review.
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8 Appendix

8.1 Watermarking and Steganography
The concepts of text watermarking and steganogra-
phy are often discussed together due to their shared
goal of altering text to convey additional informa-
tion. However, they serve distinct purposes and
have different applications.

Steganography is the practice of concealing
messages within non-secret text or data, making
the hidden message indiscernible to unintended re-
cipients. The primary objective of steganography
is to ensure that the existence of the concealed mes-
sage remains undetected. This is often achieved
through subtle alterations to the host text that are
imperceptible to the human eye or standard detec-
tion techniques. Steganography is widely used in
fields such as secure communications and digital
rights management.

Text Watermarking, on the other hand, in-
volves embedding identifiable information or mark-
ers within text to establish ownership, verify au-
thenticity, or detect unauthorized use. Unlike
steganography, text watermarking does not nec-
essarily seek to conceal the existence of the water-
mark but rather focuses on making it robust and

detectable under various conditions. The key objec-
tives of text watermarking include ensuring that the
watermarked content remains readable and main-
taining the natural quality of the text, while provid-
ing a reliable means of verification or ownership
assertion.

While both steganography and text watermark-
ing involve altering text, they differ significantly
in their underlying intentions and techniques.
Steganography prioritizes secrecy and conceal-
ment, whereas text watermarking emphasizes de-
tection, ownership, and authenticity. Understand-
ing these differences is crucial when selecting the
appropriate technique for specific applications.

8.2 Some metrics used for evaluation
To evaluate the effectiveness of watermarking tech-
niques, we consider two categories of metrics: de-
tection metrics and downstream task evaluation
metrics.

For watermark detection, we evaluate the follow-
ing metrics:

1. Watermark Success Rate: The percentage
of cases where the embedded watermark is suc-
cessfully detected, indicating the reliability of the
watermarking technique.

2. Area Under the Curve (AUC): Repre-
sents the model’s ability to distinguish between
watermarked and non-watermarked texts, derived
from the ROC (Receiver Operating Characteris-
tic) curve. A higher AUC indicates better perfor-
mance in correctly classifying watermarked and
non-watermarked text.

3. False Positive Rate (FPR): Measures the
rate at which non-watermarked texts are incorrectly
identified as watermarked, which is crucial for as-
sessing the precision of watermark detection meth-
ods.

FPR =
False Positives

False Positives + True Negatives
(1)

To ensure that watermarking does not adversely
affect the utility of text in various NLP tasks, we
evaluate the following metrics:

1. F1 Score: Used for classification tasks, such
as sentiment analysis or spam detection. It is the
harmonic mean of precision and recall, evaluat-
ing the balance between false positives and false
negatives.

F1 Score = 2 · Precision · Recall
Precision + Recall

(2)
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2. Exact Match (EM): Used primarily in ques-
tion answering tasks, this metric measures the
percentage of predictions that exactly match the
ground truth answers.

EM =
Number of Exact Matches

Total Number of Predictions

3. Perplexity (PPL): Commonly used in lan-
guage modeling and text generation tasks, perplex-
ity measures the fluency of generated text. Lower
perplexity indicates that the text is more coherent
and closer to natural language usage.

To mathematically define perplexity for a se-
quence of words W = (w1, w2, . . . , wN ), it can
be expressed as:

PP (W ) = P (w1w2 . . . wN )−
1
N (3)

where P (w1w2 . . . wN ) is the probability of the
word sequence W according to the model.
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