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Abstract

Recent advances in large language models
(LLMs) have demonstrated potential for LLM
agents. To facilitate the training for these
agents with both linguistic feedback and non-
linguistic reward signals, we introduce Learn-
ing through Communication (LTC). We design
a universal buffer to store all the feedback, and
an iterative pipeline to enable an LLM agent
to explore and update its policy in an given en-
vironment. To utilize our universal buffer for
capturing agent interactions in various tasks,
we introduce diverse communication patterns
tailored for both single-agent and multi-agent
environments. We evaluate the effectiveness
of our LTC approach on four diverse datasets:
ALFWorld (single-agent), HotpotQA (multi-
agent collaboration), Chameleon (multi-agent
competition), and GSM8k (multi-agent teacher-
student). On these datasets, LTC outperforms
supervised instruction fine-tuning baselines by
3.6% to 12%. These results demonstrate the
versatility and effectiveness of LTC in facilitat-
ing online adaptation for LLM agents.

1 Introduction

Recent advances in large language models
(LLMs) (Ouyang et al., 2022; Bubeck et al., 2023;
Wei et al., 2022a) have shed light on human-like
LLM agents. In addition to designing prompting
methods (Wei et al., 2022b; Yao et al., 2023; Wu
et al., 2023a), recent works also focus on how to
train LLM agents using linguistic feedback and
non-linguistic reward signals. The linguistic feed-
back is usually processed as instruction data to per-
form Instruction Fine-tuning (IFT) (Chung et al.,
2022; Lee et al., 2023; Honovich et al., 2022; Wang
et al., 2022e), while the non-linguistic reward sig-
nals are generally used to align with human prefer-
ences (Ouyang et al., 2022; Bai et al., 2022a; Stien-
non et al., 2020; Leike et al., 2018). Some existing
approaches, such as Reflexion (Shinn et al., 2023)
and ExpeL (Zhao et al., 2024), incorporate prior

exploration experiences into the inference prompt
to enhance decision-making. However, these meth-
ods introduce significant computational overhead
during deployment due to increased prompt length.
Reflexion, in particular, relies on ground truth feed-
back, which may lead to test set leakage concerns.

While some scenarios provide agents with het-
erogeneous feedback, existing methods can only
utilize the feedback partially. For instance, in mul-
tiplayer board role-playing games, players gener-
ate a wealth of linguistic data, and the game con-
cludes with definitive reward signals indicating vic-
tory or defeat. Current approaches employ the
linguistic data for IFT (Li et al., 2023; Micheli
and Fleuret, 2021), while the reward signals serve
solely as a filtering criterion to select the IFT data
instead of as an objective of reinforcement learn-
ing. Moreover, since these methods primarily focus
on inference-time modifications, they do not opti-
mize the model’s learning process in a structured
way that balances linguistic consistency with task-
specific rewards.

To address this gap, we propose Learning
through Communication (LTC), a universal frame-
work that enables LLM agents to simultaneously
learn from linguistic feedback and non-linguistic
reward signals (Figure 2). Our method organizes
these signals into a unified structure and employs
an iterative pipeline for continuous adaptation.
Specifically, each iteration in LTC comprises two
distinct phases:

1. Exploration During exploration, the agent
interacts with various environments to gather
diverse trajectories and reward signals into the
universal buffer.

2. Updating The agent’s model is updated based
on the collected data in the universal buffer.
LTC combines language modeling and rein-
forcement learning objectives to balance lin-
guistic consistency with task-specific rewards.
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Figure 1: The LTC framework is adept for both single-agent and multi-agent environments. Within these envi-
ronments, agents have the capability to persistently engage in exploration and interaction to collect trajectories
through various communication patterns. Concurrently, LTC facilitates the training of these agents utilizing the data
acquired from their exploratory activities. This process enables the agents to autonomously adapt to their respective
environments, negating the necessity for human supervision.

The buffer data format consists of a series of
one-to-one aligned token-value sequences demon-
strated in Figure 3. This replay buffer structure is
designed to accommodate diverse tasks, including
single-agent and multi-agent environments (Fig-
ure 1). To efficiently collect and organize agent
interactions across varied scenarios, we employ a
structured data format and an iterative policy up-
date mechanism.

Buffer Structure The communication data is
stored in replay buffers, facilitating systematic up-
dates during the iterative policy learning process.
Each exploration trajectory is processed into five
aligned data sequences [Sa,Sm,Sv,Sl,Sr]:

• Sa: Token sequence representing agent-
generated actions, environment descriptions,
system feedback, and hints from other agents.
Invalid or nonsensical text is excluded.

• Sm: Mask for controlling training loss. En-
vironment descriptions and system feedback
(mask 0) are excluded from policy and value
updates. Agent decisions and reasoning (mask
1) are fully supervised. Hints from other
agents (mask 2) are included in policy loss
but excluded from value updates.

• Sv: State values for actions, computed by
the agent’s value head. A linear layer in the
LlamaDecoder processes these values, con-
strained within (−1, 1) via a tanh() function.

• Sr: Sparse rewards for actions. Most actions
receive zero rewards, with nonzero values (+1
for positive, -1 for negative) assigned upon
task completion or buffer overflow.

Iterative Policy Update Mechanism To facili-
tate online learning and adaptation, we introduce

an iterative policy update pipeline that consists of
two core phases:

1. Exploration: The agent interacts with the
environment, collecting linguistic data and re-
ward signals. These interactions are stored
in the universal buffer, ensuring a structured
representation of experiences for subsequent
learning.

2. Updating: The agent updates its model based
on the collected buffer data, leveraging both
language modeling and reinforcement learn-
ing objectives. This phase integrates linguistic
consistency with task-specific rewards, opti-
mizing performance through policy and value
learning.

Communication Patterns for Data Collection
To effectively capture diverse agent interactions,
we define three distinct communication patterns:

1. Single-agent: A single agent collects linguis-
tic exploration data and receives environment-
based rewards. The communication occurs
between the agent and the environment. It fol-
lows a soliloquy-style interaction where the
agent sequentially reasons and takes actions.

2. Multi-agent: Multiple agents collaborate or
compete, exchanging linguistic data and uti-
lizing environment-provided reward signals.
Communication occurs among agents and the
environment. Agents play distinct roles, ei-
ther providing reasoning feedback or making
decisions, and rewards are assigned based on
collective or competitive performance.

3. Teacher-student: Experienced agents pro-
vide corrective feedback and reward signals
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Figure 2: LTC has an iterative two-phase framework. During the exploration phase, the agent proactively explores
new environments and communicates with other agents, gathering the trajectories to update the replay buffer. Then
the agent is trained for updating the policy in the updating phase.

to novice agents. Unlike the previous pat-
terns that rely primarily on environment-
based rewards, this setting incorporates agent-
provided feedback as additional reward sig-
nals. This approach is particularly effective
for complex analytical tasks, where an experi-
enced agent directly refines the learning pro-
cess by generating structured rewards along-
side guidance.

We evaluate the LTC method on several repre-
sentative datasets: ALFWorld for decision-making,
HotpotQA for knowledge-intensive reasoning, and
GSM8k for numerical reasoning. Throughout these
experiments, LTC consistently outperforms the
baselines. In ALFWorld, LTC outperforms the
strong instruction tuning baseline by 12% on suc-
cess rate, even in the challenging Pick 2 task. This
shows that our communication mechanism enables
the agent to learn from its experiences for task
solving. On HotpotQA, LTC outperforms the in-
struction tuning baseline by 5% on EM score, and
our Llama-7B based agent even obtains slightly
better (0.6%) performance than the ReAct-Tuning
baseline which uses a 9× larger PaLM-62B model.
On GSM8k, LTC also beats the CoT-Tuning base-
line by 3.6% on accuracy. These results highlight
the adaptability and effectiveness of the LTC ap-
proach across varied domains. The combination of
a structured replay buffer, iterative policy updates,
and diverse communication patterns enables Learn-
ing through Communication (LTC) to effectively
balance linguistic feedback with task-driven rein-
forcement learning. Through evaluations on ALF-
World, HotpotQA, and GSM8k, our approach con-
sistently outperforms supervised instruction tuning
baselines, demonstrating its versatility and efficacy
in facilitating LLM agent adaptation.

2 Experiments

2.1 Settings
Model Architecture We use a modified version
of Llama (Touvron et al., 2023) as the base model.
To generate state values corresponding to the action
tokens, we introduce an additional linear layer to
serve ast the value head. This value head acts as
an auxiliary output module, and the output values
are processed using the tanh() function to ensure
they fall within the range of (-1, 1). This adaptation
for RL has also been discussed in prior studies
(Santacroce et al., 2023).
Agent Pre-training We use the Llama-7B
model (Touvron et al., 2023) for our LLM agent. To
enhance the agent’s ability to follow task-specific
instructions, we initialize it by instruction fine-
tuning (IT). And this initialized agent works as
the baseline for a fair comparison. This step is cru-
cial because the original Llama-7B model, without
prior instruction fine-tuning, struggled to follow
task instructions and generation sensible actions in
the environments. To collect data for instruction
fine-tuning, we employ GPT3/4 as our agent to ex-
plore the environments created from the training
set. We then filter out negative examples and retain
positive examples to train the initial agent. For both
the ALFWorld and HotpotQA datasets, we leverage
GPT3 (specifically, text-davinci-003). However,
for the GSM8k dataset, we use GPT4 due to GPT3’s
inadequate performance in handling mathematical
problems, which resulted in a scarcity of positive
examples.
Training details We utilize the AdamW opti-
mizer (Loshchilov and Hutter, 2017) with a batch
size of 32. The learning rate is set to 2e-4. In
each iteration, the sizes of new environments for
agents to explore are: 256 for ALFWorld, 512 for
GSM8k, and 1024 for HotpotQA. For parameter-
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Figure 3: The buffer data is a serial of integer/float sequences. We treat each token id as the action in our
reinforcement learning formula. We also save its corresponding mask indicating the source of the token, the value
from the critic model, the log-prob indicating the log-likelihood when sampling the action and the reward from the
environment/other agents.

Method \ Task Pick Clean Heat Cool Look Pick 2 All

ReAct (avg) 65 39 83 76 55 24 57
ReAct (best of 6) 92 58 96 86 78 41 71

ReAct-IM (avg) 55 59 60 55 23 24 48
ReAct-IM (best of 6) 62 68 87 57 39 33 53

BUTLERg (best of 8) 33 26 70 76 17 12 22
BUTLER (best of 8) 46 39 74 100 22 24 37

ReAct-Tuning (avg) 83 91 91 90 72 8 77
ReAct-Tuning (best of 3) 92 97 96 95 78 24 78
LTC (avg) 89 91 93 97 96 67 90
LTC (best of 3) 92 97 96 100 100 76 91

Table 1: AlfWorld success rates (%) for 6 tasks. The
results of the bottom block are obtained by fine-tuning
Llama-7B model.

efficient fine-tuning, we employ LoRA (Hu et al.,
2021) with hyperparameters R = 16 and α = 16.
For distributed training, we utilize 4 nodes with
8×A100 GPUs on HotpotQA and GSM8k. For the
experiments on ALFWorld, we use 1 node with
2×A100 GPUs due to the dataset’s small scale.
Baselines We compare the agents trained by
LTC with existing prompting and instruction tun-
ing methods, including ReAct (Yao et al., 2023),
ReAct-IM (Huang et al., 2022b), CoT (Wei et al.,
2022b), CoT-SC (Wang et al., 2022c,d), BUT-
LER (Micheli and Fleuret, 2021). The detailed
of these baselines are described in Appendix D.8.
Most of these methods focus on few-shot prompt-
ing, and different pre-trained models are used. To
ensure a fair comparison, we include the additional
baselines named ReAct-Tuning and CoT-Tuning
by fine-tuning the Llama-7B model using the col-
lected trajectories as fine-tuning data. In addition,
GPT-4 are not used in the test time, and all the
results reported are obtained by the trained agent
itself.

2.2 Results
ALFWorld As shown in Table 1, LTC outper-
forms the previous best methods* on all of tasks

*For ALFWorld, ReAct and ReAct-IM results are from
Table 3 of (Yao et al., 2023). BUTLER and BUTLERg results
are from Table 4 of (Shridhar et al., 2020b), and they are
trained with DAgger (Ross et al., 2011).

of ALFWorld. We can see that Instruction Fine-
tuning is already a strong baseline outperforming
others, yet our LTC achieves a success rate of 91%,
remarkably outperforming the best Instruction Tun-
ing baseline (78%). Notably, on both Cool and
Look tasks, LTC obtains a 100% success rate. Even
on the hardest Pick Two & Place task (e.g., “put two
pencils in the drawer”), it achieves a decent 76%
success rate. The Pick Two task requires the agent
to perform two sequences of "pick and place" ac-
tions in one task, while keeping track of the desired
type and the location. The combined sequences
and the need to remember the previous location
make this task challenging. This may be the reason
why baselines achieve lower success rates on this
task. In contrast, our LTC agent, which further
trains the agent with self-exploration significantly
outperforms other agents. This underscores the ef-
fectiveness of the communication mechanism in
LTC.

HotpotQA As shown in Table 2, LTC outper-
forms the instruction tuning baseline† by 5% on
Exact Match (EM) score, and it even outperforms
ReAct and CoT on their default settings. Note that
ReAct and CoT use PaLM-540B and GPT3-175B
as the pre-trained LM model, which is 77x and 25x
larger than our the Llama-7B model we used. By
sampling 21 CoT trajectories during inference and
adopting the majority answer, CoT-SC is slightly
better (0.2%) than LTC, and their combined method
ReAct → CoT-SC surpasses LTC by 1.9%. Com-
pared to other models with tuning, our Llama-7B
based agent even obtains slightly better (0.6%) per-
formance than the ReAct-Tuning baseline with 9×
larger PaLM-62B model.

†For HotPotQA, Prompting method results without fine-
tuning are from Table 1&5 of (Yao et al., 2023). PaLM-8B
and PaLM-62B scores are estimates from Figure 3 of (Yao
et al., 2023).
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Model Method EM score

PaLM-540B
CoT (Wei et al., 2022b) 29.4
CoT-SC (Wang et al., 2022c) 33.4
ReAct (Yao et al., 2023) 27.4
ReAct → CoT-SC 35.1

GPT3-175B ReAct 30.8

PaLM-62B
ReAct-Tuning 32.6
CoT-Tuning 25.2

PaLM-8B
ReAct-Tuning 25.0
CoT-Tuning 14.0

Llama-7B
ReAct-Tuning 28.2
LTC(single-agent) 31.0
LTC(multi-agent) 33.2

Llama2-13B
ReAct-Tuning 33.8
LTC(multi-agent) 35.8

Table 2: EM scores on HotpotQA with prompt and tun-
ing methods. Methods that use fine-tuning are marked
by “-Tuning”.

Method \ #players n=3 n=4 n=5 overall

Llama-Tuning 20.8 20.3 23.8 21.9
Llama-LTC 22.9 23.4 27.5 25.0

Table 3: Chameleon game winning rates (%) of different
number of players settings. At each game, one player
is played by target evaluated model, and the others are
played GPT-4.

Chameleon As shown in Table 3, LTC outper-
forms the instruction tuning baselines by 3.1% on
winning rate against GPT-4 players. In the training,
all the players are played by the same Llama2-7B
model that we are training. While in the testing, to
get the winning rate of our trained agent against
GPT4, only 1 player is randomly picked to use
our trained agent as backend, and other players are
played by GPT4. We could see that the LTC agents
winning rate improves with the increasing of num-
ber of players, we explain this by the more players,
the higher chance that the GPT4 players carry the
game.

GSM8k As shown in Table 4, LTC(teacher-student) out-
performs the instruction fine-tuning baseline by
3.6% on accuracy, and it surpasses the LTC(single-

agent) baseline, which does not use the reward and
feedback from GPT-4.

However, LTC underperforms CoT and CoT-
SC with the much larger models (PaLM-540B and
GPT3-175B). This phenomenon is because numer-
ical reasoning requires a larger model size and suf-
ficient pretraining data, as observed in (OpenAI,
2023). Unfortunately, due to computational re-
source limitations, we can only train the relatively
small Llama-7B model but were unable to train
larger-scale models. Nevertheless, we believe that

Model Method Accuracy

PaLM-540B
CoT (Wei et al., 2022b) 56.5
CoT-SC (Wang et al., 2022c) 74.4

GPT3-175B
CoT (Wei et al., 2022b) 60.1
CoT-SC (Wang et al., 2022c) 78.0

Llama-7B
CoT (Touvron et al., 2023) 11.0
CoT-SC (Touvron et al., 2023) 18.1

Llama-7B
CoT-Tuning 37.7
LTC(single-agent) 39.6
LTC(teacher-student) 41.3

Table 4: Accuracy on GSM8k. The results of the bottom
block are obtained by fine-tuning LLaMA-7B model,
while the others are prompting methods without fine-
tuning.

exploring LTC with larger models is promising for
future research.
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Figure 4: The accuracy curves of PPO training.
Ablation We conducted ablation studies on the
loss design of LTC to show it balances linguistic
feedback and reward signals. Figure 4 illustrates
the success rate of agents on the ALFWorld under
different loss settings. Without using our communi-
cation pattern for interactions and merely sampling
pre-collected instruction data for training, the im-
provement was limited. However, when we incor-
porated our communication pattern to gather data,
the model’s performance quickly surpassed 80%.

3 Conclusion

We introduced Learning through Communica-
tion (LTC), a paradigm that adapts LLM agents to
new tasks and environments via communication-
based iterative learning using both linguistic feed-
back and non-linguistic reward signals. Our evalu-
ations across diverse domains like ALFWorld, Hot-
potQA, and GSM8k demonstrate LTC’s superiority
over traditional methods, showcasing its ability to
adaptively integrate comprehensive feedback for
enhanced decision-making and reasoning. The de-
signed communication patterns enhance LTC’s ap-
plicability across various settings, indicating its
potential for broader, real-world applications and
more natural human-agent interactions.
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4 Limitation

Despite these advancements, our work has lim-
itations. The LTC’s dependence on diverse, high-
quality feedback may not always be practical, lim-
iting its robustness and broader applicability. Ad-
ditionally, the need for careful hyper-parameter
tuning, especially the balance between linguistic
and non-linguistic feedback, can be challenging
and time-consuming. Lastly, LTC’s performance
in highly dynamic or unpredictable environments
remains underexplored, suggesting potential gaps
in its ability to adapt to rapid changes or atypical
feedback scenarios.
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A Learning Through Communication

We design Learning Through Communication
(LTC), an iterative training method for LLM agents
to continuously adapt to new environments. As
shown in Figure 2, LTC iterates between two
phases: (1) An exploration phase where agents can
interact with new environments and other agents to
collect trial data with feedback, and (2) a updating
phrase to fine-tune the agent to update the policy.

A.1 Exploration Phase
At the start of each iteration, the agent explores

the environments to get the trajectories and the
reward signal data. We denote these data as a tu-
ple: S = (T ,M,R), where T = {t1, t2, . . . , tn}
represents the text data generated by the commu-
nication process during agent exploration, M =
{m1,m2, . . . ,mn} with mi ∈ {0, 1, 2} indicates
the source of the text data (system or agents),
R = {r1, r2, . . . , rn} with ri ∈ {−1, 0, 1} rep-
resents the reward signals provided by either the
system or the agents. We demonstrate the the de-
tails of this data structure in Figure 3, M is the
mask list, and R is the reward list. In PPO training,
both the value list and the log-prob list correspond
directly to the action list. For brevity, we denote
these three lists together as T here. Please see
Appendix D.3 for more detaills.

To collect the trajectories data S = (T ,M,R)
from different types of tasks, we design the commu-
nication patterns for these tasks. Here we provide
three communication patterns:

• Single-agent: Single-agent is a single-agent
soliloquy style communication pattern, de-
signed for general instruction following tasks
(Algorithm 1). It split the tasks into step by
step like ReAct and CoT, and their own tra-
jectories with system rewards are collected to
train themselves at the same time with their
exploration.

Figure 1 left is a toy example of ALFWorld to
demonstrate the Single-agent pattern with a
single agent. This agent soliloquizes to think
the situation and take the actions to explore
the environment and finally get the reward
provided by the environment. This pattern is
based on the think and act steps in the ReAct
formulation (Yao et al., 2023), we design the
training buffer collection process to make it
aligh with our reinforcement learning formu-
lation.
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• Multi-agent: Multi-agent is a multi-agent dis-
cussion style pattern (Algorithm 2).

It is designed for multi-agent collaborating
and competing tasks, where multiple agents
will play their role by speaking or taking ac-
tions in a certain order and a final reward
will be given by the environment based on
the performance of the agents. The left figure
of Figure 5 is a toy example of HotpotQA to
illustrate this pattern for collaborating, where
the GPT-4 agent play as a thinker to analyze
the situation and give suggestions to the actor
agent who is responsible for making decisions.
The reward in HotpotQA is the correctness of
the answer obtained by two agents. And we
can use their communication data to train the
LTC agents do both thinker and actor so that
they can learn how to cooperate with each
other to solve the task. The right figure of
Figure 1 is a toy example of Multi-agent for a
competing game task Chameleon, where three
agents play different roles. The reward is the
win or loss of the game, so they need do with
deduction and bluffing in the communication
process to win the game. And their games
trajectories will be use in LTC iterations to
boost the agents.

• Teacher-student: Teacher-student is a
teacher-student style pattern for powerful
agents to teach the novice agents (Algo-
rithm 3). We design this pattern for com-
plex analytical tasks such as numerical rea-
soning, which require extensive analytical ex-
amples for agents to improve the specific rea-
soning ability lacking in the pretrained models.
Teacher-student pattern has two roles (student
and teacher) played by two agents, however, in
addition to the linguistic feedback, the teacher
roles can directly provide the non-linguistic
reward signals, which are all provided by the
system (environments) in the previous pattern.
The right figure of Figure 5 is a toy example
with GSM8k to demonstrate how the student
agent communicates with the teacher agent
in a homework-correcting style. In the math
question environment, the student agent starts
with an initial answer to the current question,
then the teacher directly corrects the answer
with a reward. To help the student improve
ability instead of just memorizing the solution,
the teacher will generate another individual

question and provide a new reward to the stu-
dent.

A.2 Updating phase

In the updating phase, the LLM agent model
could be optimized through the conversation ses-
sions collected in the exploration stage. Given a
example session S = (T ,M,R), we mainly uti-
lize two training objects for model training.

• Language model Objective: LLM encourages
the model to learn from the trajectory T , serv-
ing as an unsupervised learning schema to
help model for behavior cloning from other
agents’ response or predicting system feed-
backs.

• Reinforcement Objective: Lreinforce optimizes
the model by maximizing the expectation re-
ward provided by environment or a teacher
agent (i.e., GPT-4 (OpenAI, 2023)). It is an
goal-oriented objective, and allows the model
to learn through both positive and negative
signals in the communication session.

Thus, the overall training objective for LTC com-
bines the above two terms:

LLTC(S) = βLLM(T ) + Lreinforce(S), (1)

where β is a balancing hyper-parameter. The off-
policy PPO algorithm (Schulman et al., 2017) is
utilized for optimizing Lreinforce(S), and it can be
further breakdown into policy loss, value loss and
policy entropy regularization terms in implemen-
tation. The vanilla PPO algorithm takes the triplet
(state, action, rewards) for training. In this case,
we sample from the trajectories (T<i, ti) for simu-
lating the state-action pairs, specifically, we only
keep the tokens generated by agent model itself as
actions for policy updating.

B Related Work

B.1 Instruction Tuning

Instruction tuning (IT) is an important tech-
nique for improving the capabilities and control-
lability of LLMs (Radford et al., 2019; Brown
et al., 2020; Wei et al., 2022a; Qin et al., 2023;
OpenAI, 2023; Chowdhery et al., 2022; Touvron
et al., 2023). Many studies have been dedi-
cated to instruction data generation and selec-
tion (Chung et al., 2022; Wang et al., 2022e; Lee
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et al., 2023). For instance, Unnatural Instruc-
tions (Honovich et al., 2022) is created by using
the Super-Natural Instructions dataset (Wang et al.,
2022f) as a seed to prompt InstructGPT (Ouyang
et al., 2022). Self-Instruct (Wang et al., 2022e)
employs a recursive pipeline that generates in-
struction data from hand-crafted seed tasks using
ChatGPT (OpenAI, 2022). Other studies focus
on fine-tuning pre-trained LLMs with instruction
data. BLOOMZ (Muennighoff et al., 2022) is ini-
tialized with BLOOM (Scao et al., 2022) and then
fine-tuned using the xP3 instruction dataset (Muen-
nighoff et al., 2022). Flan-T5 is initialized with
T5 (Raffel et al., 2020) and fine-tuned with the
FLAN dataset (Longpre et al., 2023). Addition-
ally, after the release of LLaMA (Touvron et al.,
2023), many works have utilized it as the base
model for instruction tuning, such as Alpaca (Taori
et al., 2023), Vicuna (Chiang et al., 2023), and
GPT-4-LLM (Peng et al., 2023). Some papers ex-
plore alignment fine-tuning using RLHF (Ouyang
et al., 2022; Bai et al., 2022a; Stiennon et al., 2020;
Leike et al., 2018). InstructGPT (Ouyang et al.,
2022) employs GPT-3 for supervised fine-tuning
on a human-filtered instruction dataset, followed by
training a reward model and using PPO (Schulman
et al., 2017) for RLHF. Claude investigates RLHF
(Bai et al., 2022a) and constitutional approaches
(Bai et al., 2022b) for making LLMs both harmless
and helpful. DPO (Rafailov et al., 2023) fine-tunes
the LLMs to align with human preferences by di-
rectly optimizing a classification problem on prefer-
ence data instead of RLHF. While these prominent
research works focus on aligning LLMs for gen-
eral instruction-following, our objective is to adapt
LLM agents for specific tasks or environments.

B.2 LLM Agents

LLMs have demonstrated the potential to act
as advanced agents (Ouyang et al., 2022; Bubeck
et al., 2023; Wei et al., 2022a), and significant
progress has been made in developing versatile
LLM agents (Weng, 2023; Sumers et al., 2023; Park
et al., 2023; Liu et al., 2023a; Lin et al., 2023; Xu
et al., 2023) and benchmarks (Wang et al., 2022a;
Deng et al., 2023; Liu et al., 2023b). For plan-
ning, Chain-of-Thought (CoT(Wei et al., 2022b))
prompts the model to think step by step, by de-
composing complex tasks into smaller and sim-
pler steps. Self Consistency (Wang et al., 2022c,d)
extends CoT by using ensembles of predictions
to improve consistency of the LLM. Inner Mono-

logue (Huang et al., 2022b) leverages environment
feedback to enhance LLMs’ planning and process-
ing capabilities in embodied robotics tasks with-
out extra training. ReAct (Yao et al., 2023) in-
tegrates reasoning and action taking, expanding
the action space to include both task-specific dis-
crete actions and language. Reflexion (Shinn et al.,
2023) equips agents with dynamic memory and
self-reflection capabilities to improve reasoning by
using continuous trials in the same environment
as feedback. Recent research has also shown that
LLMs can be augmented as an autonomous agent
to use external tools to solve problems in interac-
tive environments. These techniques include re-
trieval augmentation (Shi et al., 2023; Yao et al.,
2023; Izacard et al., 2022), math tools (Schick
et al., 2023; Yao et al., 2023; Lu et al., 2023),
and code interpreters (Gao et al., 2022; Wang
et al., 2022b). Prior works also have explored
using multiple LLMs in a collaborative setting
to solve complex tasks (Hong et al., 2023; Qian
et al., 2023; Li et al., 2023; Wang et al., 2023;
Talebirad and Nadiri, 2023; Akata et al., 2023).
Open-source projects like AutoGPT (Significant-
Gravitas, 2023), GPT-Engineer (AntonOsika,
2023), and BabyAGI (yoheinakajima, 2023) also
showcase the potential of LLM not just in gener-
ating content but also as a general problem solver.
Most of the above methods are based on either
human-designed few-shot prompting examples, or
finetuning with pre-collected instruction datasets.
Our LTC is not a few-shot prompting method and
we focus on adapting the agent by collecting train-
ing data automatically by exploration.

C Discussion

Method GSM8k Hotpot-QA Alfworld
(CoT) (ReAct) (ReAct)

ICL 836 1937 1744

LTC 107 167 189

Table 5: Average number of tokens of the input prompts
on test sets. LTC does not use any few shot examples
in the prompt, hence uses only a fraction of tokens
compared to ICL.

Efficiency As mentioned above, prompting-
based methods such as ReAct (Yao et al., 2023)
and CoT (Wei et al., 2022b) use a subset of exem-
plary trajectories from the given task as few-shot
prompts during inference. However, these few-shot
prompts are often long, which leads to increased
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Collect

Reinforce learning

Prompt

Env: You are in the middle of a room. Looking quickly 
around you, you see a countertop, a fridge … 
Your task is to: put an egg in the bowl.

I need to find and take an egg first, then …

An egg is more likely to appear in the fridge …

Open the fridge, I get an egg. Now I need to 
find the bowl and put the egg into it …
A bowl is more likely to appear on the counter…

Go to the countertop. Put the egg in the bowl.
Success, reward +1

Few-shots Reply buffers
Prompt Train

ICL

Collected trails AgentAgent

Training-free Prompting-free
Efficient InferenceInefficient Inference

Examples dependent Continual learning

LTC

LoRA

Your task is to: provide a detailed answer so user don't 
need to search outside to understand the answer … 
Question: Shawn has five toys. For Christmas, he got two 
new toys each from his mom and dad. How many toys 
does he have now?

Shawn started with 5 toys. If he got 2 new toys 
then that is 5+2=7. The answer is 7.

Sarah started with 9 pens. If she gives 3 pens to 
Bob and 3 pens to Tom, then that is 9-3-3=3. 
The answer is 3.

It’s incorrect. If he got 2 toys from his mom and 
2 toys from his dad, then that is 5+2+2=9.

Now take this homework problem: Sarah has 9 
pens, and she gives 3 pens to each of Bob and 
Tom. How many pens does Sarah have left?

Correct! You have learnt this type of questions.
Success, reward +1

Fail, reward -1

Signal from GPT

Your task is to: solve a question answering task with 
interleaving Thought, Action, Observation steps … 
Question: Were Pavel Urysohn and Leonid Levin known 
for the same type of work?

Search[Pavel Urysohn]

I need to search Pavel Urysohn and Leonid 
Levin, find their types of work, then find …

Pavel Samuilovich Urysohn was a Soviet …

Leonid Anatolievich Levin is a Soviet-American 
mathematician and computer scientist.

Search[Leonid Levin]

Pavel Urysohn is a mathematician. I need to 
search Leonid Levin next and find its type …

Finish[yes]

Leonid Levin is a mathematician and computer 
scientist. So they have the same type of work.

Success, reward +1Can replace when testing

Env: You are in the middle of a room. Looking quickly 
around you, you see a countertop, a fridge … 
Your task is to: put an egg in the bowl.

I need to find and take an egg first, then …

An egg is more likely to appear in the fridge …

Open the fridge, I get an egg. Now I need to 
find the bowl and put the egg into it …
A bowl is more likely to appear on the counter…

Go to the countertop. Put the egg in the bowl.
Success, reward +1

1

Figure 5: The toy examples to demonstrate communication patterns: 1) the left figure is the Multi-agent Dialogue
pattern, where two agent play different roles to collaborate on the task. The thinker agent is responsible for analyzing
the situation and give suggestion to the actor agent who is responsible for making decisions. We can just assign the
LTC agent to play the thinker agent when testing without GPT-4 agent. 2) the right figure is the Teacher-student
Dialogue pattern, where the student agent starts with an initial answer to the current question, and then the teacher
directly corrects the answer with a reward. To help the student improve ability instead of just memorizing the
solution, the teacher will generate another analogous question to ask the student. Eventually, the student gives a new
answer for this analogous question and gets a new reward signal from the teacher.

inference cost and limited context length for user
queries. As shown in Table 5, we compare the
number of input tokens for each task. We compute
the CoT prompts for GSM8k, and we use ReAct
for the other two tasks. All the few-shot prompts
are sourced from the original paper. As shown, our
LTC agents used only 12.8%, 8.6%, and 10.8% of
the input tokens required by the ICL methods on
the three tasks, respectively.

Shortcuts One interesting observation is that the
GPT-4 agent sometimes employs "shortcuts" to
solve problems when serving as a teacher to gener-
ate new training data. These shortcuts rely on the
internal knowledge acquired during its pretraining
process. To illustrate this, we present a case study
from HotpotQA in Figure 7. In this case, the GPT-4
agent quickly retrieves the answer by leveraging its
memorized knowledge about the second entry after
receiving the Wikipedia page of the first entry. On
the other hand, the bottom of Figure 7 demonstrates
a comparison with LLaMA-7B, which was trained
using our LTC method with the GPT-4 agent in
the loop. LLaMA-7B does not employ shortcuts
and instead performs a search for the second entry.
This case study demonstrates that communication
mechanism in LTC provide additional benefits dur-
ing learning, compared to soley relying on data
generated by GPT-4.
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Figure 6: The loss curves of PPO training.

Ablation We conducted ablation studies on the
loss design of LTC. Figure 4 illustrates the suc-
cess rate of agents on the ALFWorld dataset under
different loss settings. Without using our communi-
cation pattern for interactions and merely sampling
pre-collected instruction data for training, the im-
provement was limited. However, when we incor-
porated our communication pattern to gather data,
the model’s performance quickly surpassed 80%.
Furthermore, employing PPO loss to handle pos-
itive and negative samples separately resulted in
faster and more significant improvement (blue line).
In Figure 6, we present the separate curves of the
three main losses during training. Initially, the LM
loss showed a decreasing trend. Interestingly, as
training iterations progressed, both the value loss
and policy loss gradually decreased, which pos-
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sibly causes the LM loss to increase temporarily.
After the value loss and policy loss reached a cer-
tain threshold, the LM loss continued to decrease
till convergence.

D Appendix

D.1 Datasets
We conducted experiments on four datasets:

ALFWorld (Shridhar et al., 2020b), Hot-
potQA (Yang et al., 2018), Chameleon (Wu
et al., 2023b) and GSM8k (Cobbe et al., 2021).
Each of these datasets represents a different
environment type, namely single-agent, multi-
agent collaborating, multi-agent competing, and
teacher-student, respectively. And different
communication patterns are used: Single-agent
Monologue for ALFWorld, Multi-agent Dialogue
for HotpotQA and Chameleon (Wu et al., 2023b),
and Teacher-student Dialogue for GSM8k.
ALFWorld ALFWorld (Figure 1) is a text-based
game that follows the ALFRED benchmark (Shrid-
har et al., 2020a). In this game, agents are presented
with six types of tasks that involve navigating a sim-
ulated household environment using textual actions.
With over 50 locations to explore, these tasks de-
mand strategic planning and thorough exploration.
Following (Shridhar et al., 2020b), we utilize the
train set that consists of 3553 environments for
training our model and the baselines; and we use
the unseen test set that comprises 134 environments
for evaluatation.
HotpotQA HotpotQA is a question-answering
dataset that focuses on multi-hop reasoning based
supporting facts, with the goal of improving the
explainability of QA systems. In this dataset,
agents are required to reason across two or more
Wikipedia passages to derive answers. We initialize
the environments using only the text of the ques-
tions, meaning that agents are provided with the
question and task description but do not have ac-
cess to supporting paragraphs. To support their
reasoning, agents must either rely on their internal
knowledge or interact with an external Wikipedia
tool to retrieve the necessary information. For train-
ing, we sample the environments from the training
set, which consists of 90,447 QA-pairs. For evalu-
ation, we run 500 random examples from the test
set, following (Yao et al., 2023).
Chameleon Chameleon is a multi-player social
deduction game environment implemented by the
ChatArena (Wu et al., 2023b). There are two roles

Algorithm 1 The Python-style algorithm to demon-
strate Single-agent pattern

# agent: LLaMA agent
# input: Task description
# output: S = (T, M, R)

# initialization
T, M, R = [input], [0], [0]

i = 0
while i < max_steps:

T += ["think:"]
thought = agent.api(T)
T.append(thought)
M.append(1) # agent message mask
R.append(0)

T += ["act:"]
action = agent.api(T)
T.append(action)
M.append(1) # agent message mask
R.append(0)

response = env.excute(action)
reward = parse(response)
T.append(response)
M.append(0) # system message mask
R.append(reward)

i += 1
if reward != 0:

break
S = (T, M, R)
return S

in the game, chameleon and non-chameleon. The
topic of the secret word will be first revealed to all
the players. Then the secret word will be revealed
to non-chameleons. Non-chameleons try to identify
the chameleon without giving away the secret word,
while the chameleon tries to blend in and guess the
word. The game involves giving clues, voting on
who the chameleon might be, and a final guess from
the accused chameleon. We use [3, 4, 5] players
setting to train and test the agents’ performance.

GSM8k The GSM8k dataset is a collection of
8.5K math problems for grade school students.
These problems have been crafted by human ex-
perts to ensure linguistic diversity. The dataset is
divided into two sets: 7.5K problems for training
and 1K problems for testing. Each problem in the
dataset requires 2 to 8 steps of reasoning to arrive
at the solution. The problems primarily focus on
fundamental arithmetic operations like addition,
subtraction, multiplication, and division.

D.2 Communication Patterns

To collect the trajectories and the reward signal
data from different types of tasks, we design the
communication patterns for these tasks and unified
the data format as described in Figure 3. Here
we use three python-sytle algorithms (Algorithm 1
Algorithm 2 Algorithm 3) to demonstrate how three
types of communication patterns help the agent
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collect exploration data.

Algorithm 2 The Python-style algorithm to demon-
strate Multi-agent pattern

# agent1: LLaMA agent
# agent2: GPT-4 agent
# input: Task description
# output: S = (T, M, R)

# initialization
T, M, R = [input], [0], [0]

i = 0
while i < max_steps:

T += ["think:"]
thought = agent2.api(T)
T.append(thought)
M.append(2) # teacher agent message mask
R.append(0)

T += ["act:"]
action = agent1.api(T)
T.append(action)
M.append(1) # student agent message mask
R.append(0)

response = env.excute(action)
reward = parse(response)
T.append(response)
M.append(0) # system message mask
R.append(reward)

i += 1
if reward != 0:

break
S = (T, M, R)
return S

D.3 Buffer Structure

The communication data will be saved as replay
buffers for the updating phase, and the buffer data
format is a serial of tokens sequences demonstrated
in Figure 3. We treat each token as the action unit
in our reinforcement learning formula, and each
exploration trail is processed into 5 data sequences
[Sa,Sm,Sv,Sl,Sr]:

• Sa: A list of integers representing the gener-
ated token ids encoded by the tokenizer. All
the valid text trajectories are recorded as a
queue, including system texts like environ-
ment descriptions, feedback, and agent texts
like parsed actions, thinking processes, and
hints from other agents. While the invalid gen-
erated text of the agent will be skipped, such
as nonsense string and action text can not be
parsed. These tokens are treated equally as
the input for the LLM, but they have different
masks to apply different losses.

• Sm: The system mask to mask different types
of input tokens to control the training loss. We
set 0 as the default mask for system texts like
environment descriptions, system feedback,
and system prompts, the actions encoded from

Algorithm 3 The Python-style algorithm to demon-
strate Teacher-student pattern

# agent1: LLaMA agent
# agent2: GPT-4 agent
# input: Question description
# output: S = (T, M, R)

# initialization
T, M, R = [input], [0], [0]

i = 0
while i < max_steps:

T += ["answer␣the␣question␣step␣by␣step:"]
answer1 = agent1.api(T)
query = T + answer1 + ["the␣answer␣is␣correct,␣yes␣or␣no?

␣also␣gives␣a␣better␣answer"]
response = agent2.api(query)
reward, answer2 = parse(response)
T.append(answer1)
T.append(answer2)
M.append(1) # student agent message mask
M.append(2) # teacher agent message mask
R.append(reward)
R.append(+1) # assume teacher is correct

query = query + response + ["please␣generate␣a␣similar␣qa
␣pair␣to␣teach␣the␣student:"]

response = agent2.api(query)
new_question, teacher_answer = parse(response)
new_question += "answer␣the␣question␣step␣by␣step:"
student_answer = agent1.api(new_question)
reward = parse(student_answer, teacher_answer)
T.append(new_question + student_answer)
M.append(1) # student agent message mask
R.append(reward)

i += 1

S = (T, M, R)
return S

these kinds of texts are not actions we want
the agent to learn, so they will be masked out
both policy loss and value loss in the PPO
algorithm. We set 1 as the mask for agents-
generated tokens like the keywords of deci-
sions and the thinking process, which are the
main supervising objects of our reinforcement
learning pipeline, so they will be assigned full
policy loss and value loss. We set 2 as the
mask for hints or feedback from other agents,
which are the actions we also want our own
agent to learn but without instant state values
since they are not generated by our agent. So
the tokens with mask 2 will be mask out only
the value loss and supervised by the policy
loss.

• Sv: The state values corresponding to the ac-
tions obtained by the value head our the agent
model. The value head is an addition layer
inserted to the original pre-trained LLM archi-
tecture, we implement it by inserting a linear
layer after the second-to-last LlamaDecoder-
Layer as the auxiliary output module and the
output values are processed by a tanh() func-
tion to keep it range inside (−1, 1).
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• Sr: The rewards corresponding to the actions.
The rewards are very sparse, most of the ac-
tions are zero-reward, and only when the cur-
rent task is finished or the token length of the
current buffer has just overflowed it will be
non-zero value: +1 for positive, -1 for nega-
tive.

D.4 Algorithm of LTC

Algorithm 4 Python-style code of LTC

# agent: Pre-trained LLM agent
# n_gpu: total number of GPUs
# env_cls: the class of environments
# n_gen: the generation size for one iteration
# n_train: the train size for one iteration

# initialization
agent = instruction_finetune(agent)
replay_buffer = []
i = 0
while i < max_iteration:
i += 1
# Exploration Phase
envs = env_cls(sample(data, n_gen//n_gpu))
# asynchronously generate
new_buffer = generate_trials(agent, envs)
# dist.gather and dist.broadcast
new_buffer = sync_all_gpus(new_buffer)
replay_buffer.append(new_buffer)

# Training Phase
rollouts = sample(replay_buffer, n_train))
# distributed training with ppo
agent = ppo_ddp_train(agent, rollouts)

The implementation of LTC can be summarized
as Algorithm 4, we unveil the structural framework
that embodies the Learning Through Communica-
tion (LTC) paradigm, meticulously crafted to facil-
itate autonomous and progressive learning through
iterative cycles. At the outset, the pre-trained Large
Language Model (LLM) agent undergoes a fine-
tuning phase to align its initial configuration with
the intended learning tasks. Following this, an ex-
ploration phase is initiated where a batch of training
environments is sampled and subsequently engaged
by the agent to generate trial data asynchronously,
leveraging the power of parallel computing across
multiple GPUs to enhance efficiency. This newly
generated data is synchronized across all GPUs to
foster a cohesive learning base, which is stored in
a replay buffer for further utilization. As the agent
iterates through this process, it continually samples
from this replay buffer during the updating phase,
employing the Proximal Policy Optimization (PPO)
algorithm in a distributed data parallel (DDP) set-
ting to refine its strategies and adapt dynamically.
This code snippet, therefore, encapsulates the in-
novative asynchronous and distributed nature of
the LTC paradigm, marking a significant stride in

fostering intelligent, adaptive, and collaborative
artificial intelligence agents.

D.5 Training Loss
After exploration in each iteration, we update

the replay buffer by incorporating the newly col-
lected trajectories and then sample the most recent
trajectories to train the parameters πθ of the LLM
agent. We design our training objective to combine:
1) the standard language modeling loss LLM, 2)
the policy loss Lpolicy, 3) the value loss Lvalue, and
4) the entropy loss Lentropy. The overall training
objective is formulated as:

Ltotal = LLM + β(Lpolicy + λLvalue + Lentropy)

where β and λ are weighting hyperparameters.
The different losses in the above are described

as follows:

• The LM loss LLM is defined as the cross
entropy between the agent and its genera-
tions which have a positive reward, akin to
self-improving model schemes (Huang et al.,
2022a; Rafailov et al., 2023). By training on
these generations, the agent is further encour-
aged to give generations which yield positive
rewards.

• The policy loss Lpolicy is introduced to super-
vise the agent’s actions. The policy loss Lpolicy
is calculated using a masked version of the sur-
rogate objective defined in (Schulman et al.,
2017) with advantage estimates Â,

Lpolicy(θ) =− E[mpolicy ∗ min(r(θ)Â,

clip(r(θ), 1− ϵ, 1 + ϵ)Â],
(2)

where r(θ) is the output probability ratio
r(θ) = πθ(a | s)

πold(a | s) of the agent with its previous
version πold. We define binary mask mpolicy
to mask out the encoded system message in
PPO loss (marked by Sm = 0 in buffers D.3).
For example, let {x1, y1, x2, y2, . . . xn, yn}
be a token buffer consisting of system mes-
sages xn ∈ X and agents’ messages (include
the target trained agent and the other teacher
agents) πθ output yn ∈ Y , then the binary
mask mpolicy = {0, 1, 0, 1, . . . 0, 1}.

• The value loss is defined in (Schulman
et al., 2017) as the mean squared error be-
tween calculated value and estimated advan-
tages masked by another binary mask mvalue
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Your task is to: solve a question answering task with interleaving Thought, Action, Observation steps … 
Question: The Atik Valide Mosque and Valens Aqueduct are found in what country?

I need to search Atik Valide Mosque and Valens Aqueduct, find the country they are found in.

Search[Atik Valide Mosque]

The Atik Valide Mosque is located in Istanbul, Turkey. I need to search Valens Aqueduct and find the 
country it is found in.

The Atik Valide Mosque (Turkish: Atik Valide Camii, Eski Valide Camii) is a 16th century Ottoman imperial 
mosque located on a hill above the large and densely populated district of Üsküdar, in Istanbul, Turkey …

Finish[Turkey]

The Aqueduct of Valens (Turkish: Valens Su Kemeri, Ancient Greek: Ἀγωγὸς τοῦ ὕδατος, romanized: 
Agōgós tou hýdatos, lit. 'aqueduct') was a Roman aqueduct system built in the late 4th century AD, to supply 
Constantinople – the capital of the eastern Roman empire. Construction of the aqueduct began during …

Search[Valens Aqueduct]

The Valens Aqueduct is located in Constantinople, Turkey. So the answer is Turkey.

Replace GPT-4 with our LLaMA-7B based agent.

Your task is to: solve a question answering task with interleaving Thought, Action, Observation steps … 
Question: The Atik Valide Mosque and Valens Aqueduct are found in what country?

The question refers to two specific landmarks: the Atik Valide Mosque and the Valens Aqueduct. To identify 
the country where these landmarks are found, I'll start by searching for information on the Atik Valide 
Mosque, which may be unique enough to easily pinpoint the country.

Search[Atik Valide Mosque]

The observation confirms that the Atik Valide Mosque is located in Istanbul, Turkey. Although I haven't 
checked the Valens Aqueduct specifically, it's safe to assume that the question is referring to the well-
known Valens Aqueduct in Istanbul. I can confidently answer that both landmarks are found in Turkey.

Finish[Turkey]

The Atik Valide Mosque (Turkish: Atik Valide Camii, Eski Valide Camii) is a 16th century Ottoman imperial 
mosque located on a hill above the large and densely populated district of Üsküdar, in Istanbul, Turkey …

GPT-4 uses some shortcuts based on its internal knowledge.

Your task is to: solve a question answering task with interleaving Thought, Action, Observation steps … 
Question: The Atik Valide Mosque and Valens Aqueduct are found in what country?

The question refers to two specific landmarks: the Atik Valide Mosque and the Valens Aqueduct. To identify 
the country where these landmarks are found, I'll start by searching for information on the Atik Valide 
Mosque, which may be unique enough to easily pinpoint the country.

Search[Atik Valide Mosque]

The observation confirms that the Atik Valide Mosque is located in Istanbul, Turkey. Although I haven't 
checked the Valens Aqueduct specifically, it's safe to assume that the question is referring to the well-
known Valens Aqueduct in Istanbul. I can confidently answer that both landmarks are found in Turkey.

Finish[Turkey]

The Atik Valide Mosque (Turkish: Atik Valide Camii, Eski Valide Camii) is a 16th century Ottoman imperial 
mosque located on a hill above the large and densely populated district of Üsküdar, in Istanbul, Turkey …

GPT-4 uses some shortcuts based on its internal knowledge.

3

Figure 7: GPT-4 can use shortcuts to solve the problem, while the LLaMA-7B agent cannot mimic it.

(marked by Sm = 1 in buffers D.3). For exam-
ple, let {z1, y1, z2, y2, . . . zn, yn} be a token
buffer consisting of all other messages (ex-
cept the agent-generated messages) zn ∈ X
and trained agent-generated messages πθ out-
put yn ∈ Y , then the binary mask mpolicy =
{0, 1, 0, 1, . . . 0, 1}.

• Lentropy is an entropy bonus to ensure suffi-
cient exploration, as suggested in past work
(Williams, 1992; Mnih et al., 2016). This en-
tropy is computed as a small negative factor
times the entropy of the policy distribution :
Lentropy = 0.01×∑

a πθ(a|s) log πθ(a|s).

D.6 Implementation detail

D.7 Asynchronously Distributed Generating

The exploration data is generated in an asyn-
chronous style, so that the agent can handle the en-
vironments with open-end exploration space. The

training data are pre-processed into interactive en-
vironments which are capable for agents to observe
the states, take actions, and get immediate feedback.
According to the number of GPU threads, these en-
vironments are divided into corresponding portions
and then distributed to each GPU. Subsequently,
these GPUs begin to explore these environments
asynchronously in parallel with the same agent
trained by the latest data. Since the lengths of the
generated contents are varied and the interactions
inside the environments are generally open-ended,
the time cost for the agent to explore each environ-
ment is also varied, some GPU threads may process
the data faster than others. A barrier is set for all the
GPU threads so that the early finished GPU threads
can wait for the others until the total accumulated
buffers generated by the environments achieve a
preset number Sg, which is the quantity of the new
training buffers we want to add to the replay buffers
in one iteration. After all the GPU threads reach
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the barrier, we get enough buffers then gather the
buffers from each GPU thread and merge them to-
gether, and broadcast the new buffers to each GPU
thread to update their local replay buffers. The up-
dated replay buffers will be used in the updating
phase for training the agents of the next iteration.

D.8 Baselines

ReAct (Yao et al., 2023) uses a subset of train-
ing cases as prompts for different tasks, in the
format of thought-action-observation sequences.
For knowledge-intensive reasoning tasks like Hot-
potQA, ReAct designs an action space that includes
search, lookup, and finish actions, enabling the
agent to interact with Wikipedia to retrieve nec-
essary information. On the other hand, ReAct-
IM adopts Inner Monologue (IM) (Huang et al.,
2022b) style prompting. Chain-of-thought prompt-
ing (CoT) (Wei et al., 2022b), enhances the rea-
soning capabilities of Language and Vision mod-
els (LLMs) by generating a sequence of interme-
diate reasoning steps. This can be considered
as a reasoning-only baseline of ReAct, exclud-
ing actions and observations. Additionally, CoT-
SC (Wang et al., 2022c,d) is a follow-up work of
CoT, serving as a self-consistency baseline. It is
worth noting that most of these methods employ
greedy decoding, except for BUTLER (Micheli
and Fleuret, 2021), which utilizes beam search.
Most of these methods focus on few-shot prompt-
ing, and different pre-trained models are used. To
ensure a fair comparison, we include the additional
baselines named ReAct-Tuning and CoT-Tuning
by fine-tuning the LLaMA-7B model using the col-
lected trajectories as fine-tuning data mentioned
in 2.1. In addition, GPT-4 are not used in the test
time, and all the results reported are obtained by
the trained agent itself.

D.9 Losses

We conducted ablation studies on the loss design
of LTC. Figure Figure 4 illustrates the success rate
of agents on the ALFWorld dataset under different
loss settings. Without using our communication
pattern for interactions and merely sampling pre-
collected instruction data for training, the improve-
ment was limited. However, when we incorpo-
rated our communication pattern to gather data, the
model’s performance quickly surpassed 80%. Fur-
thermore, employing PPO loss to handle positive
and negative samples separately resulted in faster
and more significant improvement (blue line). In

Figure Figure 6, we present the separate curves of
the three main losses during training. Initially, the
LM loss showed a decreasing trend. Interestingly,
as training iterations progressed, both the value loss
and policy loss gradually decreased, which possibly
causes the LM loss to increase temporarily. After
the value loss and policy loss reached a certain
threshold, the LM loss continued to decrease till
convergence.

D.10 Cases study
One interesting observations is that the GPT-4

agent sometimes employs "shortcuts" to solve prob-
lems when serving as a teacher to generate new
training data. These shortcuts rely on the internal
knowledge acquired during its pretraining process.
To illustrate this, we present a case study from Hot-
potQA in Figure Figure 7. In this case, the GPT-4
agent quickly retrieves the answer by leveraging
its memorized knowledge about the second entry
after receiving the Wikipedia page of the first en-
try. On the other hand, the bottom of Figure Fig-
ure 7 demonstrates a comparison with LLaMA-7B,
which was trained using our LTC method with the
GPT-4 agent in the loop. LLaMA-7B does not em-
ploy shortcuts and instead performs a search for
the second entry. This case study demonstrates that
communication mechanism in LTC provide addi-
tional benefits during learning, compared to soley
relying on data generated by GPT-4.
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Figure 8: The text version of the toy example in Figure 1 for Single-agent pattern of ALFWorld.
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