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Abstract

Parameter-Efficient Fine-Tuning (PEFT) meth-
ods such as LoRA have significantly improved
the adaptation of LLMs to downstream tasks
in a resource-efficient manner. However,
in multi-task scenarios, challenges such as
training imbalance and the seesaw effect fre-
quently emerge. Mixture-of-LoRA (MoLoRA),
which combines LoRA with sparse Mixture-of-
Experts, mitigates some of these issues by pro-
moting task-specific learning among experts.
Despite this, MoLoRA remains inefficient in
terms of training speed, parameter utilization,
and overall multi-task performance. In this
paper, we propose Mixture of Asymmetric
Low-Rank Adaptaion (MALoRA), a flexible
fine-tuning framework that leverages asym-
metric optimization among LoRA experts.
MALoRA reduces the number of trainable
parameters by 30% to 48%, increases training
speed by 1.2x, and matches the computational
efficiency of single-task LoRA models. Addi-
tionally, MALoRA addresses overfitting issues
commonly seen in high-rank configurations,
enhancing performance stability. Extensive
experiments across diverse multi-task learning
scenarios demonstrate that MALoRA consis-
tently outperforms all baseline methods in both
inter-domain and intra-domain tasks.

1 Introduction

Large Language Models (LLMs), such as BLOOM
(Le Scao et al., 2023), LLaMA (Touvron et al.,
2023a,b), and Mixtral 8x7B (Jiang et al., 2023,
2024) have demonstrated remarkable general
capabilities. These models, pre-trained on large
and diverse datasets, can be adapted to new tasks
through fine-tuning, leading to state-of-the-art
performance in downstream applications (Chung
et al., 2024; Wei et al., 2021), which extend their
applicability across varied domains, significantly
broadening their scope of use.

*Corresponding author.

Fine-tuning LLMs by updating all parameters is
computationally expensive and resource-intensive.
To address this, PEFT methods such as Adapter
(Houlsby et al., 2019), LoRA (Hu et al., 2021) and
DoRA (Liu et al., 2024b) were proposed. These
methods focus on fine-tuning smaller, localized
modules, significantly reducing memory usage and
communication overhead. Despite their success,
these methods still face limitations in complex
multi-task scenarios.

Recent studies have highlighted several lim-
itations of LoRA, such as training imbalances,
catastrophic forgetting, and poor generalization to
unseen tasks (Liu et al., 2024a; Luo et al., 2024; Liu
and Luo, 2024). To address these issues, Mixture-
of-LoRA (MoLoRA) was introduced, combining
LoRA with a sparse Mixture-of-Experts (MoE)
architecture. MoLoRA mitigates the training imbal-
ances of LoRA by distributing tasks across multiple
experts, allowing each expert to perform special-
ized functions and reducing the risk of catastrophic
forgetting. The MoE router dynamically assigns
weight coefficients to each LoRA expert, improv-
ing both task specialization and overall generaliza-
tion in multi-task learning (Zadouri et al., 2023).

However, MoLoRA introduces additional
challenges, such as increased training latency
and parameter redundancy. Existing work related
to MoLoRA primarily focus on improving its
routing strategies (Dou et al., 2024; Liu and Luo,
2024; Li et al., 2024a) , yet they often overlook
the intrinsic relationships and redundancies
among LoRA experts. Inspired by the observed
asymmetries in LoRA (Zhu et al., 2024), we
conducted experiments to analyze the similarities
and asymmetries between MoLoRA experts. Our
findings reveal significant parameter redundancy,
particularly in the down-projection matrices, where
different experts show a high degree of similarity,
indicating inefficiencies in its parameter usage. In
contrast, the up-projection matrices exhibit much
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Figure 1: Architectures Overview: (a) LoRA, (b) MoLoRA, and (c) the proposed MALoRA. MALoRA optimizes the
model in two key ways: (I) it increases the rank of the up-projection matrices (Bt) to enhance expert generalization
capabilities, and (II) it introduces a shared low-rank subspace (SA) in the down-projection matrices (At), while
assigning each expert a unique coefficient matrix (Pt), effectively reducing parameter redundancy and computation.

less similarity, suggesting the need for additional
capacity to better capture task-specific variations.

To address these inefficiencies, we propose
Mixture of Asymmetric Low-Rank Adaptation
(MALoRA), as shown in Figure 1. MALoRA
introduces a shared, tunable low-rank subspace
in the down-projection module, with each LoRA
expert assigned a compact coefficient matrix, effec-
tively reducing parameter count and computational
complexity while preserving distinctions between
experts. By reallocating the parameters saved from
the down-projection module to the up-projection
module, MALoRA increases the rank of the
up-projection matrices, enhancing the theoretical
generalization bounds of the model. By leveraging
these asymmetries, MALoRA optimizes parameter
usage, reduces redundancy, and improves both gen-
eralization and multi-task learning performance.

In summary, our contributions are as follows:
(1) We identify and quantify the parameter

redundancy in MoLoRA, particularly in the
down-projection matrices, where experts demon-
strate significant overlap. This insight highlights
inefficiencies in the current parameter alloca-
tion strategies, with distinct optimization needs
identified for the up- and down-projection modules.

(2) We propose MALoRA, a novel fine-tuning
framework that introduces a shared low-rank sub-
space in the down-projection module, reducing re-
dundancy and computational overhead. The real-
located parameters are utilized to enhance the up-
projection module, expanding its rank, and improv-
ing the model’s theoretical generalization capacity.

(3) MALoRA reduces the number of trainable

parameters by 30% - 48%, while maintaining or
surpassing the performance of MoLoRA across
multi-tasks. It further achieves a 1.2x speedup in
training and inference, alleviating high-rank over-
fitting and optimizing computational efficiency.

(4) We conduct extensive evaluations across both
inter-domain and intra-domain multi-task learning
scenarios, demonstrating that MALoRA consis-
tently outperforms all baseline methods in both
efficiency and generalization, offering a scalable
and robust solution for fine-tuning large models.

2 Preliminaries

LoRA The Low-Rank Adaption (Hu et al.,
2021) assumes that the updates to the linear
weight W ∈ Rm×n exhibit a low-rank structure.
It employs two trainable low-rank matrices
A ∈ Rr×n and B ∈ Rm×r to approximate the
parameter update of W during fine-tuning:

∆W =
α

r
BA (1)

Here, r represents the rank of decomposed
matrices and α controls the scale of the update.
Given that r ≪ min{n,m}, LoRA greatly reduces
memory and GPU communication overhead.

AsyLoRA Asymmetry LoRA (Zhu et al., 2024)
builds on LoRA by leveraging the inherent
asymmetry between the low-rank matrices A and
B. Specifically, A tends to extract features from
the input while B refines these features to align
with task-specific objectives.

AsyLoRA introduces an asymmetric resource al-
location strategy. It focuses computational budgets
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on the matrix B by doubling the rank of LoRA,
while keeping it fully trainable and freezing the
parameters of matrix A, that is,

∆W =
α

r
Bm×2rA2r×n (2)

The work brought forward the generalization
boundary for LoRA methods. Given a distribution
µ and a trainable parameter set A, is reformulated
as follows. Here, γ is a constant influenced by
training hyperparameters, and |A| represents the
number of trainable parameters:

|gen(µ,A)| ≤
√

γ|A| (3)

Mixture-of-LoRA Mixture-of-LoRA (Zadouri
et al., 2023) (MoLoRA) is a novel PEFT framework
that integrates the MoE architecture with LoRA
modules serving as experts. The built-in router of
MoE dynamically distributes input data to different
LoRA experts. Specifically, a MoLoRA layer
consists of N independent LoRA experts {Et}Nt=1.
The router, parameterized by a learnable weight ma-
trix Wg, assigns routing weights Gt to each expert
t based on the input tensor x. The routing decision
and the layer output are computed as follows:

∆Wt = BtAt (4)

Gt = TopK(Softmax(Wg · x)) (5)

y =
N∑

i=t

Gt∆Wtx (6)

where Gt represents the top K experts selected
by the router, ensuring that only the most relevant
experts are activated. This dynamic allocation
allows MoLoRA to efficiently handle multi-task
scenarios by assigning appropriate experts to each
task. MoLoRA has demonstrated strong gener-
alization to unseen tasks and excels in multi-task
learning settings (Luo et al., 2024; Li et al., 2024a).

3 Method

We propose MALoRA, which is built on the
observed asymmetries of LoRA experts within
the MoLoRA architecture. MALoRA improves
parameter efficiency and enhances generalization
in multi-task learning by leveraging both the sim-
ilarities and asymmetries in the down-projection
(A) and up-projection (B) matrices. This approach
reduces the number of trainable parameters by at
least 30% and reallocates the saved resources to
expand generalization capacity of the model, all
without adding significant computational overhead.

Figure 2: Spatial Similarity Analysis. Spatial similar-
ity between LoRA experts within the same MoLoRA
layer, evaluated using CCA. The down-projection ma-
trix (A) demonstrates significantly higher similarity
across all learning scenarios (ST(S), ST(D), MT), sug-
gesting it captures generalized features. In contrast, the
up-projection matrix (B) shows much lower similarity,
indicating its role in task-specific fine-tuning.

3.1 Asymmetry in MoLoRA

To explore the inter-expert relationships in
MoLoRA, we analyzed the spatial similarity be-
tween the down-projection (A) and up-projection
(B) matrices across different tasks. As illustrated
in Figure 2, the down-projection matrices (A)
exhibit significantly higher similarity compared
to the up-projection matrices (B), indicating a
notable asymmetry in their behavior.

We performed a Canonical Correlation Analysis
(CCA) (Ramsay et al., 1984) to evaluate the
similarities between LoRA experts under three
different learning scenarios: same task (ST(S)),
different tasks (ST(D)), and multi-task learning
(MT). The results show that A consistently
maintains higher similarity across all scenarios. As
task complexity increases from ST(S) to MT, the
similarity of A decreases, reflecting its adaptability
to more diverse task settings. Despite this decline,
A still retains a relatively high similarity, indicating
that it captures generalized patterns while adapting
to task-specific nuances by marginal differences.
In contrast, B demonstrates much lower similarity,
with values below 0.05 across all scenarios,
suggesting that it is more focused on task-specific
fine-tuning rather than generalization.

The singular value distribution in Figure 3 illus-
trates the different roles of the down-projection (A)
and up-projection (B) matrices. For B, the singular
values are closely clustered within a narrow range
between 0.75 and 1.25, indicating that most basis
vectors contribute similarly and are uniformly im-
portant for task-specific fine-tuning. In contrast, A
exhibits a wider range of singular values, spanning
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Figure 3: Singular Values of the Concatenated
Homologous Matrices in descending order. matrix
B shows a concentration of larger singular values,
indicating that many singular vectors are important
for task-specific fine-tuning. In contrast, A has more
smaller singular values, with only a few larger ones,
suggesting that only a subset of singular vectors play a
critical role. This reflects that B distributes importance
across more components, while A relies on a smaller,
more focused set of key features for generalization.

from 0.25 to 2.75. This wider distribution suggests
that a smaller subset of basis vectors with larger
singular values (approximately 33% of the total)
plays a dominant role in capturing key features.
The remaining vectors, associated with smaller
singular values, contribute less significantly. This
indicates that A can be effectively adapted to tasks
by focusing on vectors with larger singular values,
allowing the model to capture generalizable and
task-specific information more efficiently.

3.2 Projecting A in Low-Rank Space
Given the observed similarities among the down-
projection matrices At across different LoRA
experts, MALoRA optimizes At by projecting
it into a layer-shared low-rank subspace. This
subspace is defined by a matrix SA ∈ Rd×n, which
is shared among all experts in a MoLoRA layer.
This allows for more efficient feature extraction
while reducing redundancy among experts.

Instead of treating each expert’s down-projection
matrix independently, MALoRA projects each
At into the row space of SA, capturing the most
relevant features in a lower-dimensional space. It
is verified in the previous section, that the model
only needs to learn the basis vectors with the larger
singular values, which constitute 33% of the total.
Thus, the rank d of SA is kept small relative to
the original matrix dimensions, enabling efficient
compression of At without significant loss of
expressiveness. At for each expert is then replaced
by a projection coefficient matrix Pt ∈ Rr×d,
which adjusts the contributions of the shared SA

basis vectors for each expert to better align with

task-specific needs.
Mathematically, for a MoLoRA layer with N

experts, MALoRA redefines the parameter set
as {Wg, SA} ∪ {(Pt, Bt)}Nt=1, where Bt is the
expanded up-projection matrix (details provided in
the next subsection). During forward propagation,
At is replaced by its projection into span(SA),
leading to the following expressions:

Πspan(SA)(At) = PtSA (7)

∆Wt = BtPtSA (8)

For initialization, the up-projection matrix Bt

is set to zero, consistent with the LoRA approach.
While the down-projection matrices in LoRA are
initialized using the Kaiming Uniform initialization
(He et al., 2015) to ensure proper gradient scaling,
we aim for the product PtSA to similarly follow a
Kaiming Uniform distribution as well. To achieve
this, we apply singular value decomposition (SVD)
to several Kaiming Uniform-initialized random
matrices Kt ∈ Rd×n, t ∈ [0, N ], where each
expert receives its own initialized matrix. Since Kt

has rank d (d < n), the singular vectors beyond
rank d are zero-filled and cropped from the SVD
results, as shown in Eq. 9.

The product of Ut and Σt is clipped to rank r for
the initialization of Pt, SA is initialized using the
right singular matrix V0 from the first SVD decom-
position (K0), as it serves as a common basis across
all experts within the layer. This initialization
establishes a global subspace shared by all experts,
while Pt is responsible for capturing task-specific
adaptations. The initialization is given by:

(Ut)d×d, (Σt)d×d, (Vt)d×n = SVDcrop(Kt) (9)

Pt = (UtΣt)[:r]/β (10)

SA = βV0 (11)

where β is a hyperparameter that controls the bal-
ance between general and task-specific learning. A
higher β amplifies the gradients of Pt, thus enhanc-
ing the model’s ability to focus on task-specific
details. In contrast, a lower β shifts the emphasis
toward capturing generalized features by giving
more weight to SA. Please refer to Appendix A.4
and A.8.3 for detailed analysis and guidance.

3.3 Expanding Rank of LoRA Experts
In Section 3.1, we discuss reducing the dimen-
sionality of the down-projection matrices At.
By setting the rank of the shared matrix SA to
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d = λrN , where λ < 1. r is the rank of each
LoRA expert and N is the number of experts, we
eliminate the need for separate down-projection
matrices. This reduction reallocates resources to
expand the up-projection matrix B, increasing its
rank to r = r+ (1− λ)r for each LoRA expert. In
practice, λ is recommended as a value of 1

2 , which
derives d

Nr = λNr
Nr = 33% aligning with Figure 3.

The computational savings from compressing
At are reallocated to expand the up-projection
matrices Bt. The newly introduced matrix Pt,
sized only r × d, is relatively small compared to
the hidden size n, contributing less than 1% to the
total parameter count of PEFT. Thus, the additional
parameters introduced by MALoRA are negligible.
Expanding the rank of LoRA experts enables
MALoRA to enhance the model’s generalization
capability. According to the generalization bound
derived in Section 2, the upper bound U is given by:

U(|gen(µ,A)|) ∝
√
|A| ∝ √

r (12)

For each expert, since the ranks of SA, Pt, and
Bt all exceed r, the resulting rank of ∆Wt is r,
whereas MoLoRA experts retain the original rank
r. MALoRA establishes a generalization boundary
that is

√
r/r times higher than that of MoLoRA,

resulting in improved performance across tasks.

4 Experiments

In this section, we evaluate MALoRA’s perfor-
mance across diverse multi-task learning scenarios.
We describe the datasets used for training and
evaluation, outline the implementation details,
and compare MALoRA with baseline methods.
The results highlight MALoRA’s efficiency and
accuracy improvements, followed by an ablation
study to examine the impact of key components.

4.1 Experimental Setup
Datasets To evaluate MALoRA, we conducted
experiments in both inter-domain and intra-domain
settings. We selected datasets from different
domains, including MetaMathQA, Magicoder,
MedMCQA, and Finance Alpaca, representing
tasks such as math reasoning, code generation,
medical knowledge, and finance, respectively.
Additionally, we included the E2E dataset for
specialized task evaluation and Alpaca-GPT4
to test common-sense reasoning and instruction-
following. The multi-domain training set was
created by sampling 30,000 instances from

each dataset and blending them uniformly. For
evaluation, we used GSM8K for math, HumanEval
for code, Financial PhraseBank for finance, and
ARC for common-sense reasoning, along with
task-specific test splits for other domains.

For intra-domain evaluation, we focused
on multi-task learning within the domain of
common-sense reasoning. We employed datasets
like PIQA, OBQA, BoolQ, and ARC to evaluate
MALoRA’s performance on closely related tasks.
This allows us to measure generalization capacities
within a specific domain, assessing how effectively
it handles tasks with similar data distributions.
Details of datasets can be found in Appendix A.1.

Implementation Details We adopt LLaMA-2
7B as the backbone model and compare MALoRA
against LoRA, DoRA, Asymmetry LoRA, MoLA,
and MoLoRA. We also combines Asymmetry
LoRA with routers to form MoAsyLoRA. For both
LoRA and DoRA, the rank r is set to 64, with a
dropout rate of 0.05. Asymmetry LoRA doubles
the rank, keeping the matrix A frozen during
fine-tuning. Following mainstream practices,
MoLoRA uses 8 LoRA experts, each with a rank
of r = 8, and activates the top-2 experts based on
input routing, with an auxiliary loss factor of 0.001.
MoLA assigns 2,4,6, and 8 experts to layers from
low to high. MALoRA expands the rank to r = 12
according to λ = 1

2 , and the shared matrix SA has a
rank of d = 32, ensuring parameter comparability
across all baselines. Additionally, MALoRA-Small
is introduced, where r = 8 and d = 22, providing
a more parameter-efficient variant for comparison.

The PEFT modules are applied to all linear
layers within the transformer architecture. All
backbone parameters remain frozen throughout the
experiments. For inter-domain learning tasks, the
learning rate is set to 5e−4 with a batch size of 4,
while intra-domain tasks, the learning rate is 4e−4

with a batch size of 2. These hyperparameters
were determined via a grid search to optimize
performance across tasks. Further details can be
found in Appendix A.3.

4.1.1 Main Result

Inter-domain Performance As shown in Ta-
ble 1, MALoRA outperforms all baselines in inter-
domain settings, achieving an average score of
56.3, surpassing both LoRA and MoLoRA by 1.6%
and 1.0% respectively. This performance is particu-
larly notable on tasks like GSM8K and HumanEval,
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Method #Params Latency(µs) MedMCQA HumanEval GSM8K PhraseBank ARC-C ARC-E E2E AVG.
LLaMA-2 7B - - 34.2 14.6 13.2 57.6 43.1 75.5 21.7 37.1

LoRA (ST) 2.1%
-

42.5 34.8 36.5 77.4 62.4 79.3 66.4 57.0

AsyLoRA (ST) 2.2% 42.6 30.5 33.1 78.8 61.2 77.4 66.0 55.7

LoRA 2.1% 833.3 43.2 34.8 34.0 69.6 59.1 76.5 65.9 54.7

AsyLoRA 2.2% - 43.3 31.1 27.6 74.2 59.8 77.8 65.5 54.2

DoRA 2.1% 1020.9 41.3 32.3 32.6 74.0 60.0 75.6 66.5 54.6

MoAsyLoRA 2.3% - 40.6 24.4 23.9 73.0 58.5 76.0 65.8 51.7

MoLoRA 2.2% 1072.3 42.1 29.3 33.1 78.1 61.1 78.1 65.6 55.3

MoLA 1.5% - 41.0 24.4 33.4 76.1 59.1 77.9 66.3 54.1

MALoRA-Small 1.6%
896.4

41.0 29.9 34.0 80.3 59.4 77.2 65.7 55.4

MALoRA 2.3% 42.3 32.9 34.1 79.8 60.0 78.5 66.3 56.3

Table 1: Comparison of various PEFT methods for multi-task learning across different domains. "ST" stands for
single downstream task fine-tuning. For the E2E task, the ROUGE-L metric is used, while accuracy is reported
for others. "#Params" refers to the percentage of trainable parameters relative to the base model. MALoRA and
MALoRA-Small achieve the best results with the lowest latency, highlighting their efficiency.

Method PIQA OBQA BoolQ ARC-C ARC-E AVG.

LoRA 81.1 89.4 77.1 64.5 80.5 78.48

AsyLoRA 80.4 87.4 82.0 64.9 82.4 79.42

DoRA 80.0 89.2 80.4 65.9 82.4 79.56

MoLoRA 80.3 90.4 79.3 66.1 82.4 79.69

MoLA 81.1 87.6 79.4 66.8 81.9 79.35

MALoRA-Small 81.6 87.8 81.8 66.6 82.6 80.08

MALoRA 81.8 89.6 81.6 66.6 82.8 80.47

Table 2: Comparison of different PEFT methods on
intra-domain common-sense reasoning tasks. MALoRA
achieves the highest average score, highlighting its
effectiveness in handling tasks within the same domain.

where MALoRA demonstrates its ability to handle
task complexity. These gains are attributed to
MALoRA’s effective integration of an asymmetric
low-rank adaptation and multi-expert MoE struc-
ture, which extends the generalization boundary of
the model while maintaining a low computational
overhead. Baselines without an MoE structure
struggled on tasks like Finance PhraseBank due
to data imbalance, where label-heavy tasks like
Magicoder dominated, leading to underfitting
in minority datasets such as financial data. This
highlights the seesaw phenomenon often seen in
traditional PEFT methods. In contrast, MALoRA’s
ability to handle diverse multi-domain tasks show-
cases its robustness in orthogonal domain learning
with significant distribution differences. MALoRA-
Small, with only 1.6% trainable parameters, uses
fewer parameters than any other method while
achieving an impressive average performance.
Although its overall results are slightly lower than
MALoRA, MALoRA-Small still surpasses MoLA
by 1.3%, which has comparable additional param-
eter amounts, and outperforms all other multi-task
methods. This result emphasizes MALoRA’s

ability to scale down without sacrificing much per-
formance, making it an ideal solution for scenarios
where computational efficiency is a priority. More
analysis are available in Appendix A.1.3 and A.5.

Additionally, the latency results clearly demon-
strate MALoRA’s efficiency. It reduces training
time by 16% compared to MoLoRA, while achiev-
ing higher performance on most tasks. Notably,
MALoRA’s latency is comparable to LoRA’s,
despite incorporating a more complex multi-expert
structure. This shows that MALoRA can offer
significant performance improvements without in-
curring a substantial increase in computational cost.

Intra-domain Performance For common-sense
reasoning tasks, as shown in Table 2, MALoRA
again demonstrates its superiority. It improves
upon LoRA by 2% and MoLoRA by 0.8%, proving
its efficacy even in more focused intra-domain
tasks. MALoRA-Small consistently surpasses
baselines while reducing 30% trainable parameters.
The robust performance of MALoRA on various
tasks indicates that it strikes a good balance
between learning domain-specific features and
maintaining generalizability. It also highlights
MALoRA’s ability to manage data imbalance,
as seen in tasks like ARC-C, where traditional
methods like LoRA struggle.

4.2 Ablation Study

To gain deeper insight on the contribution of each
component in MALoRA, the results of the abla-
tion study are presented in Table 3. Specifically,
we compare MALoRA’s performance with various
modifications to assess the impact of asymmetry,
shared subspaces, and rank configurations. For
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Method #Params MedMCQA HumanEval GSM8K PhraseBank ARC-C ARC-E E2E AVG.
MoLoRA 2.2% 42.1 29.3 33.1 78.1 61.1 78.1 65.6 55.3
MoLoRA, r = 12 3.3% 40.8 31.7 34.9 77.3 62.6 78.2 66.2 56.0
w same At, r = 12 3.3% 42.4 29.9 33.7 79.1 61.9 78.8 66.3 56.0
MALoRA 2.3% 42.3 32.9 34.1 79.8 60.0 78.5 66.3 56.3
w fixed SA, r = 16 2.4% 43.2 28.7 32.7 73.9 58.6 76.8 66.0 54.3
w/o Asymmetry 2.2% 42.4 29.3 35.4 79.8 59.6 77.8 65.9 55.8
w/o shared SA 2.3% 43.9 28.1 29.7 66.2 61.1 78.1 65.8 53.3
w/o ft Pt 2.3% 41.9 29.9 34.1 78.9 58.7 78.8 65.8 55.5
decomposing Bt 2.2% 43.0 30.5 32.1 74.1 61.3 76.6 65.9 54.8

Table 3: Ablation study results for MALoRA, showing the impact of different components on model performance.
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Figure 4: (a) Multi-domain learning performance across different ranks, with methods maintaining a comparable
number of trainable parameters on the same x-axis. (b) Ablation study of hyperparameters β and d in common-sense
multi-task learning. (c) Comparison of training latency for various PEFT methods with FastMoE.

MoLoRA, initializing matrices At in the same layer
with a fixed random matrix shows a comparable per-
formance against MoLoRA, suggesting that initial-
izing experts similarly does not significantly dam-
age multi-task learning performance. Even when
experts in MALoRA are projected into an identical
low-rank space span(SA), the model outperforms
MoLoRA while reducing trainable parameters by
30%, confirming the compressibility of MoLoRA.

For MALoRA variants, w fixed SA, which
freezes SA and expands r to 16, leads to perfor-
mance degradation. This implies that a randomized
SA that is not updated during training fails to
capture meaningful task-specific features. The lack
of adaptability prevents the model from aligning
the subspace with task distributions.

w/o Asymmetry, which uses a symmetric
structure of MALoRA with LoRA rank r = 8 and
d = 64, shows that increasing LoRA rank is more
effective in improving learning capacity than ex-
panding d. Even with the same number of trainable
parameters, the asymmetric structure in MALoRA
extends the generalization boundary. In contrast,
w/o shared SA that replaces the shared subspace
SA with distinct down-projection matrices for each
expert limits the rank of each expert’s matrix to
d
N . This reduced rank constrains the generalization

boundary and leads to degraded performance.
Freezing Pt without fine-tuning leads to a no-

table performance decline, as it prevents the model
from fully leveraging the low-rank space SA and
limits its ability to adapt to task-specific features.
When decomposition is applied to Bt instead of
At in decomposing Bt, performance decreases by
1.5% on average. This compression of Bt reduces
the expressive capacity of the model, as Bt has a
lower inter-expert similarity than At, highlighting
the need for more adaptable representations in Bt

to handle task-specific variations effectively.

Rank Robustness We investigates the effective-
ness of MALoRA in various ranks r. As shown
in Figure 4(a), MALoRA consistently outperforms
MoLoRA in all rank configurations, achieving
significant improvements of up to 1.16% at rank
4(6) (the values in parentheses represent the rank
of MALoRA) and maintaining a clear advantage
throughout. Most notably, MALoRA at rank
r = 12 matches the performance of MoLoRA at
a higher rank of r = 16, while reducing trainable
parameters by 48%. This result underscores
MALoRA’s ability to maintain high performance
with fewer resources. The diminishing returns in
MoLoRA as ranks increase indicate that simply
increasing rank without efficient adaptation leads
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to overfitting at higher ranks. In contrast, MAL-
oRA scales its capacity more effectively as rank
increases. This is likely because its asymmetric
structure focuses on fine-tuning the projection
coefficients Pt for task-specific adaptation, while
maintaining the stability of the shared subspace
SA, helping to prevent overfitting in high-ranks.

Hyperparameter Robustness We conducted ex-
periments to evaluate MALoRA’s sensitivity to hy-
perparameters β and d, with changes in d also ad-
justing r to maintain consistent trainable parame-
ters. As shown in Figure 4(b), extreme values of
d—too large (d = 64, r = 8) or too small (d =
16, r = 14)—lead to suboptimal results, empha-
sizing the need for a balanced allocation between
the shared subspace and expert-specific compo-
nents. The best performance occurs at d = 48, r =
10, achieving a balance between shared and task-
specific representations. MALoRA performs opti-
mally when β = 1.25, striking the ideal balance
between refining task-specific features in Pt and
maintaining the stability of SA. When β > 1, the
model places more focus on task-specific learning,
enhancing performance in scenarios that require
stronger task differentiation. However, Figure 4(b)
and additional results under different task combi-
nations in A.8.2 shows that MALoRA outperforms
other baselines in the vast majority of cases.

Latency As shown in Figure 4(c), MALoRA
reduces latency (second/step) by 1.2x compared
to MoLoRA during a single training step. By
projecting inputs into the low-rank space span(SA),
MALoRA decreases the dimensionality in each
MoE layer, reducing the latency of gradient com-
putations, data routing, and result collection. This
results in significantly faster backward propagation
due to more efficient gradient calculations in the
compressed low-rank space. Although forward
computations still have some complexity, the
reduction in communication time compensates,
leading to an overall time decrease per step. When
integrated with FastMoE (He et al., 2021), both
LoRA and MALoRA complete a training step in
4.3 seconds, while MoLoRA and DoRA take 4.65
and 4.97 seconds, respectively. The modular struc-
ture introduces a slight increase in optimization
time, but the overall latency reduction achieved by
MALoRA remains substantial. Ultimately, MAL-
oRA’s efficient use of low-rank projections and
modular design significantly reduces forward and
backward propagation times, improving training

speed without sacrificing performance. The details
of the latency are provided in Appendix A.6.

5 Discussion

5.1 Routing Distribution Analysis
To further explore the inner working mechanism of
MALoRA, we performed an interpretability anal-
ysis of the routing distribution in different tasks.
The results are shown in Figure 5. Differentiated
by routing, the functionality of the experts in MAL-
oRA exhibits clear differentiation, while different
types of tasks activate unique experts, and similar
tasks may share experts (e.g., ARC-C and ARC-E).
It indicates that MALoRA is capable of recognizing
tasks and mapping them to the appropriate expert.

Figure 5: Expert Routing Distribution. Figure presents
the routing states in (a) MALoRA for Inter-Domain
Tasks (b) MoLoRA for Inter-Domain Tasks and (c)
MALoRA for Intra-Domain Tasks. The most impor-
tant experts for each task, identified as those with the
highest assigned weight, are highlighted with boxes.

Remarkably, MALoRA emerges with compre-
hensive selection and utilization of experts com-
pared to MoLoRA. Observing the expert with the
highest weight for each task, MoLoRA tends to
rely more concentrically on expert 2,3,4 in Figure
5(b), while there is no phenomenon of expert de-
generation or abandonment in MALoRA. This phe-
nomenon may be attributed to the fact that in MAL-
oRA, the matrix SA projects experts into a desig-
nated low-rank space, enabling different experts to
jointly utilize overlapping dimensions. This mech-
anism facilitates cross-expert knowledge transfer
and mitigates the winner-takes-all phenomenon.

5.2 Expert Allocation Comparison
MALoRA decomposes experts within a shared
low-rank subspace, reducing redundancy while
preserving functionality. However, it remains un-
clear whether this decomposition affects the role of
LoRA experts in MoLoRA. Figure 6 presents the
cosine similarity between expert pairs in MALoRA
and MoLoRA, initialized with the same weights.
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The high similarity along the main diagonal in-
dicates that expert functions remain largely con-
sistent, suggesting that MALoRA effectively pre-
serves task-specific learning while optimizing pa-
rameter efficiency.

Figure 6: Pairwise Cosine Similarities of Experts’ Rout-
ing Distributions in MALoRA and MoLoRA. The Di-
agonal of the matrix are mainly in authority, illustrating
alignments of experts. Due to the concentration of rout-
ing weights near the average value, the similarities are
generally large, but this does not hinder the analysis.

6 Related Work

6.1 Redundancy of PEFT Methods

PEFT methods such as Prefix-Tuning (Li and
Liang, 2021), Prompt-Tuning (Lester et al., 2021),
and LoRA (Hu et al., 2021) are widely adopted to
reduce the computational cost of fine-tuning LLMs.
Recent research has highlighted two main areas
for improvement in LoRA: structural inequity
and redundancy. To address inequity, methods
like LoRA+ (Hayou et al., 2024), Asymmetry
LoRA (Zhu et al., 2024), and LoRA-FA (Zhang
et al., 2023) adopt unequal fine-tuning strategy of
LoRA modules. On the redundancy front, VeRA
(Kopiczko et al., 2023) and VB-LoRA (Li et al.,
2024b) reduce the number of trainable parameters
by sharing parameters across LoRA. MoLA (Gao
et al., 2024) explores the optimal distribution of
LoRA experts in MoLoRA, suggesting that higher
layers benefit from a greater number of experts.

6.2 Mixture-of-Experts

MoE (Jacobs et al., 1991) distributes data to
sub-modules for processing via a routing mecha-
nism, activating the neurons of the feed-forward
sub-layers through sparse parameters. SparseMoE
(Shazeer et al., 2017) and GShard (Lepikhin et al.,
2020) substantially expand the learning capacity of
Transformers by incorporating numerous FFN ex-
perts within MoE framework. LLMs based on MoE

architectures, such as Mixtral 8x7B (Jiang et al.,
2024), have demonstrated remarkable performance.
Hybrid models that integrate LoRA as experts aim
to improve model capacity and better fit complex
data during fine-tuning, paralleling the approach
of MoE models. Relevant studies (Zadouri et al.,
2023; Wu et al., 2024) explore the potential of
using LoRA as parameter-efficient experts across
NLP and Vision application scenarios. MoRAL
(Yang et al., 2024) leverages MoLoRA to enhance
lifelong learning. Approaches like MoELoRA
and MixLoRA (Luo et al., 2024; Li et al., 2024a)
employ MoLoRA to mitigate catastrophic forget-
ting in multi-task learning. The effectiveness of
MoLoRA has been broadly validated, solidifying
it as a key trend in PEFT research.

7 Conclusion

MALoRA introduces a novel PEFT approach for
multi-task learning by leveraging a MoE structure
with asymmetric low-rank adaptation. Through a
shared down-projection space and expanded up-
projection ranks, MALoRA optimizes parameter
efficiency while enhancing generalization across
tasks. Our experiments demonstrate that MALoRA
consistently outperforms existing methods like
LoRA and MoLoRA, particularly excelling in
complex inter-domain and intra-domain scenarios.
By reducing trainable parameters by up to 48% and
achieving a 1.2x increase in training speed, MAL-
oRA addresses key challenges such as training
imbalances and overfitting phenomena observed in
previous methods, offering a robust, scalable solu-
tion for diverse applications in multi-task learning.

8 Limitation

The proposed MALoRA method outperforms
previous PEFT baselines while effectively reduc-
ing both the training parameters and the latency.
However, to ensure that the enhancement of
multi-task learning capability remains independent
of the gating network, our approach maintains
strict consistency in routing strategy and hyper-
parameter settings of MoLoRA. The optimization
of MALoRA is network-agnostic, suggesting that
customized routing strategies could further im-
prove its performance, and it is not involved in our
research. We leave this exploration for future work.
Moreover, multi-task fine-tuning may trigger data
security and privacy issues in certain application
scenarios. More research on LLM safety is needed.
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A Appendix

A.1 Datasets
A.1.1 Inter-Domain Tasks Learning

Task Domain #Train #Sample Type

MedMCQA (Pal et al., 2022) Medicine 182K

30,000

Question Answering

Magicoder (Wei et al., 2023) Code 110K Code Generation

Finance Alpaca (Gaurang Bharti, 2024) Finance 69K Instruction Following

MetaMathQA (Yu et al., 2023) Mathematics 395K Math Reasoning

Alpaca-GPT4 (Peng et al., 2023) General 52K Instruction Following

E2E NLG (Dušek et al., 2020) End-to-End 34K Natural Language Generation

Table 4: Description of Inter-Domain Training Datasets.
We sampled 30,000 training data from each dataset to
form a mixture inter-domain multi-task training set.

Task Domain #Test Type

MedMCQA Medicine 2,802† Question Answering

HumanEval (Chen et al., 2021) Code 164 Code Generation

PhraseBank (Malo et al., 2014) Finance 3,453 Text Classification

GSM8K (Cobbe et al., 2021) Mathematics 1,319 Math Reasoning

ARC-C (Clark et al., 2018) Commen-Sense 1,170 Question Answering

ARC-E (Clark et al., 2018) Commen-Sense 2,380 Question Answering

E2E NLG End-to-End 4,693 Natural Language Generation

Table 5: Description of Inter-Domain Testing Datasets.
† Due to the non-public nature of the labels for the
MedMCQA test set, the development dataset is utilized
for testing in UltraEval (He et al., 2024), and entries with
anomalies in multiple-choice selections or variations in
the number of options have been cleaned.

A.1.2 Intra-Domain Tasks Learning

Task #Train #Test Type

ARC-C (Clark et al., 2018) 1,120 1,170

Question Answering

ARC-E (Clark et al., 2018) 2,250 2,380

PIQA (Bisk et al., 2020) 16,100 1,840

OpenBookQA (Mihaylov et al., 2018) 4,957 500

BoolQ (Clark et al., 2019) 9,427 3,270

Table 6: Description of Intra-Domain Training Datasets.
Datasets focus on the scope of common-sense reasoning,
following a common setting of existed works (Li et al.,
2024a; Luo et al., 2024).

A.1.3 Quantities of Training Tokens
Table 7 presents the distribution of token quanti-
ties of training datasets. In the context of multi-
domain learning, the Magicoder dataset contains
a substantial 1,446K of label tokens for comput-
ing cross-entropy and performing backward prop-
agation, significantly surpassing datasets in other
domains. As shown in Table 1, non-MoE PEFT
methods achieve performance on the HumanEval
benchmark that is comparable to single-task fine-
tuning. However, on the Finance Alpaca dataset,

Task #Input #Label #Total
MedMCQA 469K 157K 626K
Magicoder 3,231K 1,446K 4,677K
Finance Alpaca 839K 206K 1,045K
MetaMathQA 1,415K 537K 1,952K
Alpaca-GPT4 483K 214K 697K
E2E NLG 202K 461K 663K

ARC-C 18.5K 1.8K 20.3K
ARC-E 36.4K 4.3K 40.7K
BoolQ 378.7K 18.7K 397.4K
OpenBookQA 79.8K 9.7K 89.5K
PIQA 318.1K 31.9K 350K

Table 7: Description of Token Quantity in Each Dataset

which has fewer number of label tokens, the learn-
ing efficacy of non-MoE methods is sub-optimal
compared to MoE approaches. A similar trend is
observed in common-sense multi-task learning, as
indicated in Table 2. Due to the disparity in the
magnitude of label tokens, LoRA demonstrates su-
perior performance on the PIQA benchmark while
exhibiting deficiencies on the ARC task. This high-
lights a clear correlation between the abundance
of label tokens and LoRA’s performance in the
corresponding tasks. In summary, LoRA shows
drawbacks related to learning imbalance and catas-
trophic forgetting.

A.2 Initialization

MALoRA initialization process described in Sec-
tion 3.2 is written as pseudo code for convenience.

Algorithm 1 MALoRA Initialization
Input: Number of layers L, expert rank r, shared space rank

d, number of experts N , input size n, output size m, scale
factor β.

Output: MALoRA parameter set {W l
g, S

l
A} ∪

{(P l
t , B

l
t)}Nt=1 for each layer l = 1, 2, · · ·L

1: for l = 1, 2, · · · , L do
2: Initialize W l

g ∼ N (0, 1
n
)

3: Initialize K0 ∈ Rd×n ∼ U(−
√

1
n
,
√

1
n
)

4: U0,Σ0, V0 = SVD_LowRank(K0)
5: Sl

A = βV0

6: for t = 1, 2, · · · , N do
7: Initialize Kt ∈ Rd×n ∼ U(−

√
1
n
,
√

1
n
)

8: Ut,Σt, Vt = SVD_LowRank(Kt)

9: Initialize B
l
t by zero matrix

10: P l
t = (UtΣt)[: r]/β

11: end for
12: end for
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A.3 Hyperparameter Configuration

A.3.1 Inter-Domain Tasks Learning

Hyperparameters LoRA/DoRA AsyLoRA MoLoRA MALoRA

Optimizer AdamW

Learning Rate 5e-4

Epochs 3

Batch Size 4

Dropout 0.05

Weight Decay 0.01

Warm-up Ratio 0.1

Implement Layer Q,K,V,Up,Down,Gate

LoRA Rank r 64 128 8 12

LoRA Alpha α 128 256 16 24

Experts Number - 8

Top-K - 2

Balance Loss Factor - 0.01

Projection Rank d - 32

Weight Balance Scale β - 1

Table 8: Experimental Hyperparameter Configurations
for Inter-Domain Learning with Various PEFT Methods.
Experiments are conducted on four Nvidia A100 GPUs.

A.3.2 Intra-Domain Tasks Learning

Hyperparameters LoRA/DoRA AsyLoRA MoLoRA MALoRA

Optimizer AdamW

Learning Rate 4e-4

Epochs 2

Batch Size 2

Dropout 0.05

Weight Decay 0.01

Warm-up Ratio 0.1

Implement Layer Q,K,V,Up,Down,Gate

LoRA Rank r 64 128 8 12

LoRA Alpha α 128 256 16 24

Experts Number - 8

Top-K - 2

Balance Loss Factor - 0.01

Projection Rank d - 32

Weight Balance Scale β - 1.25

Table 9: Experimental Hyperparameter Configurations
for Common-Sense Multi-Task Learning with Various
PEFT Methods. Experiments are conducted on a single
NVIDIA A100 GPU.

A.4 The Impact of Hyperparameter β

Defining L as the loss function of fine-tuning,
W ∈ Rm×n as a linear matrix in the backbone
model where the MALoRA modules are attached
to. We have the partial derivatives of loss L for

matrix SA ∈ Rd×n and Pt ∈ Rr×d:

∆Wt = BtPtSA (13)
∂L
∂SA

=
∂W

∂SA

∂L
∂W

,
∂L
∂Pt

=
∂L
∂W

∂W

∂Pt
(14)

∂L
∂SA

=
N∑

t=1

Gt(I
T ⊗ (PtBt))dn×mn

∂L
∂W

(15)

∂L
∂Pt

= Gt
∂L
∂W

(B
T
t ⊗ SA)mn×rd (16)

Here, operator "⊗" stands for the Kronecker
Product. Since the norm of Pt is proportional to
1/β, and the norm of SA is proportional to β, so
does the norm of gradient:

∥ ∂L
∂SA

∥ ∝ 1

β
, ∥ ∂L

∂Pt
∥ ∝ β (17)

Hence, an elevated value of β leads to an
augmentation in the magnitude of ∥∇Pt∥ and
a concomitant reduction in the magnitude of
∥∇SA∥, thereby enhancing the model’s capacity
to discern task-specific discrimination. In contrast,
a diminished value of β endows the model with
a propensity to primarily capture commonalities
across datasets.

A.5 Insufficient Learning Ability of AsyLoRA

18M 36M 72M 144M 288M

40

45

50

55

60 AsyLoRA
LoRA

Figure 7: Performance Variations of LoRA and Asym-
metry LoRA with Respect to Rank on the Math Rea-
soning Task MGSM (Shi et al., 2022).The ticks on the
x-axis represent the number of trainable parameters in
Asymmetry LoRA and LoRA.

In this section, we discuss the reasons for
the poor performance of Mixture-of-Asymmetry-
LoRA (MoAsyLoRA). In experts of MoAsyLoRA,
the rank r is doubled while the matrix A remains
frozen during fine-tuning. Consequently, the gen-
eralization boundary of these experts aligns with
MoLoRA rather than expanding. To further inves-
tigate the mechanism behind performance degra-
dation, we conduct an ablation study of the rank r
for both Asymmetry LoRA and LoRA methods in
math reasoning tasks, as shown in Figure 7. Un-
der complex tasks like math reasoning, Asymmetry
LoRA achieves better generalization only when the
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rank is sufficiently high. This can be attributed
to the frozen down projection matrix, which ran-
domly projects information dimensions in Asym-
metry LoRA. When the model lacks the capabil-
ity to fine-tune effectively, it compensates by in-
creasing the dimension of the random projection,
overriding the optimization of the down projection
matrix in LoRA. However, experts in MoLoRA
and MoAsyLoRA typically operate at low ranks,
resulting in significant generalization drawbacks
between Asymmetry LoRA and LoRA experts.

A.6 Training Latency Comparison

Method Forward Backward Optimize
Total

Token(µs) Step(s)

LoRA 4.246 9.229 0.188 833.9 13.663

DoRA 4.973 11.514 0.240 1020.8 16.726

MoLoRA 4.649 11.902 1.017 1072.3 17.568

MALoRA 4.288 9.523 0.876 896.4 14.687

Table 10: Training Latency Components of PEFT Meth-
ods in s/Step and µs/Token. A single step of training
processes 16,384 input tokens. The single-step training
latency of MALoRA accounts for only about 85% of
that of MoLoRA, achieving a 1.2x speed improvement.
Metrics are evaluated using four NVIDIA A100 GPUs.

A.6.1 Comparison of Computation Times
In this section, we compare the computation times
of MALoRA and LoRA. MALoRA reduces the-
oretical computational complexity compared to
LoRA under the same parameter budget in a con-
stant sense. However, due to the architecture of
MoE additional overhead from token distribution
and CUDA optimizations, its practical latency is
slightly higher than LoRA in practical application.

Suppose the model contains L layers. PEFT
models are attached to K linear modules per layer,
while each linear modules possess a input shape
n and output shape m. Denote the rank of SA as
d, the rank of experts in MoLoRA as r, and the
expanded LoRA rank in MALoRA as r. MAL-
oRA consists of N experts, with the top-K experts
selected for inference. Given the same parame-
ter budget, LoRA has the rank of R = Nr. The
computational times of MALoRA compared to the
original LoRA is as follows:

CT (LoRA) = TLK(n+m)Nr (18)

CT (MALoRA) = TLK[nN + nd+

K(d+m)r]
(19)

Since d = λNr ≪ m, for simplicity, we approx-
imate it to zero and assume n = m, while noticing
r is determined by r = (2− λ)r:

CT (LoRA) ≈ TLKn(2Nr) (20)

CT (MALoRA) ≈ TLKn[N(λr + 1)

+K(2− λ)r]
(21)

In our experimental setup, we set K = 2, N = 8,
r = 8, and λ = 1

2 , leading to the following:

CT (LoRA) = 128TLKn (22)

CT (MALoRA) = 64TLKn (23)

Thus, the computational amount of LoRA is
larger than that in MoLoRA. However, the MoE
structure involves the distribution and collection of
tensors among experts, whereas LoRA, because of
its simplicity, may offer certain speed advantages
in practical applications.

A.7 Rank Robustness
Table 11 shows the performance of MoLoRA and
the proposed MALoRA under proportional ranks.
As mentioned in Section 3.3, the value of λ is fixed
at 1

2 , and the hyperparameter d is uniquely deter-
mined by λ,N and r. As the quantity of PEFT pa-
rameters increases, the dimension of SA expands,
which in turn diminishes the marginal benefit of
fine-tuning SA, potentially resulting in over-fitting.
Consequently, it is advisable to select a larger β to
emphasize the acquisition of distinctive represen-
tations in diverse tasks. From this perspective, by
scaling β in proportion to the increase in rank r,
we can effectively mitigate under- and over-fitting
phenomena.

A.8 Hyperparameter Robustness
A.8.1 Hyperparameter Robustness in

Intra-Domain Learning
Table 12 describes MALoRA’s detailed perfor-
mance in Figure 4(b). When choosing a reasonable
asymmetric rank setting (e.g. d = 32, 48), in the
vast majority of cases of β, MALoRA outperforms
all baselines.

A.8.2 Universality under Different Task
Combinations

We further validate the stability of MALoRA with
respect to the hyperparameter β under more di-
verse sets of task combinations, as shown in Tables
13 and 14. In the FINANCE+CODE+ARC and
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Method r d β MedMCQA HumanEval GSM8K PhraseBank ARC-C ARC-E E2E AVG.

MoLoRA

4

- -

42.4 23.8 34.0 69.3 58.8 77.4 66.1 53.12

8 42.1 29.3 33.1 78.1 61.1 78.1 65.6 55.33

16 43.4 32.9 33.4 79.4 61.5 78.0 66.0 56.19

32 45.8 33.5 32.0 72.6 61.9 78.3 66.0 55.74

MALoRA

6 16 0.3 43.2 29.9 32.0 74.0 58.9 76.7 65.5 54.28

12 32 1.0 42.3 32.9 34.1 79.8 60.0 78.5 66.3 56.27

24 64 3.5 42.0 30.5 36.1 80.6 62.4 78.6 66.1 56.61

48 128 5.0 43.9 34.8 35.2 76.7 62.2 78.1 65.9 56.69

Table 11: Performance of MoLoRA and Proposed MALoRA Under Proportional Ranks. In all configurations,
MALoRA consistently outperformed the MoLoRA approach.

FINANCE+MED+BoolQ+ARC settings, with β
values incrementing from 0.5 to 1.25. MALoRA
outperforms the baselines of LoRA and MoLoRA
across all test results. The experiment results indi-
cate that the performance of various β demonstrates
robustness, while selecting β with validation will
leads to further improvement.

A.8.3 Guidelines for Selecting β

Carefully tuning the hyperparameter β will bring
superior performance on stable gain of MALoRA.
Although adjustment can be made with the help
of the validation set, in this section, we conclude
several empirical selection rules.

Relationship with the Amount of Trainable Pa-
rameters As the number of trainable parameters
increases, a higher value of β is generally needed
to achieve optimal performance, as shown in Table
11. When the shared subspace expands with more
parameters, the risk of overfitting increases. To
address this, a larger β emphasizes task-specific
learning, effectively balancing the risks of under
and overfitting.

Relationship with Task Relevance We conduct
additional experiments to investigate the optimal
β across varying levels of task similarity, shown
in Table 15. It can be seen that as the diversity
and the similarity of tasks increases, the value of β
should be raised to improve the learning of Pt, thus
better capturing the independent characteristics of
different tasks within the shared subspace.

Relationship with λ Hyperparameter λ repre-
sents the account for dimension d of the shared low-
rank space span(SA). A lower value of λ, which
corresponds to an increase in r, weakens the ability
of the shared space to capture the characteristics

of tasks. Under such conditions, the emphasis on
learning task-specific components becomes more
critical, requiring a larger value of β. For example,
as shown in Table 12, the optimal β for decreasing
d are 1, 1.25, 1.25, and 1.25, respectively. However,
since λ is fixed to 1

2 according to section 3.3, in the
vast majority of our experiments, we do not need
to pay much attention to this situation.

A.9 Generality
A.9.1 Generality to Larger-Scale Models
To validate MALoRA’s scalability to larger-scale
models, additional fine-tuning results on LLaMA-2
13B are shown in Table 16. MALoRA outperforms
MoLoRA by 1.29%, demonstrating strong univer-
sality for larger-scale models. Similarly to what is
observed on LLaMA-2 7B, multi-task learning on
LLaMA-2 13B also exhibits stability on the hyper-
parameter β. As Table 17 presents, although select-
ing through a wide range of β, the performance of
MALoRA models exceeds all the baselines.

A.9.2 Generality under Different Task
Combinations

In this section, we provide details of experiments
on various combinations of tasks, which obtain
a series of decreasing task similarities to validate
the stability of MALoRA across different dataset
groups. As shown in Table 18, 19 and 20. The
results demonstrate that our method outperforms
baseline approaches in task combinations with vary-
ing degrees of similarity, showcasing its robustness
in diverse scenarios.
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r d β PIQA OBQA BoolQ ARC-C ARC-E AVG.

14 16

0.5 81.99 89.8 73.15 66.21 82.83 78.80
1.0 81.28 87.4 79.69 65.74 81.31 79.08

1.25 80.79 88.6 80.34 65.67 83.12 79.70
2.0 79.98 87.8 78.44 66.89 81.65 78.95

12 32

0.5 79.76 89.6 82.87 64.17 81.82 79.64
1.0 80.96 89.0 81.38 66.55 82.24 80.03

1.25 81.83 89.6 81.56 66.55 82.83 80.47
2.0 81.66 88.4 78.01 65.74 82.37 79.24

10 48

0.5 82.26 89.6 77.77 65.81 81.94 79.48
1.0 82.32 89.0 76.54 68.12 82.62 79.72

1.25 81.34 90.0 81.83 68.05 82.74 80.79
2.0 81.56 88.4 82.17 67.78 82.58 80.50

8 64

0.5 79.11 88.8 81.01 64.17 79.04 78.43
1.0 79.87 87.6 83.33 63.90 80.77 79.09

1.25 81.23 87.8 77.98 65.40 82.15 78.91
2.0 80.14 87.8 81.83 64.79 80.30 78.97

Table 12: Details of Hyperparameter Robustness Experiment of MALoRA Evaluated on Intra-Domain Tasks.

FINANCE+CODE+ARC

β 0.5 0.75 1.0 1.25

LoRA 60.69

MoLoRA 61.09

MALoRA 61.91 62.16 62.00 62.12

Table 13: Results of FINANCE+CODE+ARC Task
Combination with Tuned β. Evaluations are conducted
on PhraseBank, HumanEval, ARC-C and ARC-E bench-
marks. This group of tasks shares moderate relevance,
with mutual promotion observed between Finance and
Code learning.

FINANCE+MED+BoolQ+ARC

β 0.5 0.75 1.0 1.25

LoRA 60.69

MoLoRA 61.09

MALoRA 61.91 62.16 62.00 62.12

Table 14: Results of FINANCE+MED+BoolQ+ARC
Task Combination with Tuned β. Evaluations are con-
ducted on PhraseBank, MedMCQA, BoolQ and OBQA
benchmarks. Compared to previous tasks, this group of
tasks is more diverse and has lower relevance.

Tasks LoRA MoLoRA MALoRA Possible β

ARC + OBQA 78.18 79.01 79.46 0.5

Finance + Code + ARC 60.69 61.09 61.91 0.5

Finance + Medicine + BoolQ + OBQA 68.95 69.06 69.85 0.75

Inter-Domain 54.72 55.33 56.27 1.0

Table 15: Possible β Choices for Different Task Combi-
nations. As the similarity of tasks decreases, the optimal
choice for β increases.

Method PIQA OBQA BoolQ ARC-C ARC-E AVG.

LLaMA-2 13B 62.40 65.60 62.23 50.78 66.84 61.57

LoRA 84.39 89.00 80.40 69.61 85.15 81.91

AsyLoRA 84.77 88.40 80.28 69.75 86.11 81.86

MoLoRA 84.77 89.60 76.06 70.63 86.91 81.59

MALoRA 84.39 89.80 81.99 71.86 86.36 82.88

Table 16: Results of Intra-Domain Learning, using
LLaMA-2 13B as the Backbone Model

β 0.5 0.75 1.0 1.25

MALoRA 82.32 82.58 82.44 82.88

Table 17: Results of Intra-Domain Learning, using
LLaMA-2 13B as the Backbone Model with a serise
value of β
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OBQA+ARC

Method OBQA ARC-C ARC-E AVG.

LoRA 88.2 64.65 81.69 78.18

MoLoRA 88.6 66.69 81.74 79.01

MALoRA 89.8 66.35 82.24 79.46

Table 18: Results of Different Methods in OBQA+ARC
Task Combination.

PhraseBank+HumanEval+ARC

Method PhraseBank HumanEval ARC-C ARC-E AVG.

LoRA 73.44 28.05 61.79 79.46 60.69

MoLoRA 76.95 26.22 61.25 79.92 61.09

MALoRA 79.47 26.83 61.52 79.84 61.91

Table 19: Results of Different Methods in FI-
NANCE+CODE+ARC Task Combination. The com-
plexity of the tasks in this group has increased, and
there is a phenomenon of mutual promotion between
the learning of FINANCE and CODE.

FINANCE+MEDICINE+BoolQ+OBQA

Method PhraseBank MedMCQA BoolQ OBQA AVG.

LoRA 68.00 44.04 76.36 87.4 68.95

MoLoRA 69.10 43.29 77.65 86.2 69.06

MALoRA 70.08 44.50 75.81 89.0 69.85

Table 20: Results of Different Methods in FI-
NANCE+MEDICINE+BoolQ+OBQA Task Combina-
tion. This group of tasks are more diverse and has lower
relevance.
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