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Abstract

Large language models (LLMs) have shown a
remarkable ability to learn and perform com-
plex tasks through in-context learning (ICL).
However, a comprehensive understanding of its
internal mechanisms is still lacking. This paper
explores the role of induction heads in a few-
shot ICL setting. We analyse two state-of-the-
art models, Llama-3-8B and InternLM2-20B
on abstract pattern recognition and NLP tasks.
Our results show that even a minimal ablation
of induction heads leads to ICL performance
decreases of up to ~32% for abstract pattern
recognition tasks, bringing the performance
close to random. For NLP tasks, this ablation
substantially decreases the model’s ability to
benefit from examples, bringing few-shot ICL
performance close to that of zero-shot prompts.
We further use attention knockout to disable
specific induction patterns, and present fine-
grained evidence for the role that the induction
mechanism plays in ICL.

1 Introduction

Large language models have shown a remarkable
ability to learn and perform complex tasks through
in-context learning (ICL) (Brown et al., 2020; Tou-
vron et al., 2023b). In ICL, the model receives
a demonstration context and a query question as
a prompt for prediction. Unlike supervised learn-
ing, ICL utilises the pretrained model’s capabili-
ties to recognise and replicate patterns within the
demonstration context, thereby enabling accurate
predictions for the query without the use of gradi-
ent updates.

Given the success and wide applicability of ICL,
much recent research was dedicated to better under-
standing its properties. Several works explored its
connections to gradient descent (Dai et al., 2023;
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Von Oswald et al., 2023), suggesting that ICL func-
tions as an implicit form of fine-tuning at inference
time. Other works investigated factors influencing
ICL, showing that it is driven by the distributions
of the training data (Chan et al., 2022) and scales
with model size, revealing new abilities at certain
parameter thresholds (Brown et al., 2020; Wei et al.,
2022). During inference, the properties of demon-
stration samples also affect ICL performance , with
aspects such as the label space, input distribution
and input-label pairing playing a crucial role (Min
et al., 2022; Webson and Pavlick, 2022). While this
work identified interesting properties of ICL and
effective ICL prompting strategies, a comprehen-
sive understanding of its operational mechanisms
within the models is still lacking.

Our paper aims to fill this gap, by directly investi-
gating the internal model computations that enable
ICL. Our work is inspired by recent research in the
field of mechanistic interpretability, which aims to
reverse engineer the "algorithm" by which Trans-
former models process information (Geva et al.,
2023; Olah et al., 2020; Wang et al., 2022). As a sig-
nificant milestone in this area, Elhage et al. (2021)
demonstrated the existence of induction heads in
Transformer LMs. These heads scan the context
for previous instances of the current token using
a prefix matching mechanism, which identifies if
and where a token has appeared before. If a match-
ing token is found, the head employs a copying
mechanism to increase the probability of the sub-
sequent token, facilitating exact or approximate
repetition of sequences and embodying the algo-
rithm "[A][B]...[A] → [B]".

Building on this foundation, Olsson et al. (2022)
hypothesised that induction heads are capable of
abstract pattern matching and conducted a qualita-
tive analysis of attention patterns observed in an
example from an abstract classification task. They
observed that these heads, when focused on the
final token, tended to attend to previous instances
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of the correct label. However, they did not conduct
any experiments to verify this. In a related study,
Bansal et al. (2023) investigated which heads were
important for NLP tasks and found some degree
of overlap between these heads and those that had
high scores associated with induction. However,
they did not directly assess the contribution of in-
duction heads to ICL performance of the models in
these tasks.

To the best of our knowledge, our paper is the
first one to directly, empirically link the specific
computations performed by induction heads to mea-
surable improvements in ICL performance. We
investigate the role of induction heads as an under-
lying mechanism of few-shot ICL across a range
of tasks: (1) abstract pattern recognition tasks; (2)
popular NLP tasks. We focus on two state-of-the-
art models: Llama-3-8B (Dubey et al., 2024) and
InternLM2-20B (Cai et al., 2024). We first com-
pute prefix matching scores for all of their attention
heads, and then perform head ablation experiments
by removing 1% and 3% of the heads with the
highest scores. For the NLP tasks, we additionally
conduct experiments with semantically unrelated
labels to encourage the models to rely on ICL for
task completion. To confirm our hypothesis regard-
ing the specific role of the induction mechanisms
in these heads, we further perform attention knock-
out experiments, where we selectively inhibit each
token’s ability to attend to any tokens that directly
followed tokens similar to the current token. This
effectively simulates a loss of function in the prefix
matching and copying mechanisms.

We find that the ablation of induction heads re-
sults in a substantial decrease in ICL performance,
much more so than when an equivalent percentage
of random heads are ablated. Additionally, when
we block the induction attention pattern in these
heads, performance drops to levels comparable to
or worse than those seen with full head ablations.
The latter confirms not merely the importance of
induction heads for ICL, but also the specific role
of the prefix matching and copying mechanism, re-
tracing its application at the token level. Our work
is thus the first to provide comprehensive experi-
mental evidence, demonstrating (1) the essential
role of induction heads in few-shot ICL in large-
scale, widely-used LMs and real-world tasks and
(2) that induction heads utilise a "fuzzy" version
of the prefix matching and copying mechanisms to
enable pattern matching.

2 Related Work

2.1 Factors that influence ICL performance

ICL performance is influenced by various factors,
both during the pretraining and inference stage.
During pretraining, ICL abilities emerge when
training data displays specific distributional proper-
ties, such as items frequently appearing in clusters
and the presence of many infrequently occurring
classes (Chan et al., 2022). Additionally, the scal-
ability of these abilities correlates directly with
model size (Brown et al., 2020), and emergent ca-
pabilities become apparent at particular scales of
pretraining or beyond certain parameter thresholds
(Wei et al., 2022; Lu et al., 2023). In the infer-
ence stage, the characteristics of demonstration
examples, such as label space, input distribution,
and input-label pairing format, significantly impact
ICL performance (Min et al., 2022). Additionally,
models are more affected by label choice than by
instruction semantics (Webson and Pavlick, 2022),
and larger models can adapt to input-label map-
pings even with flipped or unrelated labels (Wei
et al., 2023b). Further, fine-tuning on semantically
unrelated in-context input-label pairs enhances per-
formance on new ICL tasks (Wei et al., 2023a).

2.2 Mechanistic Interpretability

Research in mechanistic interpretability seeks to
explain model behaviours in terms of their internal
components (Olah et al., 2020). Elhage et al. (2021)
demonstrated that small, attention-only Transform-
ers can be deconstructed into circuits—specific
sub-graphs within the model’s computational graph
that perform distinct tasks (Wang et al., 2022). By
analysing these circuits, Elhage et al. demonstrated
the existence of induction heads. Circuit discovery
has since led to the localisation of other behaviours
within Transformer models (Meng et al., 2022; Vig
et al., 2020; Wang et al., 2022). A common tech-
nique is mean ablation, where components’ acti-
vations are replaced with their average activation
value across a reference distribution to determine
whether disrupting this specific component hinders
the model’s ability to perform the task. Wang et al.
(2022) studied indirect object identification in GPT-
2 small (Radford et al., 2019), by obscuring the
indirect object with random names, averaging these
activations, and replacing the target activations dur-
ing inference. This identified specific attention
heads crucial for the task.

Another recent technique—attention knockout—
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Figure 1: In the sequence “...vintage cars ... vintage”, an induction head identifies the initial occurrence of “vintage”,
attends to the subsequent word “cars” for prefix matching, and predicts “cars” as the next word through the copying
mechanism.

systematically disables specific attention weights to
assess their impact on model outputs (Geva et al.,
2023). Geva et al. (2023) explored how factual
knowledge is extracted from LLMs during infer-
ence, by blocking the final position from attending
to both subject and non-subject positions across
specific layers. They revealed that essential infor-
mation from non-subject positions is accessed first.
Additionally, Wang et al. (2023) blocked label to-
kens from accessing prior demonstration text in
shallow layers, and demonstrated that label words
gather information early in forward propagation.

2.3 Induction heads & ICL

Building on the work of Elhage et al. (2021), Ols-
son et al. (2022) provided initial evidence that in-
duction heads might be an underlying mechanism
of ICL, defined as the gradual reduction of loss
with increasing token indices. They observed that
induction heads emerge early in training, coincid-
ing with significant improvements in the model’s
ability to learn from context. They also found that
modifying or removing these heads impairs ICL
performance, assessed by a heuristic measure of
loss reduction. In contrast, we employ a few-shot
prompting ICL setting and evaluate ICL perfor-
mance directly through the model’s accuracy on
specific tasks.

Using head importance pruning, Bansal et al.
(2023) demonstrated that up to 70% of attention
heads and 20% of feed forward layers can be re-
moved from the OPT-66B model (Zhang et al.,
2022) with minimal performance decline across
various downstream tasks. They uncovered a no-
table consistency in the relevance of certain atten-
tion heads for ICL, irrespective of the task or the
number of few-shot examples. They investigated
whether these crucial heads were induction heads,
finding some degree of overlap with those that had
high prefix matching scores. Our research extends
these findings by not only identifying induction
heads but also conducting ablation studies to di-

rectly evaluate their impact on ICL performance in
diverse tasks.

3 Background

Following the framework established by Elhage
et al. (2021) and further discussed by Ren et al.
(2024), the operations within a multi-head attention
(MHA) layer, comprising H attention heads, can
be reformulated as follows:
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xi = tiWe ∈ R1×d denoting the embedding
of the i-th input token ti. We ∈ R|V|×d de-
notes the embedding matrix over the vocabulary
V . Wh

q ,W
h
k ,W

h
v ∈ Rd×dh denote the query, key,

and value parameter matrices of the h-th attention
head. Wo ∈ Rd×d represents the output trans-
formation of the MHA layer, which can be de-
constructed as Wo = [(W1

o)
T (W2

o)
T ...(WH

o )T ],
where Wh

o ∈ Rdh×d. Mh is a casual attention
mask, which ensures each position can only attend
to preceding positions (i.e. Mh

rc = −∞∀c > r
and zero otherwise).

In Equation (1), Wh
QK = Wh

q (W
h
k)

T , termed
the Query-Key (QK) circuit, calculates the atten-
tion pattern of the h-th head. The matrix Wh

OV =
Wh

v (W
h
o )

T , termed the Output-Value (OV) circuit,
determines each head’s independent output for the
current token. Leveraging this decomposition, El-
hage et al. (2021) discovered a distinct behaviour
in certain attention heads, which they named induc-
tion heads. This behaviour emerges when these
heads process sequences of the form "[A] [B] ...
[A] → ". In these heads, the QK circuit directs
attention towards [B], which appears directly after
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the previous occurrence of the current token [A].
This behaviour is termed prefix matching. The OV
circuit subsequently increases the output logit of
the [B] token, termed copying. An overview of
this mechanism is shown in Figure 1. The authors
showed that these heads can operate on different
distributions as long as the abstract property of
repeated sequences’ likelihood holds true.

4 Methods

4.1 Models

We utilise two recently developed open-source
models, namely Llama-3-8B (Dubey et al., 2024)
and InternLM2-20B (Cai et al., 2024), both of
which are based on the original Llama (Touvron
et al., 2023a) architecture. Llama-3-8B, comprises
32 layers, each with 32 attention heads. It has
shown superior performance compared to its pre-
decessors, even the larger Llama-2 models.

InternLM2-20B features 48 layers with 48 at-
tention heads each. We selected InternLM2-20B
for its exemplary performance on the Needle-in-
the-Haystack1 task, which assesses LLMs’ ability
to retrieve a single critical piece of information
embedded within a lengthy text. This mirrors the
functionality of induction heads, which scan the
context for prior occurrences of a token to extract
relevant subsequent information.

4.2 Identifying Induction Heads

To identify induction heads within models, we mea-
sure the ability of all attention heads to perform
prefix matching on random input sequences.2 We
follow the task-agnostic approach to computing pre-
fix matching scores outlined by Bansal et al. (2023).
We argue that focusing solely on prefix matching
scores is sufficient for our analysis, as high pre-
fix matching cores specifically indicate induction
heads, while less relevant heads tend to show high
copying capabilities (Bansal et al., 2023). We gen-
erate a sequence of 50 random tokens, excluding
the 4% most common and least common tokens.
This sequence is repeated four times to form the
input to the model. The prefix matching score is cal-
culated by averaging the attention values from each
token to the tokens that directly followed the same

1github.com/gkamradt/LLMTest_NeedleInAHaystack
2In this work, the term "induction heads" refers to be-

havioural induction heads. A true induction head must be
verified mechanistically; however, our analysis employs prefix-
matching scores as a proxy. We will continue to use the term
"induction heads" for simplicity.

Figure 2: Prefix matching scores for Llama-3-8B.

token in earlier repeats. The final prefix matching
scores are averaged over five random sequences.

The prefix matching scores for Llama-3-8B are
shown in Figure 2. For IntermLM2-20B, we refer
to Figure 8 in Appendix A.1. Both models exhibit
heads with notably high prefix matching scores,
distributed across various layers. In the Llama-3-
8B model, ~3% of the heads have a prefix matching
score of 0.3 or higher, indicating a degree of spe-
cialisation in prefix matching, and some heads have
high scores of up to 0.98.

4.3 Head Ablations
To investigate the significance of induction heads
for a specific ICL task, we conduct mean-ablations
of 1% and 3% of the heads with the highest prefix
matching scores, aiming to introduce noise and dis-
rupt their function. We utilise premises from the
MNLI (Williams et al., 2018) training set, which
encompasses data from ten diverse genres of writ-
ten and spoken English, thereby capturing a wide
spectrum of language complexity. For each model,
premises are concatenated to create 500 samples,
each comprising of 3000 tokens, exceeding the
longest prompt used in our experiments. Each sam-
ple is passed through the model, during which head
activations are recorded with the Pyvene (Wu et al.,
2024) library. These activations are then averaged
to generate a mean embedding vector for each head.
During inference, the activations of the ablated
heads are replaced with the mean activations by
truncating them to the length of the current prompt.

As a control condition, we also randomly ab-
late 1% and 3% of the model’s heads, which are
selected following the layer distribution of the pre-
viously ablated induction heads. For example, if
three induction heads were ablated in layer 24, we
randomly select three heads from the same layer
for ablation. This method allows us to control for
layer-specific effects, ensuring that any observed
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differences in performance are attributable to the
function of the induction heads themselves, rather
than differences in the computational roles or im-
portance of the various layers.

4.4 Attention Knockout

To better understand the function of induction
heads in few-shot ICL, we conduct attention knock-
out experiments. We hypothesise that when induc-
tion heads process a structured dataset, they gen-
erate a specific "induction pattern" by consistently
attending back to tokens that previously followed
similar ones. Drawing on the methodology of Geva
et al. (2023), we empirically test whether induc-
tion heads exhibit this pattern by blocking tokens
from attending to tokens that previously followed
similar ones. We define two positions r, c ∈ [1, N ]
where r < c. To inhibit attention, we prevent
xhc from attending to xhr in head h by modifying
the attention weights in that layer (Eq. 1) as fol-
lows: Mh

rc = −∞. This restricts the current posi-
tion from obtaining information from the blocked
positions for that particular head. By comparing
the effects of completely removing a head with
merely blocking its pattern-directed attention, we
can gather empirical evidence suggesting whether
these heads predominantly implement this specific
induction pattern.

5 Ablation Experiments: Abstract
Pattern Recognition Tasks

We use a modified version of Eleuther AI’s Lan-
guage Model Evaluation Harness (Gao et al., 2023)
for our experiments. While the default framework
randomly samples different in-context examples
for each query, we adapted it to ensure a balanced
sampling approach, in terms of both the number of
examples and classes in the dataset. Aside from this
modification, all default settings were maintained.

For predictions, we utilise the harness’s multiple-
choice method, which identifies the target word
assigned the largest log probability among all tar-
get words. We report accuracy averaged over three
random seeds for example selection. For random
head ablation, we report accuracy over three abla-
tion seeds, totalling nine runs.

Datasets and experimental setup We first con-
duct ablation experiments on abstract pattern recog-
nition tasks. In these tasks, we expect the model
to rely on ICL more so than leveraging informa-
tion from its training data or weights. The first set

Task Pattern (Foo) No pattern (Bar)

Repetition
X H X H Z E W F
Q A Q A F I O E

Recursion
V D D D N O W T
F L L L P Z X F

Centre-embedding
X B V B X L Q I F P
V G M G V H M T B A

WordSeq 1 (binary)
grape shark couch soldier
fig panda nightstand writer

Figure 3: Each letter-sequence dataset features exam-
ples following the respective patterns labelled "Foo"
and random sequences labelled "Bar". For word se-
quence tasks, examples include pairs of semantically
categorised words.

of tasks focus on recognising predefined patterns
in sequences of letters. In the REPETITION task,
the model must determine whether a sequence of
four letters consists of repeating two tokens (e.g.
A B A B). The RECURSION task involves detect-
ing whether four-letter-sequences contain recursion
(e.g. A B B B). In the CENTRE-EMBEDDING task,
whether a sequence of five letters contains a centre-
embedding (e.g. G L O L G). If the specific pattern
is not present in any task, the sequence is a random
sequence of letters.

In the second set of tasks, the model is required
to label sequences of words that contain a pattern
rarely seen in natural language data (i.e. not a com-
mon semantic relation). We pair specific semantic
categories of words—such as <fruit, animal>, <fur-
niture, profession> (WORDSEQ 1) and <vegetable,
vehicle>, <body part, instrument> (WORDSEQ 2)—
and conduct a binary or four-way classification of
these pairs. Figure 3 presents examples from the
letter-sequence tasks and one of the word-sequence
tasks.

We make use of the semantically unrelated labels
"Foo" and "Bar" for all binary tasks. For the four-
way tasks, we additionally use "Mur" and "Res".
For the letter-sequence datasets, we randomly gen-
erate sequences of the specified length, ensuring
each dataset contains 500 examples with class bal-
ance. For the binary word-sequence datasets, we
adapted the sampler to ensure it never samples ex-
amples with the same instantiation of categories
as the query. For instance, "mango monkey: Foo"
would not be sampled when the query is "mango
shark:". This adjustment tests whether the induc-
tion heads are capable of the fuzzy pattern match-
ing necessary for ICL, rather than just copying.
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Llama-3-8B

Task Shot Full 1% ind. 1% ind. 1% rnd. 3% ind. 3% ind. 3% rnd.
model heads pattern heads heads pattern heads

Repetition 5 67.3 61.9 (-6.4) 62.5 (-4.8) 64.9 (-2.4) 50.0 (-17.3) 53.2 (-14.1) 62.6 (-4.7)
10 91.3 59.7 (-31.6) 65.3 (-26.0) 85.9 (-5.4) 51.5 (-39.8) 58.7 (-32.6) 79.7 (-11.6)

Recursion 5 67.8 63.0 (-4.8) 61.5 (-6.3) 66.1 (-1.7) 52.0 (-15.8) 55.1 (-12.7) 68.0 (+0.2)
10 91.5 67.9 (-23.6) 68.7 (-22.8) 86.5 (-5.0) 52.9 (-38.6) 58.9 (-32.6) 84.6 (-6.9)

Centre-embedding 5 58.8 54.9 (-3.9) 55.0 (-3.8) 57.2 (-1.6) 49.1 (-9.7) 50.5 (-8.3) 56.4 (-2.4)
10 80.4 53.0 (-27.4) 56.5 (-23.9) 74.6 (-5.8) 50.7 (-29.7) 52.3 (-28.1) 71.5 (-8.9)

WordSeq 1 (binary) 5 83.1 72.1 (-11.0) 71.8 (-11.3) 82.1 (-1.0) 51.6 (-31.5) 56.9 (-26.2) 78.8 (-4.3)
10 99.4 96.2 (-3.2) 97.3 (-2.1) 99.3 (-0.1) 69.4 (-30.0) 82.2 (-17.2) 98.3 (-1.1)

WordSeq 2 (binary) 5 77.9 65.4 (-12.5) 65.2 (-12.7) 76.8 (-1.1) 52.0 (-25.9) 55.7 (-22.2) 72.4 (-5.5)
10 99.4 94.9 (-4.5) 96.4 (-3.0) 98.8 (-0.6) 67.2 (-32.2) 81.1 (-18.3) 97.7 (-1.7)

WordSeq 1 (4-way) 20 78.3 55.2 (-23.1) 59.8 (-18.5) 76.5 (-1.8) 40.8 (-37.5) 45.2 (-33.1) 71.4 (-6.9)

WordSeq 2 (4-way) 20 81.3 55.9 (-25.4) 59.8 (-21.5) 76.0 (-5.3) 42.3 (-39.0) 47.5 (-33.8) 68.6 (-12.7)

InternLM2-20B
Task Shot Full 1% ind. 1% ind. 1% rnd. 3% ind. 3% ind. 3% rnd.

model heads pattern heads heads pattern heads

Repetition 5 68.7 63.3 (-5.4) 62.0 (-6.7) 67.6 (-1.1) 62.4 (-6.3) 58.5 (-10.2) 64.4 (-4.3)
10 88.1 73.4 (-14.7) 72.1 (-16.0) 86.9 (-1.2) 72.5 (-15.6) 61.2 (-26.9) 84.1 (-4.0)

Recursion 5 68.1 62.1 (-6.0) 59.9 (-8.2) 67.3 (-0.8) 59.5 (-8.6) 55.3 (-12.8) 65.3 (-2.8)
10 88.5 70.3 (-18.2) 69.9 (-18.6) 87.1 (-1.4) 67.5 (-21.0) 57.1 (-31.4) 85.1 (-3.4)

Centre-embedding 5 59.5 56.9 (-2.6) 56.1 (-3.4) 58.6 (-0.9) 55.3 (-4.2) 54.1 (-5.4) 56.7 (-2.8)
10 75.3 60.1 (-15.2) 58.5 (-16.8) 74.3 (-1.0) 60.2 (-15.1) 54.3 (-21.0) 70.7 (-4.6)

WordSeq 1 (binary) 5 76.8 66.5 (-10.3) 64.9 (-11.9) 76.1 (-0.7) 61.5 (-15.3) 56.8 (-20.0) 77.6 (+0.8)
10 95.6 90.0 (-5.6) 88.2 (-7.4) 94.6 (-1.0) 89.1 (-6.5) 83.3 (-12.3) 96.3 (+0.7)

WordSeq 2 (binary) 5 83.3 74.2 (-9.1) 70.1 (-13.2) 82.5 (-0.8) 68.3 (-15.0) 64.1 (-19.2) 83.2 (-0.1)
10 99.0 98.1 (-0.9) 96.8 (-2.2) 99.0 94.1 (-4.9) 86.7 (-12.3) 98.7 (-0.3)

WordSeq 1 (4-way) 20 77.3 67.9 (-9.4) 65.4 (-11.9) 76.8 (-0.5) 41.3 (-36.0) 37.4 (-39.9) 73.1 (-4.2)

WordSeq 2 (4-way) 20 80.4 78.3 (-2.1) 75.5 (-4.9) 79.4 (-1.0) 54.8 (-25.6) 47.5 (-32.9) 74.6 (-5.8)

Table 1: Llama-3-8B (top) and InternLM2-20B (bottom) ablation experiments on the abstract pattern recognition
tasks. For both models, zero-shot performance of the full model is ~50% in all tasks. Columns labelled "1% ind.
heads" and "3% ind. heads" show results from fully ablating 1% and 3% of heads with the highest prefix scores,
respectively. "1% ind. pattern" and "3% ind. pattern" columns depict outcomes from blocking induction attention
patterns in 1% and 3% of these heads (Sec. 7). Columns "1% rnd. heads" and "3% rnd. heads" illustrate the effects
of randomly ablating 1% and 3% of all heads in the model. Performance differences due to the ablation, compared
to the full model, are indicated in parentheses.

Each binary word-sequence dataset contains 512
examples with class balance and each four-way
word-sequence dataset 1024. Detailed prompt in-
formation can be found in Appendix A.3.1. We
report five- and ten-shot ICL performance for the bi-
nary classification tasks, and 20-shot performance
for the four-way tasks.

Llama-3-8B results The results for Llama-3-8B
are presented in Table 1. Few-shot prompting out-
performs a zero-shot baseline whose performance
is close to random across all tasks (~50% in the bi-
nary case), showing evidence of ICL. Ablating 1%
of induction heads leads to a substantial decrease

in performance of up to 31.6% across all tasks and
settings. Increasing this to 3% causes a further de-
cline, with the letter-sequence tasks dropping to
near-random performance. A similar trend is noted
for the binary word-sequence tasks in the five-shot
setting. Though the model achieves near-perfect
performance in the ten-shot binary word-sequence
tasks, induction head ablations still result in perfor-
mance declines of up to 18.3%. These substantial
performance decreases strongly indicate that induc-
tion heads play a crucial role in few-shot ICL.
In contrast, a random ablation of 1% has a much
milder impact, reducing performance by no more
than 5.8% for the binary tasks, and 5.3% for the
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four-way tasks. Although increasing this ablation
to 3% consistently leads to further performance de-
creases, these declines remain substantially milder
compared to those observed with induction head
ablation for all tasks and settings. This further
confirms the importance of specifically induction
heads in ICL.

InternLM2-20B results The results for
InternLM2-20B are presented in Table 1 (bottom).
Few-shot prompting consistently outperforms
a (close to random) zero-shot baseline across
all tasks, providing clear evidence of ICL. The
observed patterns are consistent with those seen
in Llama-3-8B: Ablating 1% of induction heads
leads to a substantial decrease in performance,
though these declines are not as pronounced as
those seen in the Llama-3-8B model. The trend
persists with the ablation of 3% of induction heads,
which results in performance decreases of up to
36%. Ablating 3% of randomly selected heads
only results in a performance decrease of up to
5.8%. These findings further affirm that induction
heads play a crucial role in few-shot ICL, showing
that these results generalise across models.

6 Ablation Experiments: NLP Tasks

Datasets and experimental setup To assess the
impact of induction heads on ICL performance
in real-world tasks, we conduct ablation experi-
ments on a range of NLP classification tasks. We
make use of the following datasets from the Su-
perGLUE benchmark (Wang et al., 2019): BoolQ
(question answering), RTE (natural language in-
ference), WIC (word-sense disambiguation) and
WSC (coreference resolution). Additionally, we
include ETHOS (Mollas et al., 2020)3 (hate speech
detection), SST-2 (Socher et al., 2013) (sentiment
analysis) and SUBJ (Conneau and Kiela, 2018)
(subjectivity). All are binary classification tasks.

For all datasets except SST-2, we map the label
space to target words "Yes"/"No", as this has been
shown to improve ICL performance (Webson and
Pavlick, 2022).4 For BoolQ, ETHOS and SUBJ,
we adopt the "Input/Output" template proposed by
Wei et al. (2023b). For the other datasets, we use
informative prefixes for each element of the prompt
(e.g. "Premise:"). Our prompts are shown in App.
A.3.2. For all tasks, demonstration examples are

3We employ a 80/20% training-validation split.
4For SST-2, we found this to actually lead to poor zero-shot

performance, so we use the labels "Positive"/"Negative".

selected from the training set and evaluations are
performed on the validation set. We report ten-shot
prompting performance.

We additionally conduct experiments with
semantically-unrelated labels (SUL). Specifically,
we map the label space from "Yes"/"No" to
"Foo"/"Bar". This removes the semantic priors typ-
ically provided by labels, forcing the model to rely
solely on input-label mappings for ICL (Wei et al.,
2023b). Thus, we expect the model to strongly rely
on induction heads to recognise patterns.

We define ICL benefit as the metric quantifying
the model’s advantage from demonstration exam-
ples by measuring the performance difference be-
tween the ten-shot and zero-shot settings. For each
model, we evaluate the full model’s ICL benefit for
each task and then quantify the percentage change
in these benefits due to each ablation.5

Llama-3-8B results We observe ICL benefits for
all tasks except WSC, which we exclude from fur-
ther analysis. The impact of ablations on these
benefits are detailed in Figure 4 (top). Ablating
1% of induction heads reduces the ICL benefit con-
siderably more than a 1% random ablation across
all tasks except ETHOS. Specifically, in the SUBJ
task, this targeted ablation results in a 63.8% re-
duction, whereas the random ablation leads to only
a 11.8% decrease. For SST-2, we observe a de-
cline of 113% with targeted ablation, indicating
that ten-shot performance has dropped below zero-
shot level. This suggests that the model may no
longer leverage demonstration examples effectively
for this task. Increasing the induction head ablation
to 3% further decreases the ICL benefit for some
tasks.

We further find that for the induction head ab-
lations, the decrease in ICL benefit is due to ten-
shot performance being affected more than zero-
shot performance for all tasks except ETHOS (App.
A.4). Such a pattern is not present in random head
ablations. This supports the importance of induc-
tion heads for ICL specifically, as opposed to the
general functioning of the LLM.

In the SUL setting, the model achieves above-
random performance only for the ETHOS, SST-2
and SUBJ tasks, which are presented in Figure 5
(top). Ablating 1% of induction heads leads to sub-
stantial performance declines of around 20% for all
tasks. For random ablations at the same level, these
declines are considerably smaller. These findings

5A full overview of model accuracy is shown in App. A.4.
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Figure 4: Change in ICL benefit for Llama-3-8B (top)
and InternLM2-20B (bottom), due to head ablations
when compared to that of the full model. "1% ind." and
"3% ind." denote ablating the top respective percentage
of induction heads. "1% rnd." and "3% rnd." denote
randomly ablating the respective percentage of all heads
in the model.

SUL Ablation Experiments: Llama-3-8B

SUL Ablation Experiments: InternLM2-20B

Figure 5: SUL ablation experiments for Llama-3-8B
(top) and InternLM2-20B (bottom) on NLP tasks. "1%
ind." and "3% ind." denote ablating the top respective
percentage of induction heads. "1% rnd." and "3% rnd."
denote randomly ablating the respective percentage of
all heads in the model.

suggest that the model’s capacity to reference pre-
vious examples for learning input-label mappings

may be compromised. Increasing the induction
head ablation to 3% did not reduce performance
further, indicating that the heads responsible are
amongst those with the highest prefix-scores.

InternLM2-20B results We observe ICL bene-
fits on all tasks with the exceptions of BoolQ and
SST-2, which we therefore exclude from further
analysis. The results for the remaining tasks are
shown in Figure 4 (bottom). Consistent with obser-
vations from the Llama-3-8B model, we note that:
(1) targeted ablations of induction heads negatively
affect ten-shot performance more than zero-shot
performance across all tasks, whereas random ab-
lations do not follow this pattern (App. A.4); (2) a
1% targeted ablation of induction heads diminishes
the ICL benefit considerably more than a 1% ran-
dom ablation. Unlike in Llama-3-8B, increasing
the targeted ablation to 3% further reduces the ICL
benefit in all tasks other than ETHOS. For WSC,
the 3% random ablation appears to decrease the
ICL benefit more than the targeted ablation. How-
ever, this effect is partly attributed to an increase in
zero-shot performance from the random ablation
(App. A.4).

In the SUL setting, the model achieves above-
random performance in all tasks except for WSC
and the results are presented in Fig. 5 (bottom).
Induction head ablations consistently lead to perfor-
mance declines of up to 20%, which are generally
substantially larger than those caused by random
ablations across tasks, although the differences are
smaller for SST-2 and WIC.

We observed similar trends for the five-shot set-
ting (App. A.4). These consistent findings across
different models and settings reaffirm our conclu-
sions on the critical role of induction heads in ICL.

7 Attention Knockout Experiments

Attention pattern analysis To further explore
the functional significance of induction heads,
we leverage the structure of the word-sequence
datasets. For instance, in the binary WORD-
SEQ 1 task (classifying <fruit-animal> pairs vs.
<furniture-profession> ones), if an induction head
focuses on a furniture token, it should typically
attend to profession tokens that have historically
followed furniture. To validate this, we conduct a
qualitative analysis of the attention patterns exhib-
ited by the top five induction heads with the highest
prefix matching scores from Llama-3-8B on the bi-
nary and four-way versions of the WORDSEQ 1
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Figure 6: Attention pattern
for the final ":" token in
head 30 of layer 15 in the
Llama-3-8B model.

Figure 7: Attention pattern
for the "ape" token in head
30 of layer 15 in the Llama-
3-8B model.

task (App. A.6).
Figure 6 illustrates the attention pattern of the

highest scoring induction head for the final ":" to-
ken on a sample from the binary task. This token
predominantly attends to label tokens, particularly
focusing on "Foo," the target label in this instance.
Such patterns, while not universally consistent, are
particularly evident in induction heads located in
later layers, suggesting that induction mechanisms
may facilitate the model’s ability to selectively fo-
cus on relevant labels in certain contexts.

Figure 7 displays the attention pattern for the
"ape" token (from ’grape’). We observe that the
head attends to tokens that previously followed
fruit tokens. This behaviour was consistent across
token categories and observed in various heads and
samples, suggesting that induction heads not only
learn input-label mappings, but may also grasp the
underlying pattern itself.

Experimental setup To disrupt this induction
pattern, we block attention from each token to all
tokens that directly followed tokens of the same
category, including word categories, labels, new-
lines, and colons. In contrast, the letter-sequence
tasks require recognising abstract patterns rather
than categorical sequences. Thus, our blocking
strategy is exclusively focused on labels, newlines,
and colons.

Llama-3-8B results Table 4 (top) shows that
blocking the induction pattern for 1% of the induc-
tion heads results in performance declines compara-
ble to those observed with complete head ablations.
When the block is increased to 3% of the induction
heads, performance declines are similarly consis-
tent in most settings. Though in the ten-shot binary
word sequence tasks the declines are notably lower,
they are still substantial, exceeding 17% for both
tasks. These persistent declines across both full and
pattern-specific ablations provide strong empirical
evidence that induction heads predominantly rely
on this attention pattern.

InternLM2-20B results Table 4 (bottom) shows
that blocking the induction pattern in 1% of induc-
tion heads results in performance declines within
4.1% of full head ablations. Unlike in Llama-3-
8B, this approach consistently causes greater per-
formance decreases than full ablations. This gap
widens further when the knockout is applied to 3%
of the induction heads. These observations indicate
that for this model, blocking the induction pattern
has a more detrimental impact on head functional-
ity than eliminating the head entirely, suggesting
that the induction heads are dependent on their spe-
cific operational patterns for performance.

8 Conclusion

In this paper, we explored the extent to which the
prefix matching and copying capabilities of induc-
tion heads play a role in few-shot ICL. Our findings
highlight a general trend where the ablation of in-
duction heads affects few-shot performance more
severely than zero-shot performance. This observa-
tion underscores the significance of induction heads
in enabling the model to learn effectively from a
limited number of examples. Moreover, even a
minimal ablation of just 1% of these heads results
in a substantial decrease in ICL, suggesting that in-
duction heads are crucial for the model’s few-shot
learning capabilities. Additionally, when the induc-
tion pattern is blocked for a percentage of these
heads, performance drops to levels comparable to
full head ablations. This provides further empir-
ical evidence that induction heads predominantly
utilise this induction pattern and are dependent on
it for optimal performance. Overall, our findings
indicate that induction heads are a fundamental
mechanism underlying ICL.
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Limitations

The limitations of this study are twofold. First,
we lack a mechanistic basis for definitively identi-
fying induction heads; instead, we rely on prefix-
matching scores as a proxy. Consequently, it re-
mains unclear how the grouped-query attention
mechanism influences the circuits and whether in-
duction heads form differently as a result. Second,
our investigation of induction attention patterns (at-
tention knockout) is confined to abstract-pattern
recognition tasks. Further research is required to
verify these findings across NLP tasks.

Furthermore, it is worth noting that our head ab-
lation and attention knockout experiments demon-
strate that induction heads play an important role in
ICL. However, what we do not test for is whether
they are the only computational process in the
Transformer LM that plays such a role (this can
not in principle be tested by a targeted ablation or
blocking experiment where only a particular part of
the computational process is disabled). Therefore,
it is possible that additional mechanisms and/or cir-
cuits will be discovered in the future that contribute
to ICL, alongside induction heads.

References
Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal,

Sravan Bodapati, Katrin Kirchhoff, and Dan Roth.
2023. Rethinking the role of scale for in-context
learning: An interpretability-based case study at 66
billion scale. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 11833–11856,
Toronto, Canada. Association for Computational Lin-
guistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi
Chen, Pei Chu, et al. 2024. Internlm2 technical re-
port. arXiv preprint arXiv:2403.17297.

Stephanie Chan, Adam Santoro, Andrew Lampinen,
Jane Wang, Aaditya Singh, Pierre Richemond, James
McClelland, and Felix Hill. 2022. Data distributional
properties drive emergent in-context learning in trans-
formers. Advances in Neural Information Processing
Systems, 35:18878–18891.

Alexis Conneau and Douwe Kiela. 2018. SentEval: An
evaluation toolkit for universal sentence representa-

tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming
Ma, Zhifang Sui, and Furu Wei. 2023. Why can GPT
learn in-context? language models secretly perform
gradient descent as meta-optimizers. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 4005–4019, Toronto, Canada. Associa-
tion for Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al.
2021. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual associa-
tions in auto-regressive language models. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 12216–12235,
Singapore. Association for Computational Linguis-
tics.

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva,
Harish Tayyar Madabushi, and Iryna Gurevych.
2023. Are emergent abilities in large language
models just in-context learning? arXiv preprint
arXiv:2309.01809.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in gpt. Advances in Neural Information Pro-
cessing Systems, 35:17359–17372.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Ioannis Mollas, Zoe Chrysopoulou, Stamatis Karlos,
and Grigorios Tsoumakas. 2020. Ethos: an on-
line hate speech detection dataset. arXiv preprint
arXiv:2006.08328.

5058

https://doi.org/10.18653/v1/2023.acl-long.660
https://doi.org/10.18653/v1/2023.acl-long.660
https://doi.org/10.18653/v1/2023.acl-long.660
https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://doi.org/10.18653/v1/2022.emnl
https://doi.org/10.18653/v1/2022.emnl


Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel
Goh, Michael Petrov, and Shan Carter. 2020. Zoom
in: An introduction to circuits. Distill, 5(3):e00024–
001.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. 2022.
In-context learning and induction heads. arXiv
preprint arXiv:2209.11895.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Jie Ren, Qipeng Guo, Hang Yan, Dongrui Liu, Xipeng
Qiu, and Dahua Lin. 2024. Identifying semantic
induction heads to understand in-context learning.
arXiv preprint arXiv:2402.13055.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art Shieber. 2020. Investigating gender bias in lan-
guage models using causal mediation analysis. In
Advances in Neural Information Processing Systems,
volume 33, pages 12388–12401. Curran Associates,
Inc.

Johannes Von Oswald, Eyvind Niklasson, Ettore Ran-
dazzo, João Sacramento, Alexander Mordvintsev, An-
drey Zhmoginov, and Max Vladymyrov. 2023. Trans-
formers learn in-context by gradient descent. In In-
ternational Conference on Machine Learning, pages
35151–35174. PMLR.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Kevin Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2022. In-
terpretability in the wild: a circuit for indirect ob-
ject identification in gpt-2 small. arXiv preprint
arXiv:2211.00593.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023. Label
words are anchors: An information flow perspective
for understanding in-context learning. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 9840–9855,
Singapore. Association for Computational Linguis-
tics.

Albert Webson and Ellie Pavlick. 2022. Do prompt-
based models really understand the meaning of their
prompts? In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2300–2344, Seattle, United States.
Association for Computational Linguistics.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen,
Da Huang, Yi Tay, Xinyun Chen, Yifeng Lu, Denny
Zhou, Tengyu Ma, and Quoc Le. 2023a. Symbol tun-
ing improves in-context learning in language models.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
968–979, Singapore. Association for Computational
Linguistics.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert
Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. 2023b. Larger
language models do in-context learning differently.
arXiv preprint arXiv:2303.03846.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Zhengxuan Wu, Atticus Geiger, Aryaman Arora, Jing
Huang, Zheng Wang, Noah Goodman, Christopher
Manning, and Christopher Potts. 2024. pyvene: A
library for understanding and improving PyTorch
models via interventions. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 3: System Demon-
strations), pages 158–165, Mexico City, Mexico. As-
sociation for Computational Linguistics.

5059

https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2023.emnlp-main.61
https://doi.org/10.18653/v1/2023.emnlp-main.61
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://aclanthology.org/2024.naacl-demo.16
https://aclanthology.org/2024.naacl-demo.16
https://aclanthology.org/2024.naacl-demo.16


Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

5060



A Appendix

A.1 Prefix Matching Scores IntermLM-20B

Figure 8: Prefix matching scores for InternLM2-20B

A.2 Seeds

Task Seeds
Prefix Matching Sequences 0, 1, 2, 3, 4
Demonstration Example Selection 42, 43, 44
Random Head Ablation 42, 43, 44

Table 2: Seed details.

A.3 Prompt Examples
We provide five-shot prompting examples for all binary tasks and 20-shot prompting examples for all
four-way tasks.

A.3.1 Abstract Pattern Recognition Tasks
Repetition:
Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly.

D Y P A:Bar

M B K O:Bar

P L P L:Foo

V S V S:Foo

S I X P:Bar

J E J E:

Recursion:
Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly.
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H U V J:Bar

Q R T K:Bar

X X X X:Foo

U Q Q Q:Foo

O R P L:Bar

V H H H:

Centre-embedding:
Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly.

Q T J D G:Bar

R Y P O N:Bar

R Y I Y R:Foo

C B V B C:Foo

W A Y S M:Bar

N F I F N:

WordSeq 1 (binary):
Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly.

strawberry cat:Foo

cherry rabbit:Foo

nightstand nurse:Bar

grape rabbit:Foo

couch artist:Bar

cabinet scientist:

WordSeq 1 (four-way):
Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly.

papaya writer:Res

ottoman zebra:Mur
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desk chef:Bar

mango chef:Res

shelf lion:Mur

nectarine cat:Foo

chair pilot:Bar

fig doctor:Res

bench scientist:Bar

mango horse:Foo

chair lawyer:Bar

mango lion:Foo

chair scientist:Bar

couch shark:Mur

kiwi farmer:Res

cabinet tiger:Mur

papaya actor:Res

recliner monkey:Mur

lemon elephant:Foo

desk lawyer:Bar

bookcase electrician:

WordSeq 2 (binary):
Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly.

potato yacht:Foo

garlic minivan:Foo

neck banjo:Bar

spinach trolley:Foo

ankle drum:Bar
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arm oboe:

WordSeq 2 (four-way):
Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly.

celery helicopter:Foo

lettuce violin:Mur

mouth train:Res

broccoli bus:Foo

pumpkin accordion:Mur

arm accordion:Bar

foot helicopter:Res

lettuce trolley:Foo

eye boat:Res

mouth piano:Bar

arm plane:Res

knee guitar:Bar

arm plane:Res

carrot saxophone:Mur

cucumber scooter:Foo

eggplant harmonica:Mur

garlic scooter:Foo

onion trombone:Mur

toe cello:Bar

arm bicycle:Res

finger submarine:

A.3.2 NLP Tasks
BoolQ
Read the passage and answer the question.
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Input: Natural-born-citizen clause – Status as a natural-born citizen of the
United States is one of the eligibility requirements established in the United States
Constitution for holding the office of President or Vice President. This requirement
was intended to protect the nation from foreign influence.

Can a canadian be president of the united states?

Output: No

Input: Pepsi Zero Sugar – Pepsi Zero Sugar (sold under the names Diet Pepsi
Max until early 2009 and then Pepsi Max until August 2016), is a zero-calorie,
sugar-free, carbohydrate-free, ginseng-infused cola sweetened with aspartame,
marketed by PepsiCo. In Fall 2016, PepsiCo renamed the drink Pepsi Zero Sugar
from Pepsi Max. It has nearly twice the caffeine of Pepsi’s other cola beverages.
Pepsi Zero Sugar contains 69 milligrams of caffeine per 355ml (12 fl oz), versus 36
milligrams in Diet Pepsi.

Is pepsi zero sugar the same as diet pepsi?

Output: No

Input: Phone hacking – Phone hacking, being a form of surveillance, is illegal
in many countries unless it is carried out as lawful interception by a government
agency. In the News International phone hacking scandal, private investigator Glenn
Mulcaire was found to have violated the Regulation of Investigatory Powers Act
2000. He was sentenced to six months in prison in January 2007. Renewed controversy
over the phone hacking claims led to the closure of the News of the World in July 2011.

Is it illegal to hack into someones phone?

Output: Yes

Input: Legal threat – A legal threat is a statement by a party that it intends
to take legal action on another party, generally accompanied by a demand that the
other party take an action demanded by the first party or refrain from taking or
continuing actions objected to by the demanding party.

Can you threaten to take someone to court?

Output: Yes

Input: Devil’s food cake – Devil’s food cake is a moist, airy, rich chocolate layer
cake. It is considered a counterpart to the white or yellow angel food cake. Because
of differing recipes and changing ingredient availability over the course of the
20th century, it is difficult to precisely qualify what distinguishes devil’s food
from the more standard chocolate cake, though it traditionally has more chocolate
than a regular chocolate cake, making it darker. The cake is usually paired with a
rich chocolate frosting.

Is devil’s food cake the same as chocolate?
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Output: No

Input: Ethanol fuel – All biomass goes through at least some of these steps:
it needs to be grown, collected, dried, fermented, distilled, and burned. All of
these steps require resources and an infrastructure. The total amount of energy
input into the process compared to the energy released by burning the resulting
ethanol fuel is known as the energy balance (or “energy returned on energy invested”).
Figures compiled in a 2007 report by National Geographic Magazine point to modest
results for corn ethanol produced in the US: one unit of fossil-fuel energy is
required to create 1.3 energy units from the resulting ethanol. The energy balance
for sugarcane ethanol produced in Brazil is more favorable, with one unit of
fossil-fuel energy required to create 8 from the ethanol. Energy balance estimates
are not easily produced, thus numerous such reports have been generated that are
contradictory. For instance, a separate survey reports that production of ethanol
from sugarcane, which requires a tropical climate to grow productively, returns
from 8 to 9 units of energy for each unit expended, as compared to corn, which
only returns about 1.34 units of fuel energy for each unit of energy expended. A
2006 University of California Berkeley study, after analyzing six separate studies,
concluded that producing ethanol from corn uses much less petroleum than producing
gasoline.

Does ethanol take more energy make that produces?

Output:

ETHOS
Does the input contain hate speech?

Input: My God, the cancer is spreading

Output: No

Input: I’m searching for a hitman right now to kill this whore and every
other like her. H A T E W O M E N

Output: Yes

Input: why is it censored, why does todays generation get butt hurf and
offended so easily, if u dont like it, keep walking then! this use to be a free
country but its going down the toilet now.

Output: No

Input: Stand the fuck up and take them out all you fucking lazy white males!
fuck being called a racist protect your woman and children. If you find it in the
street kill it and bury it right there these animals will wipe you out if your not
careful

Output: Yes

Input: Ugly white girls and white dudes would not get away with that.
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Output: Yes

Input: Watching this kid trying to step up and walk with that crutches is
the best thing in the world. So idiot

Output:

RTE
You are given a premise and a hypothesis. Given the premise, tell me if the
hypothesis is correct.

Premise: Les Paul, who continues to perform weekly at New York Iridium Jazz
Club, has finished recording "Les Paul & Friends."
Hypothesis: Iridium Jazz Club is located in New York.

Answer: Yes

Premise: The discovery of the body of a warrior - thought to have died in
battle more than 2,000 years ago - could help archaeologists to pinpoint the site
of an ancient holy site. The young warrior, aged about 30, with his spear, a sword,
his belt and scabbard, stunned archaeologists who found his stone coffin.
Hypothesis: Altai ice maiden triggers major dispute.

Answer: No

Premise: Switzerland has ratified bilateral agreements with the members of
the European Union in March 2004, but the new members (Cyprus , Czech Republic ,
Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Slovakia and Slovenia) were not
included in the deal.
Hypothesis: Lithuania intends to introduce the use of the Euro as an official
currency on January 1, 2007.

Answer: No

Premise: Jill Pilgrim, general counsel of USA Track and Field, brought up
the issue during a panel on women’s sports at the sports lawyers conference. Pilgrim
said the law regarding who is legally considered a woman is changing as sex-change
operations become more common.
Hypothesis: Sex-change operations become more common.

Answer: Yes

Premise: Lastly, the author uses the precedent of marijuana legalization in
other countries as evidence that legalization does not solve any social problems,
but instead creates them.
Hypothesis: Drug legalization has benefits.

Answer: No

Premise: Dana Reeve, the widow of the actor Christopher Reeve, has died of
lung cancer at age 44, according to the Christopher Reeve Foundation.
Hypothesis: Christopher Reeve had an accident.
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Answer:

SST-2
Classify the review according to its sentiment.

Review: – and especially williams , an american actress who becomes fully
english

Sentiment: Positive

Review: each other so intensely , but with restraint

Sentiment: Positive

Review: tear your eyes away

Sentiment: Negative

Review: fascinating and playful

Sentiment: Positive

Review: been discovered , indulged in and rejected as boring before i see
this piece of crap again

Sentiment: Negative

Review: it ’s a charming and often affecting journey .

Sentiment:

SUBJ
Does the input contain personal opinions, feelings, or beliefs?

Input: by taking entertainment tonight subject matter and giving it humor and
poignancy , auto focus becomes both gut-bustingly funny and crushingly depressing .

Output: Yes

Input: if you open yourself up to mr . reggio ’s theory of this imagery as
the movie ’s set . . . it can impart an almost visceral sense of dislocation and
change .

Output: Yes

Input: but for one celebrant this holy week is different .

Output: No

Input: with grit and determination molly guides the girls on an epic journey
, one step ahead of the authorities , over 1 , 500 miles of australia ’s outback
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in search of the rabbit-proof fence that bisects the continent and will lead them home .

Output: No

Input: just about all of the film is confusing on one level or another ,
making ararat far more demanding than it needs to be .

Output: Yes

Input: pirates of the caribbean is a sweeping action-adventure story set in
an era when villainous pirates scavenged the caribbean seas .

Output:

WIC
You are given two sentences and a word. Tell me whether the word has the same meaning
in both sentences.

Word: right
Sentence 1: He stood on the right.
Sentence 2: The pharmacy is just on the right past the bookshop.

Answer: Yes

Word: act
Sentence 1: She wants to act Lady Macbeth, but she is too young for the role.
Sentence 2: The dog acts ferocious, but he is really afraid of people.

Answer: No

Word: fall
Sentence 1: The hills around here fall towards the ocean.
Sentence 2: Her weight fell to under a hundred pounds.

Answer: No

Word: Round
Sentence 1: Round off the amount.
Sentence 2: The total is $25,715 but to keep the figures simple, I’ll round it down
to $25,000.

Answer: Yes

Word: have
Sentence 1: What do we have here?
Sentence 2: I have two years left.

Answer: No

Word: class
Sentence 1: An emerging professional class.
Sentence 2: Apologizing for losing your temper, even though you were badly provoked,
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showed real class.

Answer:

WSC
You are given a sentence, a prounoun and a noun. Tell me whether the specified
pronoun and the noun phrase refer to the same entity in the sentence.

Sentence: Jane knocked on Susan ’s door but she did not answer.
Pronoun: she
Noun: Susan

Answer: Yes

Sentence: The mothers of Arthur and Celeste have come to the town to fetch
them. They are very happy to have them back, but they scold them just the same
because they ran away.
Pronoun: they
Noun: Arthur and Celeste

Answer: No

Sentence: The scientists are studying three species of fish that have recently been
found living in the Indian Ocean. They appeared two years ago.
Pronoun: They
Noun: The scientists

Answer: No

Sentence: Sergeant Holmes asked the girls to describe the intruder . Nancy
not only provided the policeman with an excellent description of the heavyset
thirty-year-old prowler, but drew a rough sketch of his face.
Pronoun: his
Noun: the intruder

Answer: Yes

Sentence: The boy continued to whip the pony , and eventually the pony threw
him over. John laughed out quite loud. "Served him right," he said.
Pronoun: him
Noun: pony

Answer: No

Sentence: Bernard , who had not told the government official that he was
less than 21 when he filed for a homestead claim, did not consider that he had done
anything dishonest. Still, anyone who knew that he was 19 years old could take his
claim away from him .
Pronoun: him
Noun: anyone

Answer:
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A.4 Mean Ablations: Full NLP ablation experiments

Llama-3-8B

Task Shot Full 1% ind. 1% rnd. 3% ind. 3% rnd.
model heads heads heads heads

BoolQ 0 77.8 76.7 (-1.1) 71.9 (-5.9) 75.7 (-2.1) 70.5 (-7.3)
5 79.8 77.8 (-2.0) 78.1 (-1.7) 73.6 (-6.2) 76.5 (-3.3)

10 79.6 78.2 (-1.4) 77.1 (-2.5) 69.9 (-9.7) 75.6 (-4.0)
SUL 10 46.3 - - - -

ETHOS 0 70.0 69.2 (-0.8) 70.0 66.8 (-3.2) 70.0
5 82.5 79.3 (-3.2) 76.7 (-5.8) 80.4 (-2.1) 72.3 (-10.2)

10 80.2 79.8 (-0.4) 77.7 (-2.5) 80.6 (+0.4) 77.9 (-2.3)
SUL 10 70.3 51.4 (-18.9) 62.3 (-8.0) 56.5 (-13.8) 63.0 (-7.3)

RTE 0 71.1 67.2 (-3.9) 69.0 (-2.1) 66.4 (-4.7) 71.5 (+0.4)
5 79.5 74.5 (-5.0) 77.8 (-1.7) 71.1 (-8.4) 77.2 (-2.3)

10 79.4 72.6 (-6.8) 77.3 (-2.1) 67.8 (-11.6) 74.9 (-4.5)
SUL 10 52.4 - - - -

SST-2 0 92.4 92.8 (+0.4) 92.2 (-0.2) 93.0 (+0.6) 91.9 (-0.5)
5 93.9 92.2 (-1.7) 94.2 (+0.3) 92.6 (-1.3) 93.6 (-0.3)

10 94.6 92.5 (-2.1) 94.6 93.7 (-0.9) 94.4 (-0.2)
SUL 10 94.0 70.7 (-23.3) 93.0 (-1.0) 70.5 (-23.5) 92.5 (-1.5)

SUBJ 0 52.6 52.7 (+0.1) 53.7 (+1.1) 50.6 (-2.0) 53.3 (+0.7)
5 58.1 54.8 (-3.3) 56.9 (-1.2) 54.8 (-3.3) 56.8 (-1.3)

10 74.7 60.7 (-14.0) 73.2 (-1.5) 60.3 (-14.4) 69.9 (-4.8)
SUL 10 69.8 49.7 (-20.1) 65.2 (-4.6) 52.8 (-17.0) 65.3 (-4.5)

WIC 0 51.4 51.3 (-0.1) 52.0 (+0.6) 50.5 (-0.9) 51.2 (-0.2)
5 59.6 57.4 (-2.2) 58.5 (-1.1) 56.6 (-3.0) 57.2 (-2.4)

10 61.6 57.1 (-4.5) 59.3 (-2.3) 55.8 (-5.8) 58.2 (-3.4)
SUL 10 52.6 - - - -

InternLM2-20B

Task Shot Full 1% ind. 1% rnd. 3% ind. 3% rnd.
model heads heads heads heads

BoolQ 0 88.6 - - - -
5 88.5 - - - -

10 88.3 - - - -
SUL 10 80.7 70.1 (-10.6) 79.5 (-1.2) 63.6 (-17.1) 78.8 (-1.9)

ETHOS 0 82.0 82.4 (+0.4) 81.6 (-0.4) 82.0 81.7 (-0.3)
5 84.7 80.5 (-4.2) 81.8 (-2.9) 82.4 (-2.3) 82.3 (-2.4)

10 82.6 81.6 (-1.0) 82.1 (-0.5) 82.4 (-0.2) 82.4 (-0.2)
SUL 10 82.5 68.3 (-14.2) 76.7 (-5.8) 68.6 (-13.9) 76.4 (-6.1)

RTE 0 81.2 79.8 (-1.4) 79.8 (-1.4) 79.1 (-2.1) 79.5 (-1.7)
5 84.7 81.6 (-3.1) 84.3 (-0.4) 80.4 (-4.3) 83.3 (-1.4)

10 87.2 83.6 (-3.6) 86.5 (-0.7) 82.0 (-5.2) 85.6 (-1.6)
SUL 10 80.1 61.7 (-18.4) 77.7 (-2.4) 59.8 (-20.3) 81.6 (+1.5)

SST-2 0 96.0 - - - -
5 95.1 - - - -

10 95.3 - - - -
SUL 10 94.1 93.4 (-0.7) 93.9 (-0.2) 92.3 (-1.8) 94.1

SUBJ 0 61.1 61.6 (+0.5) 60.3 (-0.8) 61.5 (+0.4) 59.8 (-1.3)
5 75.4 69.2 (-6.2) 74.8 (-0.6) 70.5 (-4.9) 74.1 (-1.3)

10 81.4 73.5 (-7.9) 81.2 (-0.2) 70.5 (-10.9) 78.8 (-2.6)
SUL 10 64.9 51.3 (-13.6) 62.6 (-2.3) 52.3 (-12.6) 63.4 (-1.5)

WIC 0 60.8 61.0 (+0.2) 61.1 (+0.3) 59.7 (-1.1) 61.1 (+0.3)
5 68.6 67.4 (-1.2) 69.1 (+0.5) 62.0 (-6.6) 67.9 (-0.7)

10 68.9 66.5 (-2.4) 68.1 (-0.8) 63.5 (-5.4) 67.8 (-1.1)
SUL 10 57.2 54.2 (-3.0) 55.9 (-1.3) 56.6 (-0.6) 56.8 (-0.4)

WSC 0 70.2 67.3 (-2.9) 68.9 (-1.3) 66.4 (-3.8) 72.1 (+1.9)
5 73.1 67.6 (-5.5) 72.7 (-0.4) 69.9 (-3.2) 73.2 (+0.1)

10 75.3 69.6 (-5.7) 71.6 (-3.7) 68.6 (-6.7) 71.7 (-3.6)
SUL 10 43.3 - - - -

Table 3: LLama-3-8B and InternLM2-20B ablation experiments on the NLP tasks. Columns labelled "1% ind.
heads" and "3% ind. heads" show the results from fully ablating 1% and 3% of heads with the highest prefix scores,
respectively. Columns "1% rnd. heads" and "3% rnd. heads" illustrate the effects of randomly ablating 1% and
3% of all heads in the model. The "SUL" row denotes settings using semantically unrelated labels. Performance
differences due to the ablation, compared to the full model, are indicated in parentheses.
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A.5 Zero Ablations
To investigate the significance of induction heads for a specific ICL task, we initially conducted zero-
ablations of 1% and 3% of the heads with the highest prefix matching scores. This ablation process
involved masking the corresponding partition of the output matrix, denoted as Wh

o in Eq. 1, by setting it
to zero. This effectively renders the heads inactive and thereby prevents their contributions. As a control
condition, we also randomly ablated 1% and 3% of the model’s heads, which were selected from any
layer except the final layer.

A.5.1 Zero Ablations: Abstract Pattern Recognition Tasks

Llama-3-8B

Task Shot Full 1% ind. 1% ind. 1% rnd. 3% ind. 3% ind. 3% rnd.
model heads pattern heads heads pattern heads

Repetition 5 67.3 60.9 (-6.4) 62.5 (-4.8) 68.5 (+1.2) 51.3 (-16.0) 53.2 (-14.1) 68.5 (+1.2)
10 91.3 59.5 (-31.8) 65.3 (-26.0) 90.3 (-1.0) 54.3 (-37.0) 58.7 (-32.6) 91.2 (-0.1)

Recursion 5 67.8 62.1 (-5.7) 61.5 (-6.3) 69.8 (+2.0) 54.9 (-12.9) 55.1 (-12.7) 70.9 (+3.1)
10 91.5 66.1 (-25.4) 68.7 (-22.8) 91.5 58.1 (-33.4) 58.9 (-32.6) 92.4 (+0.9)

Centre-embedding 5 58.8 54.0 (-4.8) 55.0 (-3.8) 59.2 (+0.4) 48.3 (-10.5) 50.5 (-8.3) 59.7 (+0.9)
10 80.4 53.1 (-27.3) 56.5 (-23.9) 81.6 (+1.2) 50.3 (-30.1) 52.3 (-28.1) 80.3 (-0.1)

WordSeq 1 (binary) 5 83.1 72.1 (-11.0) 71.8 (-11.3) 80.6 (-2.5) 54.7 (-28.4) 56.9 (-26.2) 81.0 (-3.1)
10 99.4 96.4 (-3.0) 97.3 (-2.1) 98.4 (-1.0) 79.2 (-20.2) 82.2 (-17.2) 97.9 (-1.5)

WordSeq 2 (binary) 5 77.9 66.0 (-11.9) 65.2 (-12.7) 74.4 (-3.5) 53.5 (-24.4) 55.7 (-22.2) 75.1 (-2.8)
10 99.4 95.3 (-4.1) 96.4 (-3.0) 97.3 (-2.1) 77.2 (-22.2) 81.1 (-18.3) 97.6 (-1.8)

WordSeq 1 (4-way) 20 78.3 59.7 (-18.6) 59.8 (-18.5) 71.9 (-6.4) 44.8 (-33.5) 45.2 (-33.1) 72.0 (-6.3)

WordSeq 2 (4-way) 20 81.3 58.6 (-22.7) 59.8 (-21.5) 71.1 (-10.2) 46.5 (-34.8) 47.5 (-33.8) 71.5 (-9.8)

InternLM2-20B
Task Shot Full 1% ind. 1% ind. 1% rnd. 3% ind. 3% ind. 3% rnd.

model heads pattern heads heads pattern heads

Repetition 5 68.7 63.3 (-5.4) 62.0 (-6.7) 68.2 (-0.5) 60.8 (-7.9) 58.5 (-10.2) 64.0 (-4.7)
10 88.1 73.2 (-14.9) 72.1 (-16.0) 87.8 (-0.3) 68.7 (-19.4) 61.2 (-26.9) 84.1 (-4.0)

Recursion 5 68.1 61.4 (-6.7) 59.9 (-8.2) 68.2 (+0.1) 59.6 (-8.5) 55.3 (-12.8) 64.4 (-3.7)
10 88.5 70.6 (-17.9) 69.9 (-18.6) 87.7 (-0.8) 66.1 (-22.4) 57.1 (-31.4) 84.4 (-4.1)

Centre-embedding 5 59.5 56.3 (-3.2) 56.1 (-3.4) 58.9 (-0.6) 55.1 (-4.4) 54.1 (-5.4) 56.3 (-3.2)
10 75.3 60.3 (-15.0) 58.5 (-16.8) 74.9 (-0.4) 56.9 (-18.4) 54.3 (-21.0) 71.2 (-4.1)

WordSeq 1 (binary) 5 76.8 67.4 (-9.4) 64.9 (-11.9) 76.7 (-0.1) 59.9 (-16.9) 56.8 (-20.0) 76.9 (+0.1)
10 95.6 91.7 (-3.9) 88.2 (-7.4) 94.8 (-0.8) 85.7 (-9.9) 83.3 (-12.3) 95.6

WordSeq 2 (binary) 5 83.3 74.8 (-8.5) 70.1 (-13.2) 82.5 (-0.8) 68.6 (-14.7) 64.1 (-19.2) 79.9 (-3.4)
10 99.0 98.9 (-0.1) 96.8 (-2.2) 96.2 (-2.8) 94.1 (-4.9) 86.7 (-12.3) 98.6 (-0.4)

WordSeq 1 (4-way) 20 77.3 68.8 (-8.5) 65.4 (-11.9) 76.0 (-1.3) 37.3 (-40.0) 37.4 (-39.9) 75.5 (-1.8)

WordSeq 2 (4-way) 20 80.4 78.4 (-2.0) 75.5 (-4.9) 79.3 (-1.1) 52.9 (-27.5) 47.5 (-32.9) 77.3 (-3.1)

Table 4: Llama-3-8B (top) and InternLM2-20B (bottom) ablation experiments on the abstract pattern recognition
tasks. For both models, zero-shot performance of the full model is ~50% in all tasks. Columns labelled "1% ind.
heads" and "3% ind. heads" show results from fully ablating 1% and 3% of heads with the highest prefix scores,
respectively. "1% ind. pattern" and "3% ind. pattern" columns depict outcomes from blocking induction attention
patterns in 1% and 3% of these heads (Sec. 7). Columns "1% rnd. heads" and "3% rnd. heads" illustrate the effects
of randomly ablating 1% and 3% of all heads in the model. Performance differences due to the ablation, compared
to the full model, are indicated in parentheses.
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A.5.2 Zero Ablations: Full NLP ablation experiments

Llama-3-8B

Task Shot Full 1% ind. 1% rnd. 3% ind. 3% rnd.
model heads heads heads heads

BoolQ 0 77.8 76.2 (-1.6) 72.7 (-5.1) 75.2 (-2.6) 71.9 (-5.9)
5 79.8 77.1 (-2.7) 76.4 (-3.4) 73.0 (-6.8) 77.2 (-2.6)

10 79.6 77.7 (-1.9) 77.1 (-2.5) 70.7 (-8.9) 77.3 (-2.3)
SUL 10 46.3 - - - -

ETHOS 0 70.0 72.0 (+2.0) 68.6 (-1.4) 70.0 62.0 (-8.0)
5 82.5 82.5 79.5 (-3.0) 81.2 (-1.3) 75.3 (-7.2)

10 80.2 80.2 80.9 (+0.7) 81.1 (-1.1) 77.5 (-2.7)
SUL 10 70.3 52.8 (-17.5) 66.8 (-3.5) 57.9 (-12.4) 63.8 (-6.5)

RTE 0 71.1 67.5 (-3.6) 70.3 (-0.8) 67.9 (-3.2) 67.5 (-3.6)
5 79.5 75.2 (-4.3) 79.0 (-0.5) 71.6 (-7.9) 78.1 (-1.4)

10 79.4 74.2 (-5.2) 78.7 (-0.7) 68.6 (-10.8) 78.4 (-1.0)
SUL 10 52.4 - - - -

SST-2 0 92.4 92.1 (-0.3) 92.7 (+0.3) 92.2 (-0.2) 91.9 (-0.5)
5 93.9 92.4 (-1.5) 94.3 (+0.4) 93.0 (-0.9) 93.9

10 94.6 92.9 (-1.7) 94.7 (+0.1) 93.2 (-1.4) 94.5 (-0.1)
SUL 10 94.0 72.8 (-21.2) 93.6 (-0.4) 71.8 (-22.2) 92.6 (-1.4)

SUBJ 0 52.6 53.0 (+0.4) 54.0 (+1.4) 52.4 (-0.2) 53.2 (+0.6)
5 58.1 53.5 (-4.6) 58.8 (+0.7) 56.3 (-1.8) 56.5 (-1.6)

10 74.7 62.4 (-12.3) 74.6 (-0.1) 62.6 (-12.1) 71.9 (-2.8)
SUL 10 69.8 49.9 (-19.9) 67.0 (-2.8) 53.1 (-16.7) 70.4 (+0.6)

WIC 0 51.4 51.4 51.0 (-0.4) 50.9 (-0.5) 51.7 (+0.3)
5 59.6 58.2 (-1.4) 59.0 (-0.6) 56.3 (-3.3) 56.8 (-2.8)

10 61.6 56.8 (-4.8) 59.6 (-2.0) 56.2 (-5.4) 57.0 (-4.6)
SUL 10 52.6 - - - -

InternLM2-20B

Task Shot Full 1% ind. 1% rnd. 3% ind. 3% rnd.
model heads heads heads heads

BoolQ 0 88.6 88.6 88.5 (-0.1) 87.7 (-0.9) 86.9 (-1.7)
5 88.5 88.5 88.6 (+0.1) 88.2 (-0.3) 87.5 (-1.0)

10 88.3 88.3 88.2 (-0.1) 87.9 (-0.4) 87.1 (-1.3)
SUL 10 80.7 72.4 (-8.3) 80.9 (+0.2) 64.9 (-15.8) 77.0 (-3.7)

ETHOS 0 82.0 82.5 (+0.5) 82.5 (+0.5) 82.0 81.5 (-0.5)
5 84.7 81.3 (-3.4) 84.2 (-0.5) 81.8 (-2.9) 82.6 (-2.1)

10 82.6 81.0 (-1.6) 82.9 (+0.3) 82.1 (-0.5) 82.8 (+0.2)
SUL 10 82.5 74.8 (-7.7) 81.3 (-1.2) 68.2 (-14.3) 74.4 (-8.1)

RTE 0 81.2 80.1 (-1.1) 80.6 (-0.6) 80.5 (-0.7) 79.9 (-1.3)
5 84.7 82.3 (-2.4) 84.4 (-0.3) 81.4 (-3.3) 84.4 (-0.3)

10 87.2 84.0 (-3.2) 86.8 (-0.4) 82.3 (-4.9) 86.4 (-0.8)
SUL 10 80.1 62.9 (-17.2) 81.4 (+1.3) 56.4 (-23.7) 76.9 (-3.2)

SST-2 0 96.0 96.0 95.7 (-0.3) 95.6 (-0.4) 95.7 (-0.3)
5 95.1 95.1 95.0 (-0.1) 94.2 (-0.9) 94.9 (-0.2)

10 95.3 95.1 (-0.2) 95.2 (-0.1) 94.3 (-1.0) 95.2 (-0.1)
SUL 10 94.1 93.6 (-0.5) 94.1 92.2 (-1.9) 93.6 (-0.5)

SUBJ 0 61.1 61.7 (+0.6) 61.6 (+0.5) 62.6 (+1.5) 59.9 (-1.2)
5 75.4 69.6 (-5.8) 75.0 (-0.4) 70.0 (-5.4) 73.4 (-2.0)

10 81.4 75.1 (-6.3) 81.4 71.3 (-10.1) 78.8 (-2.6)
SUL 10 64.9 53.4 (-11.5) 65.1 (+0.2) 52.2 (-12.7) 61.3 (-3.6)

WIC 0 60.8 60.7 (-0.2) 60.8 59.9 (-0.9) 60.1 (-0.7)
5 68.6 67.2 (-1.4) 68.7 (+0.1) 61.9 (-6.7) 68.9 (+0.3)

10 68.9 67.0 (-1.9) 68.6 (-0.3) 63.5 (-5.4) 68.3 (-0.6)
SUL 10 57.2 54.8 (-2.4) 57.7 (+0.5) 56.6 (-0.6) 54.9 (-2.3)

WSC 0 70.2 67.3 (-2.9) 69.6 (-0.6) 68.3 (-1.9) 70.8 (+0.6)
5 73.1 68.0 (-5.1) 73.0 (-0.1) 69.6 (-3.5) 73.1

10 75.3 69.9 (-5.4) 75.2 (-0.1) 68.6 (-1.3) 71.9 (-3.4)
SUL 10 43.3 - - - -

Table 5: LLama-3-8B and InternLM2-20B ablation experiments on the NLP tasks. Columns labelled "1% ind.
heads" and "3% ind. heads" show the results from fully ablating 1% and 3% of heads with the highest prefix scores,
respectively. Columns "1% rnd. heads" and "3% rnd. heads" illustrate the effects of randomly ablating 1% and
3% of all heads in the model. The "SUL" row denotes settings using semantically unrelated labels. Performance
differences due to the ablation, compared to the full model, are indicated in parentheses.
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A.5.3 Zero Ablations: NLP Figures

Figure 9: Change in ICL benefit for Llama-3-8B (left) and InternLM2-20B (right), due to head ablations when
compared to that of the full model. "1% ind." and "3% ind." denote ablating the top respective percentage of
induction heads. "1% rnd." and "3% rnd." denote randomly ablating the respective percentage of all heads in the
model.

SUL Ablation Experiments: Llama-3-8B

SUL Ablation Experiments: InternLM2-20B

Figure 10: SUL ablation experiments for Llama-3-8B (top) and InternLM2-20B (bottom) on NLP tasks. "1% ind."
and "3% ind." denote ablating the top respective percentage of induction heads. "1% rnd." and "3% rnd." denote
randomly ablating the respective percentage of all heads in the model.
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A.6 Attention Patterns
A.6.1 WordSeq1 (Binary)

Figure 11: Attention pattern of token 62 in head 22 of
layer 2 in Llama-3-8B. Example 1/5.

Figure 12: Attention pattern of token 64 in head 22 of
layer 2 in Llama-3-8B. Plot 1/5.

Figure 13: Attention pattern of token 62 in head 1 of
layer 8 in Llama-3-8B. Example 1/5.

Figure 14: Attention pattern of token 64 in head 1 of
layer 8 in Llama-3-8B. Plot 1/5.

5075



Figure 15: Attention pattern of token 62 in head 1 of
layer 15 in Llama-3-8B. Example 1/5.

Figure 16: Attention pattern of token 64 in head 1 of
layer 15 in Llama-3-8B. Plot 1/5.

Figure 17: Attention pattern of token 62 in head 30 of
layer 15 in Llama-3-8B. Example 1/5.

Figure 18: Attention pattern of token 64 in head 30 of
layer 15 in Llama-3-8B. Plot 1/5.
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Figure 19: Attention pattern of token 62 in head 20 of
layer 16 in Llama-3-8B. Example 1/5.

Figure 20: Attention pattern of token 64 in head 20 of
layer 16 in Llama-3-8B. Plot 1/5.

Figure 21: Attention pattern of token 58 in head 22 of
layer 2 in Llama-3-8B. Example 2/5.

Figure 22: Attention pattern of token 60 in head 22 of
layer 2 in Llama-3-8B. Plot 2/5.
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Figure 23: Attention pattern of token 58 in head 1 of
layer 8 in Llama-3-8B. Example 2/5.

Figure 24: Attention pattern of token 60 in head 1 of
layer 8 in Llama-3-8B. Plot 2/5.

Figure 25: Attention pattern of token 58 in head 1 of
layer 15 in Llama-3-8B. Example 2/5.

Figure 26: Attention pattern of token 60 in head 1 of
layer 15 in Llama-3-8B. Plot 2/5.

5078



Figure 27: Attention pattern of token 58 in head 30 of
layer 15 in Llama-3-8B. Example 2/5.

Figure 28: Attention pattern of token 60 in head 30 of
layer 15 in Llama-3-8B. Plot 2/5.

Figure 29: Attention pattern of token 58 in head 20 of
layer 16 in Llama-3-8B. Example 2/5.

Figure 30: Attention pattern of token 60 in head 20 of
layer 16 in Llama-3-8B. Plot 2/5.
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Figure 31: Attention pattern of token 63 in head 22 of
layer 2 in Llama-3-8B. Example 3/5.

Figure 32: Attention pattern of token 65 in head 22 of
layer 2 in Llama-3-8B. Plot 3/5.

Figure 33: Attention pattern of token 63 in head 1 of
layer 8 in Llama-3-8B. Example 3/5.

Figure 34: Attention pattern of token 65 in head 1 of
layer 8 in Llama-3-8B. Plot 3/5.
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Figure 35: Attention pattern of token 63 in head 1 of
layer 15 in Llama-3-8B. Example 3/5.

Figure 36: Attention pattern of token 65 in head 1 of
layer 15 in Llama-3-8B. Plot 3/5.

Figure 37: Attention pattern of token 63 in head 30 of
layer 15 in Llama-3-8B. Example 3/5.

Figure 38: Attention pattern of token 65 in head 30 of
layer 15 in Llama-3-8B. Plot 3/5.
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Figure 39: Attention pattern of token 63 in head 20 of
layer 16 in Llama-3-8B. Example 3/5.

Figure 40: Attention pattern of token 65 in head 20 of
layer 16 in Llama-3-8B. Plot 3/5.

Figure 41: Attention pattern of token 61 in head 22 of
layer 2 in Llama-3-8B. Example 4/5.

Figure 42: Attention pattern of token 64 in head 22 of
layer 2 in Llama-3-8B. Plot 4/5.
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Figure 43: Attention pattern of token 61 in head 1 of
layer 8 in Llama-3-8B. Example 4/5.

Figure 44: Attention pattern of token 64 in head 1 of
layer 8 in Llama-3-8B. Plot 4/5.

Figure 45: Attention pattern of token 61 in head 1 of
layer 15 in Llama-3-8B. Example 4/5.

Figure 46: Attention pattern of token 64 in head 1 of
layer 15 in Llama-3-8B. Plot 4/5.
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Figure 47: Attention pattern of token 61 in head 30 of
layer 15 in Llama-3-8B. Example 4/5.

Figure 48: Attention pattern of token 64 in head 30 of
layer 15 in Llama-3-8B. Plot 4/5.

Figure 49: Attention pattern of token 62 in head 22 of
layer 2 in Llama-3-8B. Example 5/5.

Figure 50: Attention pattern of token 64 in head 22 of
layer 2 in Llama-3-8B. Plot 5/5.
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Figure 51: Attention pattern of token 62 in head 1 of
layer 8 in Llama-3-8B. Example 5/5.

Figure 52: Attention pattern of token 62 in head 1 of
layer 8 in Llama-3-8B. Plot 5/5.

Figure 53: Attention pattern of token 62 in head 1 of
layer 15 in Llama-3-8B. Example 5/5.

Figure 54: Attention pattern of token 64 in head 1 of
layer 15 in Llama-3-8B. Plot 5/5.
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Figure 55: Attention pattern of token 62 in head 30 of
layer 15 in Llama-3-8B. Example 5/5.

Figure 56: Attention pattern of token 64 in head 30 of
layer 15 in Llama-3-8B. Plot 5/5.

Figure 57: Attention pattern of token 62 in head 20 of
layer 16 in Llama-3-8B. Example 5/5.

Figure 58: Attention pattern of token 64 in head 20 of
layer 16 in Llama-3-8B. Plot 5/5.
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A.6.2 WordSeq 1 (4-way)

Figure 59: Attention pattern of token 147 in head 22 of
layer 2 in Llama-3-8B. Example 1/5.

Figure 60: Attention pattern of token 150 in head 22 of
layer 2 in Llama-3-8B. Plot 1/5.
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Figure 61: Attention pattern of token 147 in head 1 of
layer 8 in Llama-3-8B. Example 1/5.

Figure 62: Attention pattern of token 150 in head 1 of
layer 8 in Llama-3-8B. Plot 1/5.
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Figure 63: Attention pattern of token 147 in head 1 of
layer 15 in Llama-3-8B. Example 1/5.

Figure 64: Attention pattern of token 150 in head 1 of
layer 15 in Llama-3-8B. Plot 1/5.
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Figure 65: Attention pattern of token 147 in head 30 of
layer 15 in Llama-3-8B. Example 1/5.

Figure 66: Attention pattern of token 150 in head 30 of
layer 15 in Llama-3-8B. Plot 1/5.
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Figure 67: Attention pattern of token 147 in head 20 of
layer 16 in Llama-3-8B. Example 1/5.

Figure 68: Attention pattern of token 150 in head 20 of
layer 16 in Llama-3-8B. Plot 1/5.
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Figure 69: Attention pattern of token 147 in head 22 of
layer 2 in Llama-3-8B. Example 2/5.

Figure 70: Attention pattern of token 149 in head 22 of
layer 2 in Llama-3-8B. Plot 2/5.
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Figure 71: Attention pattern of token 147 in head 1 of
layer 8 in Llama-3-8B. Example 2/5.

Figure 72: Attention pattern of token 149 in head 1 of
layer 8 in Llama-3-8B. Plot 2/5.
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Figure 73: Attention pattern of token 147 in head 1 of
layer 15 in Llama-3-8B. Example 2/5.

Figure 74: Attention pattern of token 149 in head 1 of
layer 15 in Llama-3-8B. Plot 2/5.
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Figure 75: Attention pattern of token 147 in head 30 of
layer 15 in Llama-3-8B. Example 2/5.

Figure 76: Attention pattern of token 149 in head 30 of
layer 15 in Llama-3-8B. Plot 2/5.
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Figure 77: Attention pattern of token 147 in head 20 of
layer 16 in Llama-3-8B. Example 2/5.

Figure 78: Attention pattern of token 149 in head 20 of
layer 16 in Llama-3-8B. Plot 2/5.
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Figure 79: Attention pattern of token 152 in head 22 of
layer 2 in Llama-3-8B. Example 3/5.

Figure 80: Attention pattern of token 155 in head 22 of
layer 2 in Llama-3-8B. Plot 3/5.
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Figure 81: Attention pattern of token 152 in head 1 of
layer 8 in Llama-3-8B. Example 3/5.

Figure 82: Attention pattern of token 155 in head 1 of
layer 8 in Llama-3-8B. Plot 3/5.
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Figure 83: Attention pattern of token 152 in head 1 of
layer 15 in Llama-3-8B. Example 3/5.

Figure 84: Attention pattern of token 155 in head 1 of
layer 15 in Llama-3-8B. Plot 3/5.
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Figure 85: Attention pattern of token 152 in head 30 of
layer 15 in Llama-3-8B. Example 3/5.

Figure 86: Attention pattern of token 155 in head 30 of
layer 15 in Llama-3-8B. Plot 3/5.
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Figure 87: Attention pattern of token 152 in head 20 of
layer 16 in Llama-3-8B. Example 3/5.

Figure 88: Attention pattern of token 155 in head 20 of
layer 16 in Llama-3-8B. Plot 3/5.
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Figure 89: Attention pattern of token 147 in head 22 of
layer 2 in Llama-3-8B. Example 4/5.

Figure 90: Attention pattern of token 149 in head 22 of
layer 2 in Llama-3-8B. Plot 4/5.
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Figure 91: Attention pattern of token 147 in head 1 of
layer 8 in Llama-3-8B. Example 4/5.

Figure 92: Attention pattern of token 149 in head 1 of
layer 8 in Llama-3-8B. Plot 4/5.
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Figure 93: Attention pattern of token 147 in head 1 of
layer 15 in Llama-3-8B. Example 4/5.

Figure 94: Attention pattern of token 149 in head 1 of
layer 15 in Llama-3-8B. Plot 4/5.
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Figure 95: Attention pattern of token 147 in head 30 of
layer 15 in Llama-3-8B. Example 4/5.

Figure 96: Attention pattern of token 149 in head 30 of
layer 15 in Llama-3-8B. Plot 4/5.
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Figure 97: Attention pattern of token 147 in head 20 of
layer 16 in Llama-3-8B. Example 4/5.

Figure 98: Attention pattern of token 149 in head 20 of
layer 16 in Llama-3-8B. Plot 4/5.
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Figure 99: Attention pattern of token 150 in head 22 of
layer 2 in Llama-3-8B. Example 5/5.

Figure 100: Attention pattern of token 152 in head 22
of layer 2 in Llama-3-8B. Plot 5/5.
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Figure 101: Attention pattern of token 150 in head 1 of
layer 8 in Llama-3-8B. Example 5/5.

Figure 102: Attention pattern of token 152 in head 1 of
layer 8 in Llama-3-8B. Plot 5/5.

5108



Figure 103: Attention pattern of token 150 in head 1 of
layer 15 in Llama-3-8B. Example 5/5.

Figure 104: Attention pattern of token 152 in head 1 of
layer 15 in Llama-3-8B. Plot 5/5.
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Figure 105: Attention pattern of token 150 in head 30
of layer 15 in Llama-3-8B. Example 5/5.

Figure 106: Attention pattern of token 152 in head 30
of layer 15 in Llama-3-8B. Plot 5/5.
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Figure 107: Attention pattern of token 150 in head 20
of layer 16 in Llama-3-8B. Example 5/5.

Figure 108: Attention pattern of token 152 in head 20
of layer 16 in Llama-3-8B. Plot 5/5.
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