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Abstract

Prior research has demonstrated noticeable per-
formance gains through the use of probabilistic
tokenizations, an approach that involves em-
ploying multiple tokenizations of the same in-
put string during the training phase of a lan-
guage model. Despite these promising findings,
modern large language models (LLMs) have
yet to be trained using probabilistic tokeniza-
tions. Interestingly, while the tokenizers of
these contemporary LLMs have the capability
to generate multiple tokenizations, this property
remains underutilized.

In this work, we propose a novel method to
leverage the multiple tokenization capabili-
ties of modern LLM tokenizers, aiming to en-
hance the self-consistency of LLMs in reason-
ing tasks. Our experiments indicate that when
utilizing probabilistic tokenizations, LLMs gen-
erate logically diverse reasoning paths, moving
beyond mere surface-level linguistic diversity.
We carefully study probabilistic tokenization
and offer insights to explain the self consis-
tency improvements it brings through extensive
experimentation on 5 LLM families and 4 rea-
soning benchmarks.

1 Introduction

Modern large language models (LLMs) such as
MISTRAL-7B (Jiang et al., 2023), OLMO-7B
(Groeneveld et al., 2024), MAMBA-2.8B (Gu and
Dao, 2023) etc. view language as a sequence of
tokens. Byte-Pair Encoding (Gage, 1994; Sennrich
et al., 2016) is a popular tokenization method em-
ployed by many LLMs to convert a given string
into a sequence of tokens. Tokens in Byte-Pair En-
coding (BPE) are often “merges” of smaller tokens
which are also present in the vocabulary. E.g. token
“_token” is a merge of tokens “_to” and “ken”. This
means that there are multiple valid tokenizations
of a given string depending on which (sub)tokens
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the tokenizer encoding function chooses to merge.
Table 1 illustrates the phenomenon in action.

Prior work (Kudo, 2018; Provilkov et al., 2020)
on “subword regularization” has shown that includ-
ing such multiple tokenizations when training neu-
ral machine translators helps the model learn bet-
ter token embeddings and become robust to noisy
inputs. While modern LLMs are often trained
without subword regularization, their tokenizers
(mainly BPE with byte-fallback) maintain the abil-
ity to generate multiple tokenizations for a given
input string as shown in Table 1. In this work, we
aim to use these multiple tokenizations to improve
self consistency in LLM reasoning.

An intuitive way to improve self consistency of
an LLM in a reasoning task is to generate diverse
reasoning paths (Wang et al., 2023) for a given
problem. Given these multiple reasoning paths,
Wang et al. (2023) propose to select the answer
produced by majority of reasoning paths as the
final answer. Crucially, Wang et al. (2023) and
many works that follow (Aggarwal et al., 2023; Li
et al., 2024a; Jain et al., 2024; Li et al., 2024b)
rely on diversity promoting text generation tech-
niques such as Nucleus sampling (Holtzman et al.,
2020) or temperature sampling to get diversity in
the reasoning paths.

In this work, we propose to use the multiple to-
kenizations as a primary way to generate diverse
reasoning paths. Our hypothesis is that the different
sequence of tokens should naturally lead to differ-
ent and diverse generations. This is advantageous
since unlike prior methods (Holtzman et al., 2020;
Hewitt et al., 2022; Meister et al., 2023), it does not
rely on the model’s next-token distribution to have
sufficient diversity. Furthermore, we show that mul-
tiple tokenizations can also be used to introduce
self-consistency to an evaluation setup that relies
only on log-likelihood (Section 2.2). Previously, it
was not possible to achieve self-consistency in this
setup. To the best of our knowledge, ours is the
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A sentence can have multiple tokenizations with the BPE or Unigram tokenizer.

–A|–sentence|–can|–have|–multiple|–token|izations|–with|–the|–|BP|E|–or|–Un|i|gram|–token|izer|.
{330, 12271, 541, 506, 5166, 6029, 13809, 395, 272, 28705, 9399, 28749, 442, 935, 28710, 1596, 6029, 4024, 28723}

–A|–sentence|–can|–have|–multiple|–token|izations|–with|–the|–B|PE|–or|–U|ni|gram|–token|ize|r|.
{330, 12271, 541, 506, 5166, 6029, 13809, 395, 272, 365, 1767, 442, 500, 3023, 1596, 6029, 653, 28712, 28723}

–A|–sentence|–can|–have|–multiple|–token|izations|–with|–the|–B|PE|–or|–Un|igr|am|–to|ken|izer|.
{330, 12271, 541, 506, 5166, 6029, 13809, 395, 272, 365, 1767, 442, 935, 3421, 314, 298, 2314, 4024, 28723}

Table 1: Multiple tokenizations of a given sentence using MISTRAL-7B BPE tokenizer. The original input string
(top row) can be tokenized into multiple possible sequences of valid tokens from the MISTRAL-7B vocabulary. “–”
represents whitespace and “|” is used to indicate token boundary. The sequence of token IDs is also presented below
the tokenization. Note that all the different token sequences decode precisely to the original input string.

first work to successfully introduce this capability.
It is important to note that we need a princi-

pled approach to generate multiple tokenizations
of the given string since randomly dropping p%
of BPE merges can lead to degradation in perfor-
mance (Jain et al., 2023). We extend Kudo (2018)
and present an approach (Section 2) to assign like-
lihood to a given tokenization and sampling a tok-
enization proportional to its likelihood. Our exper-
iments (Section 3) on 4 arithmetic and common-
sense reasoning tasks, as well as 4 multiple-choice
question-based tasks validate the effectiveness of
probabilistic tokenizations.

2 Probabilistic Tokenization

Given an input string X and an existing vocabulary
V , we want to sample m different tokenizations
{x1

tok, . . . ,x
m
tok} such that each xi

tok is sampled pro-
portional to Pr(xi

tok|X). Each tokenization xi
tok

is a sequence of tokens [t1, . . . , tki ] where each
tj ∈ V and decoding xi

tok using V gives X back.

2.1 Sampling a Tokenization
We follow Kudo (2018) and use a unigram lan-
guage model to estimate Pr(xi

tok|X). This means
we can write Pr(xi

tok|X) using the unigram proba-
bilities p(tj) as,

Pr(xi
tok|X) =

ki∏

j=1

p(tj),

where xi
tok = [t1, . . . , tki ],

∑

tj∈V
p(tj) = 1

Given the vocabulary V and dataset Dtrain of sen-
tences, Kudo (2018) propose using the Expectation
Maximization algorithm to estimate p(tj). This
EM algorithm aims to maximize the marginal like-
lihood over the entire dataset considering p(tj) as

latent variables. If T(X) denotes all possible tok-
enizations of a given sentence X, the marginal can
be written as :

L =

|Dtrain|∑

s=1

log Pr(Xs)

=

|Dtrain|∑

s=1

log


 ∑

xtok∈T(X)

Pr(xtok)




In practice, we opted for a simple counting based
method to estimate p(tj). For every document in
the Dtrain, we first obtain a tokenization xBPE

tok using
the existing BPE tokenizer and simply count the
total occurrences of tj ∈ xBPE

tok to estimate p(tj) as
log p(tj) = log(counts(tj)/N). Here, N indicates
the total number of BPE tokens produced by the
tokenizer on the entire Dtrain. For special tokens
such as beginning/end of sequence, padding or un-
known tokens, we set log p(tj) = 0. We provide
additional discussion on counting vs EM based es-
timation in Appendix A.1.

Once the unigram likelihoods are estimated
for the entire vocabulary, we can efficiently get
l-best tokenizations according to Pr(xtok|X) us-
ing the Forward-DP Backward-A* algorithm (Na-
gata, 1994). Following Kudo (2018), we sam-
ple from these l tokenizations as Pr(xi

tok|X) ∼
Pr(xi

tok)
α/

∑l
i=1 Pr(x

i
tok)

α with α as a smooth-
ing coefficient. We sample m tokenizations for a
given X from l = m2-best tokenizations.

Kudo (2018) also suggests a way to accurately
sample from all (l → ∞) possible tokenizations
using Forward-Filtering and Backward-Sampling
algorithm (Scott, 2002). We study effects of both
l → ∞ and l = m2 on our sampled tokenizations
and downstream tasks. We find that l = m2 lead
to somewhat superficial diversity in reasoning but
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performed well in loglikelihood based evaluations.

2.2 Evaluating Models with Multiple
Tokenizations

We can use probabilistic tokenization to improve
self-consistency of LLMs on various types of tasks.
In this work, we study impact on reasoning and
loglikelihood based classification tasks.

Reasoning based tasks In these tasks, we ex-
pect the model to reason through a problem step-
by-step (Wei et al., 2022) before producing the
final answer. Wang et al. (2023) has shown that
sampling diverse reasoning paths from the model
and picking the most common answer greatly im-
proves the performance. While Wang et al. (2023)
rely on sampling methods such as Nucleus sam-
pling (Holtzman et al., 2020), we propose to use
probabilistic tokenization as a way to boost diver-
sity even further. Sampling based methods rely
on the next-token distribution to be sufficiently di-
verse in order to generate diverse reasoning paths.
As opposed to this, probabilistic tokenization di-
rectly changes the input to the model (i.e. the
sequence of tokens) which should naturally lead
to diverse generations. Given the reasoning prob-
lem as an input string X, we sample m different
tokenizations {x1

tok, . . . ,x
m
tok} as described above

and generate m reasoning paths leading to m dif-
ferent answers as {Y1

pred, . . . ,Y
m
pred}. The final

answer is selected using majority vote similar to
Wang et al. (2023). We also report “Oracle” (upper
bound with perfect selection) task accuracy where
we consider the problem solved if any one of the
{Y1

pred, . . . ,Y
m
pred} matches the gold answer.

Loglikelihood based tasks These are multiple
choice question tasks where the (log)likelihood of a
sentence is used to select the correct answer. Given
the question as input string X and n option strings
– {Y1, . . . ,Yn}, the predicted answer is selected
as Ypred = argmaxj∈{1,...,n} PrM(X||Yj). Here
“||” is the concatenation operator and PrM(X)
denotes the likelihood of string X as estimated
by the language model M. To the best of our
knowledge, probabilistic tokenization is the first
attempt at introducing self consistency in these
types of tasks. We sample m different tok-
enizations {x1

tok, . . . ,x
m
tok} of the input string X

and for each tokenization, predict the option as
Yi

pred = argmaxj∈{1,...,n} PrM(xi
tok||Yj). Sim-

ilar to reasoning based tasks, this results in m

predicted options {Y1
pred, . . . ,Y

m
pred} and m like-

lihoods {PrM(x1
tok||Yj1), . . . ,PrM(xm

tok||Yjm)}.
Following strategies were explored when selecting
the final prediction for computing accuracy:

1. Most Likely: Pick the Yi which has the max-
imum PrM(xi

tok||Yji).

2. Majority: Pick the most common Yi in
{Y1

pred, . . . ,Y
m
pred}.

3. Oracle: Pick the gold (correct) answer Y∗ if
it exists in {Y1

pred, . . . ,Y
m
pred}.

4. Classifier: Train a classifier f to predict
the gold option given predicted options and
likelihoods. f takes ({Y1

pred, . . . ,Y
m
pred} and

{PrM(x1
tok||Yj1), . . . ,PrM(xm

tok||Yjm)})
as inputs and produces a categorical label
corresponding to the correct output Y∗. This
f is a small two layer neural network that
can be trained on the predicted classes and
likelihoods on the train or validation split of a
given task. On the test split, we simply select
the output of this classifier as our prediction.

A distinct advantage of the “Classifier” approach
is that it theoretically allows the model to select an
option that is not present in any of the predicted op-
tions {Y1

pred, . . . ,Y
m
pred} meaning that it can even

surpass the “Oracle” performance. In practice, how-
ever, we found that the trained classifier always
predicted an option from {Y1

pred, . . . ,Y
m
pred}.

3 Experiments

We perform a range of experiments to study the
efficacy of the proposed probabilistic tokenization
on a range of reasoning as well as loglikelihood
based MCQ tasks. We carefully study the various
aspects of probabilistic tokenizations and find that
probabilistic tokenization robustly improves the
performance of all language models we consider
across a variety of tasks.

3.1 Setup

Probabilistic Tokenization We use a subset of
the FINEWEB dataset (Penedo et al., 2024) consist-
ing of roughly 10B tokens to estimate p(tj). For
both reasoning and log-likelihood based tasks, we
use l → ∞ i.e. we sample m different from all
possible tokenizations. The ablations on l = m2

are presented in Appendix A.2.
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Language Models We experiment with four
transformer-based language model families:
OLMO-7B (Groeneveld et al., 2024), GEMMA-
2B, GEMMA-7B (Gemma Team et al., 2024),
LLAMA3-8B (AI@Meta, 2024) and MISTRAL-
7B (Jiang et al., 2023). We also study effect of
probabilistic tokenization on MAMBA-2.8B (Gu
and Dao, 2023) as a representative non-transformer
based language model.

Reasoning Tasks We consider four reasoning
based tasks: MATH (Hendrycks et al., 2021),
AQuA (Ling et al., 2017), GSM8k (Cobbe et al.,
2021) and PIQA (Bisk et al., 2020). For each
model, we report “Baseline” numbers which use
the standard BPE tokenization. In “CoT + SC”
baseline, we use the chain-of-thought prompting
(Wei et al., 2022) with self-consistency (Wang et al.,
2023) over 64 sampled reasoning paths with stan-
dard BPE tokenization. To sample diverse reason-
ing paths, we set the temperature T = 0.2 with
top-k (k = 64) sampling. With “Probabilistic
Tokenization”, we use the same chain-of-thought
prompt. However, we sample m = 64 different
tokenizations and use greedy decoding to generate
diverse reasoning paths.

Log-likelihood Tasks We study four MCQ type
tasks using log-likelihood based answer selection:
ARC (Clark et al., 2018) (only “challenge” subset
is considered), HellaSwag (Zellers et al., 2019),
PAWSX (Yang et al., 2019) and TruthfulQA (Lin
et al., 2022) (only the subset “mc1” with single
correct option is considered). Similar to reasoning
tasks, “Baseline” metrics are computed with stan-
dard BPE tokenization. All four answer selection
methods presented in Section 2.2 are used when
comparing “Probabilistic Tokenization” numbers
with “Baseline” numbers.

3.2 Main Results

Reasoning Tasks Table 2 shows results when ap-
plying consistency improving methods to reasoning
tasks. The best performance gains for a particular
task is bolded. We find that average performance
gain obtained from “Probabilistic Tokenization” is
higher than the average performance gain obtained
by “CoT + SC”. Interestingly, the “Probabilistic
Oracle” is significantly better than “CoT + SC Ora-
cle”. By manually inspecting the reasoning traces,
we find that “Probabilistic” tokenization is able to
produce significantly diverse reasoning paths while

“CoT + SC” reasoning paths are often just syntac-
tically different. This can be advantageous as it
gives the model more chances to improve the “Or-
acle” accuracy. This can also be disadvantageous
if the model often generates incorrect reasoning
traces and takes away votes from the correct rea-
soning traces affecting the “Majority” score. We
provide some more analysis of reasoning failures
and anecdotal examples in Section 3.4.

In our experiments, the only non-transformer
based model i.e. MAMBA-2.8B showed mixed
results when “CoT + SC” was applied. While the
model was able to sample diverse reasoning paths,
majority of them were often wrong or incomplete.
Probabilistic tokenization on the other hand was
able to consistently generate correct and diverse
reasoning paths. Regression observed in MAMBA-
2.8B could be simply a result of high temperature
sampling producing bad reasoning paths.

Log-likelihood Tasks As discussed in Section
2.2, probabilistic tokenization allows us to intro-
duce self consistency in log-likelihood based eval-
uation. In Table 3, we compare efficacy of each
method to select the final option when using proba-
bilistic tokenization. We observe that on most mod-
els, picking the “Most Likely” option i.e. the option
with the highest (log)likelihood results in a slight
performance decrease. Upon manual inspection,
we noticed that some of the sampled probabilistic
tokenizations combined with selected option have
marginally better likelihood than the BPE tokeniza-
tion. Despite the better (log)likelihood values, the
distribution over the many options is flat leading to
an incorrect predicted option. This effect is most
prominent in MAMBA-2.8B.

“Majority” voting gives noticeable benefits over
the “Baseline” but overall is unable to reach “Or-
acle” levels. The “Classifier” learned on the
train/validation sets is the best performing practical
option. While the overall performance of “Major-
ity” is positive, we observed a strange phenomenon
on many prompts where “Baseline” would pick the
correct option but “Majority” will not. We present
some examples of this in Section 3.4. The signif-
icantly larger improvements on the PAWSX task
can be explained by the task being a binary classi-
fication task. This means that it takes only a little
diversity to have both the options “Yes” and “No”
in the list of predictions which leads to significant
improvements in “Oracle” accuracy.
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Task Model Baseline CoT + SC CoT + SC Probabilistic Probabilistic
Majority Oracle Majority Oracle

MATH

OLMO-7B 3.90 +45.64% +54.08% +15.34% +90.77%
GEMMA-2B 5.97 +22.45% +85.37% +19.03% +94.97%
GEMMA-7B 10.91 +18.97% +42.45% +20.87% +120.99%
LLAMA3-8B 12.99 +28.87% +82.92% +17.45% +81.60%
LLAMA3-70B 18.18 +16.66% +81.18% +17.91% +83.20%
MISTRAL-7B 9.35 +45.99% +78.86% +20.10% +67.27%
MAMBA-2.8B 3.12 -23.72% +83.01% +18.29% +216.03%

AQuA

OLMO-7B 23.08 +23.35% +53.27% +18.45% +38.60%
GEMMA-2B 15.38 +15.99% +96.52% +18.63% +68.79%
GEMMA-7B 23.08 +19.67% +37.63% +16.62% +31.63%
LLAMA3-8B 11.54 +17.68% +258.46% +16.84% +242.29%
LLAMA3-70B 30.77 +11.25% +13.85% +12.22% +15.15%
MISTRAL-7B 23.54 +19.75% +67.14% +17.80% +51.44%
MAMBA-2.8B 15.38 -7.67% +95.85% +10.21% +91.81%

GSM8k

OLMO-7B 25.71 +12.29% +99.04% +13.22% +96.42%
GEMMA-2B 5.91 +3.38% +64.91% +20.81% +155.84%
GEMMA-7B 25.37 +20.10% +89.27% +12.61% +79.90%
LLAMA3-8B 37.71 +20.53% +20.03% +13.66% +21.03%
LLAMA3-70B 55.55 +19.15% +35.54% +21.11% +32.33%
MISTRAL-7B 29.66 +20.18% +87.57% +20.40% +86.01%
MAMBA-2.8B 3.12 +5.45% +113.46% +28.85% +68.59%

PIQA

OLMO-7B 75.89 +17.35% +31.77% +20.04% +31.77%
GEMMA-2B 77.17 +16.77% +22.46% +20.41% +22.46%
GEMMA-7B 79.89 +18.02% +25.17% +19.40% +25.17%
LLAMA3-8B 80.43 +16.26% +17.49% +17.02% +17.49%
LLAMA3-70B 80.98 +12.61% +13.67% +13.67% +13.67%
MISTRAL-7B 79.35 +20.82% +26.02% +16.52% +26.02%
MAMBA-2.8B 73.91 +1.10% +27.86% +1.62% +27.86%

Average ∆ +16.39% +64.46% +17.11% +71.40%

Table 2: Results with probabilistic tokenization on chain-of-thought based reasoning tasks. The “Baseline”
reports the accuracy or exact-match value with the standard BPE tokenization on that task without any chain-of-
thought prompting. All other columns report changes relative to “Baseline”. “Probabilistic Tokenization” (greedy
decoding) outperforms chain-of-thought with self consistency (“CoT + SC”) which uses temperature based diversity
promoting sampling.

3.3 Effect of Model Capabilities

Are the gains from probabilistic tokenization cor-
related to model capabilities? To study this, we
study two dimensions of model capabilities: (1) the
number of pretraining tokens seen by the model,
and, (2) the number of parameters in a model.

To answer (1), we make use of intermediate train-
ing checkpoints made available on the OLMO-7B
repo1. In Figure 1, we show the evolution of accu-
racies obtained by various methods in probabilis-
tic tokenization as the pretraining progresses. On
ARC-c and HellaSwag, we see that the “Oracle”
method consistently and smoothly increases as the
number of tokens seen by the model increases. On
PAWSX and TruthfulQA, all the trends are noisier
due to likelihood distributions being significantly
flatter on average as compared to ARC-c and Hel-
laSwag. In very early stages of pretraining (< 10B

1https://huggingface.co/allenai/OLMo-7B

tokens seen), most of the option selection meth-
ods fail. Notably, “Most Likely” is the only re-
liable way to not see a performance degradation
in the early stages of pretraining. As the trainng
progresses, “Classifier” quickly starts becoming
better while “Majority” voting takes a long time
to become better than “Baseline”. This could be
potentially explained by rarer tokens used in proba-
bilistic tokenization simply being undertrained in
the early stages of training. As an example shown
in Table 1, the word “Unigram” may sometimes be
tokenized as “Un”, “i” and “gram”. In the earlier
stages of training, representation of somewhat rare
token like “i” can completely change the model
behavior resulting in worse likelihoods. This can
create difficulties in learning a good classifier.

We also study effectiveness of probabilistic to-
kenization at various model parameter scales. As
shown in Table 4, we find that probabilistic tok-
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Task Model Baseline Most Likely Majority Classifier Oracle

ARC-c

OLMO-7B 47.46 -1.83% +10.09% +14.27% +17.70%
GEMMA-2B 44.07 -0.79% +13.32% +20.09% +24.98%
GEMMA-7B 61.86 -0.82% +1.27% +6.05% +6.85%
LLAMA3-8B 58.47 -0.43% +12.11% +10.01% +12.11%
LLAMA3-70B 68.64 0.00% +13.87% +15.50% +15.50%
MISTRAL-7B 60.17 -1.98% +8.13% +8.12% +9.86%
MAMBA-2.8B 35.59 -14.55% -10.19% +22.60% +26.22%

HellaSwag

OLMO-7B 52.14 -1.55% +4.83% +6.46% +6.46%
GEMMA-2B 48.46 -1.02% +0.36% +1.84% +1.84%
GEMMA-7B 53.23 -0.36% +1.03% +4.46% +5.24%
LLAMA3-8B 53.33 -1.03% +4.09% +3.47% +4.09%
LLAMA3-70B 57.91 -2.73% +3.73% +2.48% +5.81%
MISTRAL-7B 54.33 -0.49% +0.70% +4.10% +4.77%
MAMBA-2.8B 47.06 -7.39% +5.21% +4.87% +4.87%

PAWSX

OLMO-7B 46.50 -1.58% +4.49% +36.09% +43.38%
GEMMA-2B 41.50 -0.36% +22.99% +107.35% +120.48%
GEMMA-7B 52.50 -0.49% +8.85% +59.64% +73.33%
LLAMA3-8B 44.00 0.00% +12.39% +41.73% +51.52%
LLAMA3-70B 39.50 -1.28% +22.42% +87.16% +87.16%
MISTRAL-7B 42.00 -1.12% +7.37% +35.63% +44.05%
MAMBA-2.8B 52.50 -10.43% +22.15% +22.15% +24.76%

TruthfulQA

OLMO-7B 20.73 -1.41% +7.19% +10.65% +11.87%
GEMMA-2B 21.95 -1.51% +4.25% +24.27% +27.79%
GEMMA-7B 25.61 -1.98% +33.39% +31.98% +38.11%
LLAMA3-8B 21.95 -1.01% +2.54% +14.99% +16.67%
LLAMA3-70B 26.83 -0.05% +7.54% +20.24% +26.20%
MISTRAL-7B 18.29 -1.45% +7.19% +46.04% +53.36%
MAMBA-2.8B 19.51 -6.38% +70.84% +74.73% +87.54%

Average ∆ -2.29% +10.79% +26.32% +30.45%

Table 3: Results with probabilistic tokenization on loglikelihood based evaluations. The “Baseline” reports the
accuracy value with the standard BPE tokenization on that task. All other columns show relative improvements
(w.r.t “Baseline”) when using probabilistic tokenization. 8 different tokenizations of the input prompt are sampled
for probabilistic tokenization.

Reasoning Tasks

Model Baseline CoT + SC CoT + SC Probabilistic Probabilistic
Majority Oracle Majority Oracle

GEMMA-2B 26.11 29.93(+14.65) 43.68(+67.31) 31.26(+19.72) 48.43(+85.51)

GEMMA-7B 34.81 41.49(+19.19) 51.74(+42.54) 40.86(+17.38) 57.24(+64.42)

LLAMA3-8B 35.67 43.10(+20.83) 69.45(+94.73) 41.46(+16.24) 67.98(+90.60)

LLAMA3-70B 46.37 53.29(+14.92) 63.09(+36.06) 53.89(+16.23) 63.10(+36.09)

Loglikelihood Tasks

Model Baseline Most Likely Majority Classifier Oracle

GEMMA-2B 39.00 38.64(-0.92) 42.98(+10.23) 53.96(+38.39) 56.06(+43.77)

GEMMA-7B 48.30 47.86(-0.91) 53.68(+11.13) 60.63(+25.53) 63.22(+30.68)

LLAMA3-8B 44.44 44.16(-0.62) 47.90(+7.78) 52.24(+17.55) 53.81(+21.10)

LLAMA3-70B 48.22 47.73(-1.02) 53.95(+11.89) 63.33(+31.35) 64.47(+33.69)

Table 4: Comparing effectiveness of probabilistic tokenization at various model parameter scales. Average
task performance is reported for each method with percent improvement over “Baseline” in the bracket.

enization robustly improves the performance as
model parameters scale. On reasoning tasks, we

find that relative improvements are highest at 7-8B
parameter range, roughly when the “reasoning” ca-
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Figure 1: Effect of training steps on the efficacy of probabilistic tokenization with OLMO-7B model. On
average, the probabilistic tokenization becomes more useful as the model gets further pretrained on more tokens.

pabilities start to emerge (Brown et al., 2020). At
smaller parameter counts, less gains could be ex-
plained by the model’s weaker reasoning abilities
(Brown et al., 2020). Similarly, larger models that
are already capable of generating diverse reason-
ing paths (as evidenced by lower improvements
in “Oracle” numbers) show comparable gains over
“Baseline” with both “CoT + SC” and “Probabil-
stic” methods. On loglikelihood tasks, similar ar-
guments can be made to explain somewhat mixed
trends. It does seem that as the model becomes
more capable (either through more pretraining or
by increasing the number of parameters), the “Clas-
sifier” based selection approach becomes closer to
the “Oracle” selection approach.

3.4 Error Analysis
To better understand the behavior of probabilistic
tokenization, we study the cases where “Baseline”
(loglikelihood) or “CoT + SC” (reasoning) predic-
tions do not match Gold answer but “Probabilistic
Tokenization” was able to answer correctly.

Logical diversity in reasoning paths In Table
5, we show a representative example from GSM8k.
The model used for generating these reasoning
paths is LLAMA3-8B. We find that the 2 reason-
ing paths sampled by “CoT + SC” are logically
equivalent. They use the same steps to in the cal-
culation of total selling price. Importantly, they
both stop early after that and get incorrect answer
due to stopping early. This is a common failure
mode for “CoT + SC” in reasoning tasks. As op-
posed to this, “Probabilistic Tokenization” is able
to generate logically different reasoning paths. The
second path sampled using probabilistic tokeniza-
tion individually calculates the selling prices for
different boards while second path calculates the
total selling price directly from cost price.

Flatter loglikelihood distributions On loglike-
lihood tasks, we notice that the mistakes made
by probabilistic tokenizers are not always a sub-
set of mistakes made by the baseline BPE to-
kenization. In other words, there are some
questions for which BPE tokenization is better
than using probabilistic tokenization. To study
this, we consider the difference between likeli-
hood of the most likely vs the least likely op-
tion i.e. δ = maxj∈{1,...,n}{PrM(xtok||Yj)} −
minj∈{1,...,n}{PrM(xtok||Yj)}. For the baseline,
δbase is calculated simply with xtok as the BPE to-
kenization. For the m probabilistic tokenizations,
we calculate the δ separately for each tokeniza-
tion and take the maximum from it i.e. δprob =
maxi∈{1,...,m}{δi}. Our analysis shows that ev-
ery time probabilistic tokenizer selects the wrong
option but the baseline (BPE) selects the correct
option, δbase > δprob. Sometimes this difference
δbase − δprob is quite substantial.

We also noticed a correlation between the model-
independent tokenization likelihood Pr(xtok|X)
and model answering the problem correctly with
that particular tokenization. Better tokenization
likelihood correlated with most models giving the
correct answer with that tokenization. Future works
can explore if a reliable model-specific classifier
can be learned to reject tokenizations that are likely
to give wrong answers.

4 Related Work

Probabilistic tokenization can be viewed from the
lens of prior works in multi view learning, tokeniza-
tion based improvements in language modeling and
methods improving self consistency.

Consistency Enhancements using Input Trans-
forms We use a simple 2-layer neural network
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Question Sasha notices that prices for lumber have gone up 50% in the last few months after she bought some lumber. Since she has leftovers, she
decides to sell them. She has leftover ten 2 x 4 x 10 boards that cost her $10 each. She also has five 4 x 4 x 10 boards she bought for $16
each. If she sells them all, how much profit does she make?

Answer 90

CoT + SC

Path 1

Sasha has 10 2 x 4 x 10 boards that cost her $10 each. So she has 10 x 10 = $100 worth of 2 x 4 x 10 boards. She also has 5 4 x 4 x 10
boards she bought for $16 each. So she has 5 x 16 = $80 worth of 4 x 4 x 10 boards. In total, she has $100 + $80 = $180 worth of lumber.
Since prices went up 50%, she can sell them for 1.5 times as much. 1.5 x 180 = 270. The answer is $270.

CoT + SC

Path 2

Sasha has ten 2 x 4 x 10 boards that cost her $10 each. So she has 10 x $10 = $100 worth of 2 x 4 x 10 boards. She also has five 4 x 4 x 10
boards she bought for $16 each. So she has 5 x $16 = $80 worth of 4 x 4 x 10 boards. In total, she has $100 + $80 = $180 worth of lumber.
Since prices have gone up 50%, she can sell them for 1.5 times the price she bought them for. So she can sell them for 1.5 x $180 = $270.
The answer is $270.

Probabilistic

Path 1

Sasha has 10 boards that cost her 10 dollars each. She also has 5 boards that cost her 16 dollars each. So she spent 10 x 10 + 5 x 16 = 100 +
80 = 180. Since prices went up 50%, she can sell the boards for 1.5 times the price she bought them for. So she can sell them for 1.5 x 180 =
270. She makes 270 - 180 = 90 dollars profit. The answer is 90.

Probabilistic

Path 2

Sasha bought ten 2 x 4 x 10 boards for $10 each. So she spent 10 x 10 = $100. She also bought five 4 x 4 x 10 boards for $16 each. So she
spent 5 x 16 = $80. In total, she spent $100 + $80 = $180. Since prices went up 50%, she can sell the boards for 1.5 times the price she
bought them for. So she can sell the 2 x 4 x 10 boards for 1.5 x 10 = $15 each. She can sell the 4 x 4 x 10 boards for 1.5 x 16 = $24 each. So
she can sell the 2 x 4 x 10 boards for 10 x 15 = $150. She can sell the 4 x 4 x 10 boards for 5 x 24 = $120. In total, she can sell the boards for
$150 + $120 = $270. So she makes $270 - $180 = $90 profit. The answer is $90.

Table 5: Comparison of reasoning paths. “CoT + SC” paths often have superficial linguistic diversity while
“Probabilistic Tokenization” paths have meaningful diversity in the reasoning paths.

as our classifier to select a class given likelihood
and selected option from multiple tokenizations.
In principle, one can follow the rich literature on
ensemble diversity (Stickland and Murray, 2020;
Yeo et al., 2021; Han et al., 2018) to build a more
sophisticated reranker for both log-likelihood and
reasoning based tasks that is aware of the trans-
formed input. (Guo et al., 2019) explores similar
ideas to improve consistency of outputs in com-
puter vision focused tasks.

Tokenization Methods to Improve LLM Perfor-
mance Tokenization plays a crucial role in the
reasoning and domain understanding capabilities
for LLMs (Dagan et al., 2024; Singh and Strouse,
2024). The popular BPE (Sennrich et al., 2016;
Gage, 1994) and Unigram (Kudo, 2018) tokeniz-
ers are still being studied for better understanding
(Zouhar et al., 2023). Some recent works argue that
BPE might not be an optimal tokenization method
for all tasks or domains (Liu et al., 2023; Ali et al.,
2024). Our work is orthogonal to these directions
since we do not aim to modify the existing tok-
enizer and LLM in any way.

Self Consistency and Diversity of Thoughts in
Reasoning Several works improve LLM reason-
ing capabilities using self consistency and chain-of-
thought prompting(Wei et al., 2022; Kojima et al.,
2022; Wang et al., 2023; Yao et al., 2023). Fol-
lowing this, many works improve self consistency
by either changing the stopping criteria (Aggarwal

et al., 2023; Li et al., 2024b) or by designing a
sophisticated voting fucntion to replace majority
voting (Li et al., 2024a; Jain et al., 2024). Diversity
of thoughts (reasoning paths) is also shown to be an
important factor limiting LLM’s reasoning ability
(Li et al., 2023; Naik et al., 2024). Our work is
relevant in this direction as it aims to improve the
diversity in reasoning paths using tokenization.

5 Conclusion

In this work, we propose “Probabilistic Tokeniza-
tion” as a method to improve self consistency in
LLMs. We present a method to sample multiple
tokenizations of a given string using existing BPE
tokenizers of pretrained LLMs. As probabilistic to-
kenization is an input transformation method rather
than an output manipulation method, it can be gen-
erally applied to any task. In this work, we use it to
extend self-consistency to a novel task evaluation
setting that relies on loglikelihood of a sequence
to answer multiple choice questions. We find that
probabilistic tokenizations offers significant and
consistent gains over baseline in 4 reasoning and
4 loglikelihood based tasks. Notably, our analysis
shows that the primary reason for success of proba-
bilistic tokenization on reasoning tasks is its ability
to generate logically diverse reasoning paths. We
also study effectiveness of probabilistic tokeniza-
tion on models of various capabilities and find that
it provides the most gains when the model is start-
ing to show the emergence of reasoning abilities.
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6 Limitations

In order to estimate the unigram probabilities p(tj)
from Equation 2.1, we need access to a sufficiently
large and diverse dataset of documents. While we
used a sample of 10B tokens from a large scale web
corpus, this may not always be the optimal choice
for all the tasks. On domain specific tasks such as
medical question answering or code generation, a
web corpus might not be appropriate. Availability
to such corpus is essential since errors in estimating
p(tj) can result in suboptimal tokenizations which
can hurt performance (Jain et al., 2023). On many
of the general purpose tasks, this limitation can
be addressed by making use of high quality, open
source web corpora such as FINEWEB (Penedo
et al., 2024) or DOLMA (Soldaini et al., 2024).
Even in the cases where the actual corpus is not
available but token level counts are available, our
method can still be applied.

Furthermore, the model capability analysis
shows that improvements from probabilistic tok-
enization are greater for more capable models. If
the base model is not very capable, it may not be ro-
bust to changes in tokenizations or generate superfi-
cially diverse reasoning paths. In such cases, prob-
abilistic tokenization may hurt the performance
rather than improving. We share this limitation
with other methods using chain-of-thought prompt-
ing or self-consistency.

7 Ethics Statement

As mentioned in our overall discussion, language
models can occasionally produce illogical or in-
correct reasoning paths, so their outputs should be
used with caution. We primarily handle reasoning
tasks, using the generated rationales to examine
how a model arrives at its answers. These ratio-
nales can also help identify why the model makes
certain mistakes or if it contains any biases when
performing specific tasks. For real-world applica-
tions, additional work is needed to better ground
the models’ predictions and enhance their factual-
ity and safety, ensuring they do not cause harm or
exhibit any harmful biases in their outputs.
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A Appendix

A.1 Counting vs EM for estimating unigram
probabilities

As opposed to using EM to estimate p(tj) in Equa-
tion 2.1, we resort to a simpler counting based
method. We acknowledge that this could result in
somewhat distorted unigram probabilities. We pro-
vide additional results (Table 6) on applying EM to
a smaller, 100M token subset to conclude that both
methods perform comparably.

A.2 Fixed l vs l → ∞ for sampling
tokenizations

We compare using fixed vs infinite l for sampling
a tokenization in Table 7. Our findings suggest
that considering a fixed window of top-l tokeniza-
tions may not offer sufficient diversity leading to re-
dundant generations which explain lesser improve-
ments in “Oracle” as well as “Majority” numbers.

A.3 Resources Used

We used a single NVIDIA A100 GPU with
a 64 core AMD CPU to run our infer-
ences. The estimated total GPU hours is 600
hours. Our implementation is based on the
lm-evaluation-harness and sentencepiece.
We list references

the list of model and the URL with checkpoints
available and licenses are listed below:

OLMO-7B : https://huggingface.co/
allenai/OLMo-7B License: Apache-2.0

GEMMA-2B : https://huggingface.co/
google/gemma-2b License: Gemma

GEMMA-7B : https://huggingface.co/
google/gemma-7b License: Gemma

LLAMA3-8B : meta-llama/
Meta-Llama-3-8B License: llama3

LLAMA3-70B : meta-llama/
Meta-Llama-3-70B License: llama3

MISTRAL-7B : https://huggingface.
co/mistralai/Mistral-7B-v0.1 License:
Apache-2.0

MAMBA-2.8B : https://huggingface.co/
state-spaces/mamba-2.8b-hf License:
Apache-2.0
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Table 6: Comparing effect of using counting vs EM to estimate EM probabilities. Average task performance is
reported. Both methods perform comparably on a GEMMA-2B model.

Reasoning Tasks

Model Baseline CoT + SC CoT + SC Probabilistic Probabilistic
Majority Oracle Majority Oracle

GEMMA-2B (EM) 26.11 29.13 38.68 29.26 45.45
GEMMA-2B (Counting) 26.11 27.93 37.68 29.81 45.45

Loglikelihood Tasks

Model Baseline Most Likely Majority Classifier Oracle

GEMMA-2B (EM) 39.00 38.13 41.49 49.69 54.01
GEMMA-2B (Counting) 39.00 37.63 41.58 51.01 55.56

Table 7: Comparing effect of using counting vs EM to estimate EM probabilities. Average task performance is
reported. Both methods perform comparably on a GEMMA-2B model.

Reasoning Tasks

Model Baseline CoT + SC CoT + SC Probabilistic Probabilistic
Majority Oracle Majority Oracle

GEMMA-2B (l = m2) 26.11 27.13 33.18 26.26 35.35
GEMMA-2B (l → ∞) 26.11 29.93 43.68 31.26 48.43

Loglikelihood Tasks

Model Baseline Most Likely Majority Classifier Oracle

GEMMA-2B (l = m2) 39.00 38.98 39.19 45.16 46.15
GEMMA-2B (l → ∞) 39.00 38.64 42.98 53.96 56.06
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