Enhancing Text-to-SQL with Question Classification and Multi-Agent
Collaboration

Zhihui Shao', Shubin Cai'?*, Rongsheng Lin', Zhong Ming**

!College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
2Laboratory of Artificial Intelligence and Digital Economy (Shenzhen), Shenzhen, China
3College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
{shaozhihui2022,linrongsheng2022 } @email.szu.edu.cn
{shubin,mingz} @szu.edu.cn

Abstract

Large Language Models (LLMs) have recently
demonstrated remarkable performance in Text-
to-SQL tasks. However, existing research pri-
marily focuses on the optimization of prompts
and improvements in workflow, with few stud-
ies delving into the exploration of the ques-
tions. In this paper, we propose a Text-to-
SQL framework based on question classifica-
tion and multi-agent collaboration (QCMA-
SQL). Specifically, we first employ multiple
cross-attention mechanisms to train a schema
selector to classify questions and select the
most suitable database schema. Subsequently,
we employ the appropriate agents based on
the varying difficulty levels of the questions
to generate preliminary SQL queries. More-
over, we implement syntax validation and exe-
cution optimization steps to generate final SQL
queries. Experimental results on the Spider
dataset show that the QCMA-SQL framework
achieves an execution accuracy of 87.4%, out-
performing state-of-the-art methods. Through
ablation studies, we find that classifying the
questions ultimately leads to a 2.8% increase
in execution accuracy.

1 Introduction

The Text-to-SQL task converts natural language
queries to Structured Query Language (SQL), en-
abling users to easily retrieve database information
without SQL knowledge (Wang et al., 2022).The
primary challenges of the Text-to-SQL task orig-
inate from the comprehensive understanding re-
quired for natural language question intentions,
and the complexity involved in precisely mapping
entities in natural language to tables and column
names within database schemas (Li et al., 2023a).
As technology evolves and research progresses, the
academic community has proposed various solu-
tion strategies. Currently, mainstream methods are
mainly divided into two categories: one is based

*Corresponding author.

on pre-trained language models (PLMs) (Li et al.,
2023a; Scholak et al., 2021), and the other relies
on advanced methods supported by LLMs (Hong
et al., 2024; Wang et al., 2023; Rajkumar et al.,
2022).

With the continuous progress in the field of deep
learning, PLMs have achieved remarkable success
in various tasks of natural language processing
(Li et al., 2023b). RAT-SQL (Wang et al., 2020),
strengthens the SQL encoder’s capability in schema
encoding, relation, and feature expression by con-
necting primary and foreign key relations in data ta-
bles through a graph model. The RESDSQL model
(Li et al., 2023a), by decoupling schema alignment
and query skeleton analysis, enhances the precision
and robustness of SQL parsing. However, due to
the inherent limitations in the parameter scale of
PLMs, traditional methods based on deep learn-
ing are no longer the most ideal solution for the
Text-to-SQL task.

Recent research outcomes demonstrate that
LLMs exhibit outstanding performance in Text-to-
SQL tasks, an achievement attributable to LLMs’
significant advantages in natural language under-
standing and reasoning capabilities (Liu et al.,
2023; Rajkumar et al., 2022; Sun et al., 2023).
In practice, the vast majority of approaches em-
ploy meticulously designed prompts to tap into
the potential of LLMs in Text-to-SQL transforma-
tion tasks, including the use of thought chains and
task decomposition strategies to construct complex
prompts (Tai et al., 2023). For instance, C3-SQL
(Dong et al., 2023) introduces bias hints that are
calibrated using a self-consistent policy designed
for the Spider dataset to guide GPT-4 (Achiam
et al., 2023). Concurrently, DIN-SQL (Pourreza
and Rafiei, 2024) subdivides the text-to-SQL task
into a series of smaller sub-tasks, customizing dis-
tinct directive prompts for each sub-task to steer
GPT-4 to complete each sub-task and construct the
final SQL query incrementally. DAIL-SQL (Gao

4340

Findings of the Association for Computational Linguistics:
NAACL 2025, pages 4340-4349
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

et al., 2024) adopts an approach that encodes the
structural knowledge within SQL queries, selecting
a small sample set based on skeleton similarity for
demonstration. Nevertheless, the methods above
still face challenges when dealing with large-scale
databases, complex user questions, and erroneous
SQL outputs. Firstly, there is a lack of more com-
prehensive consideration for questions with differ-
ent levels of difficulty. Secondly, schema linking
using LL.Ms incurs expensive costs.

To address these issues, this paper introduces
QCMA-SQL, an innovative Text-to-SQL frame-
work that integrates traditional PLMs with state-of-
the-art LLMs to propose a novel methodology. The
framework decomposes the Text-to-SQL task into
two principal stages: question classification and
SQL generation. During the question classifica-
tion stage, a schema selector classifies the question
and chooses the most relevant schema items to the
question from a large number of database schemas.
In the SQL generation stage, we input questions
of different difficulty to different agents to gener-
ate initial SQL queries. Other agents then perform
error detection and execution optimization.

To assess the efficacy of our framework, we
conducted experiments on the Spider (Yu et al.,
2018), Spider-DK (Gan et al., 2021b), Spider-
SYN (Gan et al., 2021a), Spider-Realistic (Deng
et al., 2021), and CSpider (Min et al., 2019). Our
method achieved an execution accuracy of 87.4%
on the Spider dataset and an exact match accuracy
of 69.5% on CSpider, showcasing the effective-
ness and robustness of our approach across various
datasets.

Our main contributions and results are summa-
rized as follows: (1) A Text-to-SQL framework,
called QCMA-SQL, is innovatively proposed for
high-precision and high-efficiency SQL generation.
(2) Considering the importance of question classifi-
cation and schema linking, this study introduces a
schema selector based on multiple cross-attention
mechanisms to enhance the accuracy of classifica-
tion. (3) Through extensive experimental valida-
tions, QCMA-SQL achieved new state-of-the-art
(SOTA) performance levels on Spider.

2 Related Work

Inspired by pre-training techniques, seq2seq mod-
els such as T5 (Raffel et al., 2020) and BART
(Lewis et al., 2020) have begun to demonstrate
superior performance on this task, indicating a re-

search trend toward fine-tuning large-scale PLMs
on specific database-related data. RESDSQL (Li
et al., 2023a) simplifies the process of convert-
ing natural language into SQL queries by decou-
pling schema matching and query skeleton analy-
sis and employs a hierarchical enhanced encoder
and a skeleton-aware decoder to improve the accu-
racy and robustness of SQL parsing. Nevertheless,
PLM-based approaches are far from the standard
for reliable text-to-SQL parsers.

With the rise of LLMs such as GPT-4 (Achiam
et al., 2023), Codex (Chen et al., 2021), PaLM
(Chowdhery et al., 2023) and StarCoder (Li et al.,
2023c), researchers have proposed diverse strate-
gies to exploit the advanced reasoning abilities
of these models, focusing on creating superior
prompts for probing SQL generation potential. For
instance, Chang (Chang and Fosler-Lussier, 2023)
have delved into mind-chain prompt strategies to
enhance the LLM reasoning capacity, while models
such as DAIL-SQL (Gao et al., 2024) and C3-SQL
(Dong et al., 2023) optimize the execution pro-
cess and outcomes through precise calibration of
model inputs, query classification and decomposi-
tion, and special logical handling tailored for the
text-to-SQL tasks. MAC-SQL (Wang et al., 2023)
proposes a multi-agent collaboration framework, in
which multiple LLMs are responsible for simplify-
ing database schemas, decomposing complex ques-
tions, and incrementally generating SQL. CodeS
(Liet al., 2024) enhances SQL generation and natu-
ral language understanding capabilities through su-
pervised fine-tuning and a carefully curated dataset,
and achieves rapid domain adaptation through bidi-
rectional data augmentation techniques.

3 Method

3.1 General Architecture

The QCMA-SQL framework consists of two core
components: the schema selector and the multi-
agent collaboration mechanism. This framework
ingeniously integrates the strengths of Pre-trained
Language Models and Large Language Models,
significantly enhancing the accuracy of the Text-
to-SQL task. Figure 1 illustrates the overall struc-
ture of the QCMA-SQL framework. Initially, the
schema selector categorizes the question into sim-
ple or complex types and selects the most relevant
database schema from them. Subsequently, we em-
ploy specific agents to generate preliminary SQL
queries for questions of varying difficulty levels.

4341

Simple | . Aligned
|| Question Schema

=,

I Complex | 4 Aligned
| | Question Schema

|
|
:
|
Question and
e
|
|
|
[
|

Schema Selector

::>-i-

Vec‘ror Database

|
|
Incorrect SQL and l
error message: |
|
|

’f?s/
sqL \
Developer

|
/ saL >~ " sa
: i ‘\\\@\ Specialist Updated SQL Executor :

|
sQL
| Researcher I

~ Multi-Agent Collaborative Framework s

Figure 1: An overview of QCMA-SQL framework. We train a schema selector to classify questions and filter
the schema items. Then we take the question, and the aligned schema sequence as the input of the multi-agent

collaboration framework.

In the end, through the collaborative interaction
among multiple agents, we deploy a multi-stage
iterative correction mechanism. This mechanism
integrates error detection and execution optimiza-
tion, aiming to ensure the accuracy and reliability
of SQL queries.

3.2 Schema Selector

The function of the schema selector is to categorize
the difficulty of questions while choosing the most
relevant database schema. The Spider dataset pro-
vides specific usage of components for each SQL
query, such as "orderBy," "groupBy," "join," "hav-
ing," and "limit," etc. We divide the training set
into simple or complex categories, which depend
on the number of SQL keywords used, the pres-
ence of nested subqueries, and the utilization of
column selection or aggregation. During the train-
ing process, we employ multiple cross-attention
mechanisms to effectively capture the intrinsic con-
nections between questions, difficulty level, table
names, and column names. Details of the schema
selector are shown in Figure 2.

Encoder. We define the difficulty level, the
table, and the column in the relational database
as: D = {dl,dz}, T = {tl,tz,"' ,tN}, C =
{017"' , nl,c%,... ooy O 702N}.

D denotes the set of difficulty levels, T denotes
the set of tables, C denotes the set of columns,
N denotes the number of tables, and cz denotes
the i-th column of the j-th table. We concate-
nate questions, difficulty levels, and database in-
formation as the input to the encoder: S = ¢ |

LAl N
dl,dQ ’ tl.Cl,---

767111 ‘ ‘ tN:Civv""an'

Difficulty Table end Column

LL

SoftMax SoftMax
MLP
D_Q@ Cross Q T Cross T_C Cross
Attention Attention Attention
‘ D-Bi-LSTM | | Q-Bi-LSTM | | T-Bi-LSTM | | C-Bi-LSTM ‘
Encoder

1

Figure 2: Schema selector. Multiple cross-attention
mechanisms extract features between questions, diffi-
culty levels, table names, and column names.

To extract more essential semantic features, we
utilize four separate Bi-LSTM layers to pool dif-
ficulty levels, questions, tables, and columns se-
quence respectively. After pooling, the embed-
ding of the question can be denoted by Q € R'*9,
the embedding of each table can be denoted by
T; € R™4(i € {1,...,N}), and the embedding of
each column can be denoted by Ci € R™4(i €
{1,..,Nh ke {1,..,n}).

Multiple Cross-Attention Mechanisms. We
notice that some questions only mention column
names but not table names, which could affect
the accuracy of schema selection. Thus, we pro-

4342

pose a method with multiple cross-attention mecha-
nisms to assist the model in difficulty classification
and schema selection. Specifically, we employ a
difficulty-question cross-attention layer to embed
difficulty information into the semantic context of
the question. Additionally, we utilize a question-
table cross-attention layer and a table-column cross-
attention layer to embed table information and col-
umn information into the semantic context of the
question.

QP = MultiHeadAttn(Q, D;, D;,h) (1)
QT = MultiHeadAttn(Q, T}, T;, h))

T¢ = MultiHeadAttn(T;, C}, Ci, h) (3)

Here, D; represents the difficulty levels, T; repre-
sents the table name, and C' jk represents the column
name. Q represents the question, and h denotes the
number of heads in multi-head attention.

Loss Function. Given that SQL queries typi-
cally involve only a small number of tables and
columns in the database, the label distribution in
our training set is highly imbalanced. To mitigate
this issue, we adopt a balanced cross-entropy loss
function for our classification loss. We construct
the loss function for the schema selector in a multi-
task learning way, including the loss for difficulty
classification, the loss for table classification, and
the loss for column classification.

3.3 Multi-Agent Collaborative Framework

Following the initial phase, we categorize the ques-
tions into two types and select the most relevant
database schema. Leveraging the exceptional natu-
ral language understanding and advanced reason-
ing capabilities of LLMs, We develop a multi-agent
collaborative SQL generation framework. As de-
picted in Figure 1, the framework is composed
of four agents: SQL Developer, SQL Researcher,
SQL Executor, and SQL Specialist. We meticu-
lously design prompts for each agent to maximize
their respective strengths. For simple questions,
we utilize the SQL Developer, which employs re-
trieval enhancement technology to recall similar
question-SQL pairs from the vector database as
contextual information. For complex questions, we
apply the SQL Researcher, which is based on task
decomposition and chain-of-thought(CoT) to gen-
erate preliminary SQL queries. These SQL are then

syntax-checked and executed by the SQL Executor.
If the execution is successful, the output is the final
SQL querys; if not, the SQL Specialist modifies the
SQL query based on the error information and re-
submits it to the SQL Executor for execution and
verification.

The implementation of LLM-based text-to-SQL
process to generate executable SQL query Y is
formulated as:

Y = LLM(Q,S,T | 0) @)

where Q represents the user question. S is the
aligned database schema, and 7 represents the in-
struction for the Text-to-SQL task, which performs
indicative guidance to guide the LLMs for generat-
ing an accurate SQL query. LLM (- | 0) is a LLM
with parameter 6.

SQL Developer. The SQL Developer excels at
addressing simple questions, which typically re-
quire only a single step of reasoning. We store
the training set of question-SQL pairs and Data
Definition Language (DDL) in a vector database,
enabling the retrieval of the most similar cases to
the given question. This flexible strategy provides
the agent with more precise cases, maximizing the
potential of LLMs in few-shot learning environ-
ments.

SQL Researcher. The SQL Researcher is adept
at handling complex questions. For such questions,
we employ a method of question decomposition
combined with CoT. Initially, we break down the
complex question into multiple sub-questions that
are in a progressive relationship. We then generate
SQL queries for each sub-question individually,
step by step arriving at the complete SQL.

SQL Executor. The SQL Executor is responsi-
ble for receiving SQL queries generated by either
the SQL Developer or the SQL Specialist and con-
ducting preliminary checks for syntax accuracy.
Upon confirming that there are no apparent syntax
errors, the SQL Executor proceeds to execute the
SQL query. In case of successful implementation,
the executed SQL query is defined as the final out-
put. However, if errors occur during the execution
process, the system invokes assistance from the
SQL Specialist to conduct a profound analysis.

SQL Specialist. The expertise of the SQL Spe-
cialist lies in revising SQL queries based on the
feedback from error messages. Taking into con-
sideration the database schema, the flawed SQL
queries, and the corresponding error messages, the

4343

Dataset Table Column Difficulty Method Model EX
Spider 0.9984 0.9973 0.9893 T5-3B + PICARD 79.3
CSpider 0.9930 0.9904 - PLM-based RASAT 80.5

] RESDSQL 84.1

P-4 Garoshoy 725
' GPT-4 (few-shot) 76.8

Fine-tuned SQL-PaLM 82.8

SQL Specialist reconstructs the SQL queries ac- LLM-based DIN-SQL 82.8
cordingly. These revised queries are then resubmit- DAIL-SQL 84.4
ted to the SQL Executor for further error checking RAG+SP&DRC 85.0
and verification. CodeS-7B 85.4
MAC-SQL 86.7

4 Experiments Ours QCMA-SQL 87.4

Datasets. We conduct extensive experiments on
the cross-domain large-scale Text-to-SQL bench-
mark: Spider (Yu et al., 2018) and CSpider (Min
et al., 2019). We also assess our models’ robust-
ness across three more challenging benchmarks:
Spider-DK(Gan et al., 2021b), Spider-SYN(Gan
et al., 2021a), and Spider-Realistic(Deng et al.,
2021). The Spider dataset is commonly utilized
for evaluating text-to-SQL parsing performance
across multiple databases. This dataset comprises
7,000 Question-SQL pairs in the training set and
1,034 in the development set, covering 200 distinct
databases and 138 domains. CSpider is a large,
complex cross-domain semantic parsing and Text-
to-SQL dataset in Chinese, translated from Spider.
Spider-DK, Spider-Syn, and Spider-Realistic are
variants derived from the original Spider dataset.
They are designed to mimic questions that users
might pose in real-world scenarios.

Evaluation Metrics. We consider two evalua-
tion metrics—Execution Accuracy (EX) and Exact
Match Accuracy (EM). EX quantifies the percent-
age of evaluation questions for which the inferred
queries produce identical execution outcomes to the
ground truth queries, against the aggregate query
count. EM gauges the accuracy of predicted SQL
sub-clauses by examining each sub-clause as an in-
dividual set and ensuring complete correspondence
with the reference query’s sub-clauses, deeming a
SQL prediction accurate only if all elements align
with the true query components.

Baselines. Our benchmark study evaluates the
performance of two types of Text-to-SQL methods.
PLM-based methods: T5-3B + PICARD (Scholak
et al., 2021), RASAT (Qi et al., 2022) and RES-
DSQL (Li et al., 2023a). LLM-based methods:
GPT-4 (Achiam et al., 2023), SQL-PaLM (Sun
etal., 2023), DIN-SQL (Pourreza and Rafiei, 2024),

Table 2: Execution accuracy on Spider dev (%).

DAIL-SQL (Gao et al., 2024), RAG+SP&DRC
(Guo et al., 2023), Codes (Liet al., 2024) and MAC-
SQL(Wang et al., 2025).

Implementation Details. We run all of our ex-
periments on NVIDIA V100 GPU with 32GB mem-
ory. In the first phase, we employ DeBERTa-v3 as
the encoder, and the number of heads h in the dual
attention mechanism is set to 8. The optimization
process utilizes the AdamW optimizer, with a batch
size of 8, and a learning rate set at 2e-5. In the sec-
ond phase, we use DeepSeek-V3 as the agent and
design specific prompts for different agents. Specif-
ically, we adopt a 3-shot setting in the prompts of
the SQL Developer. We set the temperature of each
agent to O to actively utilize the model’s determin-
ism features. In addition, we use Chroma as the
vector database.

4.1 Main Results

In Table 1, we present the performance of the
schema selector across different datasets. The AUC
metric is adopted to evaluate the models’ classifi-
cation accuracy. According to the experimental
results, the schema selector achieved an AUC score
of 0.9984 for table classification and 0.9973 for
column classification on the Spider dataset, both
of which exceed the performance metrics of the
CSpider dataset. We speculate that this is because
DeBERTa is more proficient in English. Further-
more, for the classification of question difficulty,
the difficulty AUC score reached 0.9893. This
indicates that the schema selector can accurately
classify questions and link schema.

Table 2 shows the comparative performance of
QCMA-SQL against other benchmark methods on

4344

100

80 4 79.8

60

Execution Accuracy (%)

40 4

GPT-4 (few-shot)
DIN-SQL+GPT-4
Fine-tuned SQL-PaLM
RAG+SP&DRC
QCMA-5QL (ours)

B3 9

66 3
64 9

T T
Easy Medium

T T
Hard Extra

various Difficulty Levels on Spider

Figure 3: Test-suite accuracy at various difficulty levels on Spider.

Method EM(%)
RAT-SQL 59.7
LGESQL + GTL + Electra + QT 64.0
LGESQL + ELECTRA + QT 64.5
RESDSQL 66.3
QCMA-SQL(ours) 69.5

Table 3: Exact Match Accuracy on CSpider.

the Spider dev. The results indicate that our method
outperforms all baselines in terms of execution
accuracy. Specifically, the execution accuracy of
QCMA-SQL reached 87.4%, which is 0.7% higher
than the second-best method (MAC-SQL).

Table 3 presents a performance comparison
between the method proposed in this study and
several baseline methods on the CSpider dataset.
QCMA-SQL outperforms the second-best method
by 3.2%. The tabular names and column names in
the CSpider dataset are in English, but the ques-
tions are in Chinese, increasing the challenge of
mapping questions to database structures. The re-
sults demonstrate that our strategy performs best
on the CSpider dataset. This fully validates the
effectiveness and robustness of our method.

Evaluation on Robustness Benchmarks. Ta-
ble 4 evaluates the robustness of QCMA-SQL on
three Spider variants: Spider-DK, Spider-Syn, and
Spider-Realistic. The experimental results show
that QCMA-SQL exhibits outstanding performance
compared to the best baseline. It achieves gains
of 2.4% on Spider-Syn (from 81.4% to 83.8%),
and 3.3% on Spider-Realistic (from 83.1% to
86.4%). These results demonstrate the model’s
good generalization on challenging real-world sce-

Method S-Syn S-R S-DK
T5-3B + PICARD 69.8 714 62.5
RASAT 70.7 719 63.9
RESDSQL 76.9 81.9 66.0
ChatGPT 58.6 634 62.6
Fine-tuned SQL-PaLM 709 77.4 67.5
RAG+SP&DRC 814 - 811
CodeS-7B 76.9 829 72.0
CodeS-15B 77.0 83.1 70.7
QCMA-SQL (ours) 83.8 86.4 80.7

Table 4: Evaluation of our method on Spider variants. S-
Syn, S-R, and S-DK correspond to Spider-Syn, Spider-
Realistic, and Spider-DK, respectively.

nario datasets.

Various Difficulty Levels Analysis. As shown
in Figure 3, these four difficulty levels are based
on the official test suite provided by Spider. The
results indicate that our model outperforms other
models at all levels. It achieves gains of 0.9% on
the easy level, 1.1% on the medium level respec-
tively, 8.6% on the hard level, and 2.4% on the ex-
tra hard level. This is attributed to the multi-agent
collaborative framework’s ability to categorically
handle questions of varying difficulty, suggesting
that our model excels in processing SQL queries of
arbitrary difficulty.

Tokens Consumption. The adoption of LLM
for SQL generation in Text-to-SQL tasks is due to
the significant performance advantages that LLM
has exhibited over PLM. However, these optimiza-
tion methods based on the LLM API consume a
large number of tokens in the reasoning process.
Experimental data shows that compared with ex-

4345

Method Easy Medium Hard Extra All
w/o SQL Researcher(QD and CoT) 94.4 89.7 73.6 62.0 83.6
w/o SQL Developer(RAG) 92.7 87.2 839 663 84.6

Table 5: Performance of the two algorithms at different difficulty levels (EX). For brevity, "Question decomposition

" is denoted as "QD."

Method EX
QCMA-SQL(ours) 874

w/o schema selector 84.2

w/o multi-agent collaborative 83.1

Table 6: Ablation study in Spider dev set

isting technologies, QCMA-SQL significantly re-
duces inference costs. Specifically, with the same
use of the GPT-4 API, the DAIL-SQL(Gao et al.,
2024) costs 323.2$ for a single round of experi-
ments on Spider, while the corresponding cost for
QCMA-SQL is only 60$.

4.2 Ablation Study

We conduct ablation studies on the Spider develop-
ment set to evaluate the impact of two components:
the schema selector and the multi-agent collabora-
tive framework. The results are presented in Ta-
ble 6.

Effect of Schema Selector. We investigate the
influence of the schema selector on performance.
When the schema selector is not used and all
schema items from the database are input into the
multi-agent collaborative framework, performance
degradation occurs due to the inability of the LLM
to accurately connect schema items because of the
longer input sequence. Also, the lack of question
classification leads to the inability to select the most
appropriate agent to generate SQL. This highlights
the importance of the schema selector.

Effect of Multi-Agent Collaborative Frame-
work. Without the multi-agent collaborative frame-
work, if the filtered schema items are input into
a single Deepseek-V3 model, the lack of retrieval
enhancement, error detection, and execution opti-
mization functionalities leads to a decrease in the
EX value. This demonstrates the indispensability
of the multi-agent collaborative framework in the
SQL generation process.

Effect of SQL Developer and SQL Researcher.
We evaluate the algorithm performance improve-
ment on different difficulty subsets. We do not
categorize the questions but instead input them sep-

arately into SQL Developer, based on RAG, and
SQL Researcher, based on question decomposition
(QD) and CoT. As shown in Table 5, the strategy
of question decomposition and CoT for complex
questions effectively achieves step-by-step ques-
tion resolution and improves performance, with an
increase from 73.6% to 83.9% at the hard level and
from 62.0% to 66.3% at the extra level. However,
for simple questions, the method based on question
decomposition and CoT decreases execution accu-
racy, from 94.4% to 92.7% at the easy level and
from 89.7% to 87.2% at the medium level. We sug-
gest that for simple questions solvable by a single
step of reasoning, LLM tends to overly decompose
them into multiple sub-questions. This approach
not only unnecessarily increases the complexity of
the questions but also introduces errors.

S Case Study

To demonstrate the necessity of categorizing
question-solving approaches, we present examples
in Figure 4 and Figure 5 where SQL Developer
(based on RAG) and SQL Researcher (based on
question decomposition and CoT) are faced with
simple and complex questions, respectively. In
the simple question, the task is simply to find the
maximum value of "charge_amount". However,
the method based on question decomposition and
CoT breaks down the question, leading to incor-
rect identification of "charge_type" in the second
sub-question. In the complex question, the RAG-
based method fails to understand the meaning of
"Bachelors program" and consequently uses the
non-existent column name "Bachelors". Each of
these two approaches has its strengths for questions
of different difficulty levels. It is necessary to cat-
egorize questions and address them with different
approaches.

6 Conclusion

In this paper, we introduce a novel Text-to-SQL
framework, called QCMA-SQL. It selects the ap-
propriate agent to generate SQL based on the
questions’ varying difficulty levels. The proposed

4346

Question: What are the first, middle, and last names for everybody enrolled in a Bachelors program?

Difficulty: Complex

Gold SQL:

T3.degree_summary_name = 'Bachelor’

SELECT DISTINCT Tl.first_name , Tlmiddle name, Tllast name FROM Students AS T1 JOIN Student Enrolment AS T2 ON
Tlstudent_id = T2.student_id JOIN Degree_Programs AS T3 ON T2.degree_program_id = T3.degree_ program_id WHERE

SQL Developer(RAG):

SELECT students.first_name, students.middle_name, students.last_name FROM students JOIN student_enrolment ON
students.student_id = student_enrolment.student_id JOIN degree_programs ON student_enrolment.degree_program_id =
degree_programs.degree_program_id WHERE degree_programs.degree_summary_name = 'Bachelors' X

SQL Researcher(Question decomposition and CoT):

degree_summary name LIKE 'Bachelor%'))

dp.degree_summary_name LIKE 'Bachelor%'

Sub question 1: Identify the degree program_id(s) for Bachelors pregrams.
Sub SQL 1: SELECT degree_program_id FROM degree_programs WHERE degree_summary_name LIKE 'Bachelors%!'

Sub question 2: Find the student_id(s) of students enrolled in Bachelors programs.
Sub SQL 2: SELECT student_id FROM student_enrolment WHERE degree_program_id IN (SELECT degree_program_id FROM
degree_programs WHERE degree_summary_name LIKE 'Bachelor%')

Sub question 3: Retrieve the first, middle, and last names of students enrolled in Bachelors programs.
Sub SQL 3: SELECT first_name, middle_name, last _name FROM students WHERE student id IN (SELECT student_id FROM
student_enrolment WHERE degree_program_id IN (SELECT degree_program_id FROM degree programs WHERE

Final SQL: SELECT DISTINCT s first_name, s.middle_name, s.last_name FROM students s JOIN student_enrolment se ON
s.student_id = se.student_id JOIN degree_programs dp ON se.degree_program_id = dp.degree_program_id WHERE

Figure 4: Complex question case.

Question: How much does the most expensive charge type costs?

Difficulty: Simple

Gold SQL: SELECT max(charge_amount) FROM Charges

SQL Developer(RAG):

SELECT MAX(charges.charge_amount) AS Most_Expensive_Charge FROM charges v/
SQL Researcher(Question decomposition and CoT):

Sub question 1: What is the most expensive charge amount?
Sub SQL 1: SELECT MAX(charge_amount) AS max_charge_amount FROM charges

Sub question 2: What is the charge type of the most expensive charge amount?
Sub SQL 2: SELECT charge_type FROM charges WHERE
charge_amount = (SELECT MAX(charge_amount) FROM charges)

Final SQL: SELECT charge_type FROM charges WHERE
charge_amount = (SELECT MAX(charge_amount) FROM charges) X

Figure 5: Simple question case.

framework not only develops an innovative ques-
tion classification and schema linking model but
also fully leverages the powerful semantic under-
standing capabilities of LLMs. Benefiting from the
proposed schema selector, QCMA-SQL excels in
handling questions of any difficulty level. More-
over, question classification has been proven to
enhance the execution accuracy of the Text-to-SQL
task. In summary, QCMA-SQL has achieved sig-
nificant performance improvements in evaluation
metrics and outperforms all comparative baselines.

7 Limitations

Due to the use of PLMs as encoders with limited
context windows, limitations may be faced in gen-
eralizing to larger scale databases. In addition,
there is room for improving the accuracy of vec-
tor database recall examples. Meanwhile, LLMs
are sensitive to the way it is prompted and further
exploration is needed to find the best strategy for
different use cases.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Shuaichen Chang and Eric Fosler-Lussier. 2023. How
to prompt llms for text-to-sql: A study in zero-
shot, single-domain, and cross-domain settings. In
NeurlPS 2023 Second Table Representation Learning
Workshop.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1-113.

Xiang Deng, Ahmed Hassan, Christopher Meek, Olek-
sandr Polozov, Huan Sun, and Matthew Richardson.
2021. Structure-grounded pretraining for text-to-sql.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1337-1350.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.
C3: Zero-shot text-to-sql with chatgpt. arXiv
preprint arXiv:2307.07306.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John R Woodward, Jinxia Xie, and Peng-
sheng Huang. 2021a. Towards robustness of text-to-
sql models against synonym substitution. In Proceed-
ings of the 59th Annual Meeting of the Association for

4347

Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2505-2515.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b.
Exploring underexplored limitations of cross-domain
text-to-sql generalization. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8926-8931.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models: A
benchmark evaluation. Proceedings of the VLDB
Endowment, 17(5):1132-1145.

Chunxi Guo, Zhiliang Tian, Jintao Tang, Shasha Li,
Zhihua Wen, Kaixuan Wang, and Ting Wang. 2023.
Retrieval-augmented gpt-3.5-based text-to-sql frame-
work with sample-aware prompting and dynamic re-
vision chain. In International Conference on Neural
Information Processing, pages 341-356. Springer.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen,
Junnan Dong, Feiran Huang, and Xiao Huang. 2024.
Next-generation database interfaces: A survey of llm-
based text-to-sql. arXiv preprint arXiv:2406.08426.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871-7880.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 13067-13075.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024. Codes: Towards
building open-source language models for text-to-sql.
Proceedings of the ACM on Management of Data,
2(3):1-28.

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo
Si, and Yongbin Li. 2023b. Graphix-t5: Mixing
pre-trained transformers with graph-aware layers for
text-to-sql parsing. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pages
13076-13084.

R Li, LB Allal, Y Zi, N Muennighoff, D Kocetkov,
C Mou, M Marone, C Akiki, J Li, J Chim, et al. 2023c.
Starcoder: May the source be with you! Transactions
on machine learning research.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S
Yu. 2023. A comprehensive evaluation of chat-
gpt’s zero-shot text-to-sql capability. arXiv preprint
arXiv:2303.13547.

Qingkai Min, Yuefeng Shi, and Yue Zhang. 2019. A
pilot study for chinese sql semantic parsing. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3652-3658.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction. Advances in Neural Infor-
mation Processing Systems, 36.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi
Zhang, and Zhouhan Lin. 2022. Rasat: Integrating
relational structures into pretrained seq2seq model
for text-to-sql. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 3215-3229.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of machine learning research,
21(140):1-67.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabil-
ities of large language models. arXiv preprint
arXiv:2204.00498.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895-9901.

Ruoxi Sun, Sercan O Arik, Hootan Nakhost, Hanjun
Dai, Rajarishi Sinha, Pengcheng Yin, and Tomas
Pfister. 2023. Sql-palm: Improved large language
modeladaptation for text-to-sql. arXiv preprint
arXiv:2306.00739.

Chang-Yu Tai, Ziru Chen, Tianshu Zhang, Xiang Deng,
and Huan Sun. 2023. Exploring chain of thought
style prompting for text-to-sql. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 5376-5393.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567-7578.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, LinZheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2025. MAC-
SQL: A multi-agent collaborative framework for text-
to-SQL. In Proceedings of the 31st International
Conference on Computational Linguistics, pages 540—
557, Abu Dhabi, UAE. Association for Computa-
tional Linguistics.

4348

https://aclanthology.org/2025.coling-main.36/
https://aclanthology.org/2025.coling-main.36/
https://aclanthology.org/2025.coling-main.36/

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang,
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun
Li. 2023. Mac-sql: Multi-agent collaboration for
text-to-sql. arXiv preprint arXiv:2312.11242.

Lihan Wang, Bowen Qin, Binyuan Hui, Bowen Li, Min
Yang, Bailin Wang, Binhua Li, Jian Sun, Fei Huang,
Luo Si, et al. 2022. Proton: Probing schema linking
information from pre-trained language models for
text-to-sql parsing. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 1889-1898.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

A Experimental results from other LL.Ms

In addition to deepseek-v3 , we evaluated the
QCMA-SQL framework on several LLMs. This
helps to reveal the extent of performance degra-
dation between LLMs with different capabilities.
Due to hardware constraints, we were not able
to deploy large open source LLM, so we called
some common LLM APIs. The experimental re-
sults are shown in Table 7, which shows that the
performance of the QCMA-SQL framework de-
pends on the capability of LLM. Among the several
LLMs on which the experiments were conducted,
moonshot-v1-32k has the worst performance, and
gpt-4-turbo has a slightly lower performance than
deepseek-v3.

Model EX
moonshot-v1-32k 80.6
gpt-3.5-turbo-0125 82.8
glm-4-air 83.5
glm-4-plus 84.2
glm-zero-preview 84.9
gpt-4-turbo 86.1
deepseek-v3 87.4

Table 7: Experimental results of QCMA-SQL frame-
work based on different LLMs on Spider.

B Ablation study with modules in the
schema selector

In QCMA-SQL, the schema selector plays a very
important role. In order to study the principles of
question classification and schema selection, our

study evaluates the contribution of Bi-LSTM and
multiple cross-attention in schema selector.

As shown in Table 8, among the four Bi-LSTMs,
D-Bi-LSTM contributes the most to question clas-
sification, T-Bi-LSTM contributes the most to ta-
ble classification, and C-Bi-LSTM contributes the
most to column classification. Among the 3 cross-
attention mechanisms, D_Q cross-attention has the
greatest impact on question classification and T_C
cross-attention mechanism has the greatest impact
on schema selection.

Method Table Column Difficulty
Schema Selector 0.9984 0.9973 0.9893
w/o D-Bi-LSTM 0.9938 0.9893 0.9674
w/o Q-Bi-LSTM 0.9906 0.9854 0.9722
w/o T-Bi-LSTM 0.9757 0.9796 0.9823
w/o C-Bi-LSTM 0.9851 0.9753 0.9785

w/o D_Q cross-attention 0.9860 0.9828 0.9616
w/o Q_T cross-attention 0.9784 0.9769 0.9734
w/o T_C cross-attention 0.9711 0.9725 0.9702

Table 8: Bi-LSTM and multiple cross-attention contri-
butions to question classification and schema selection

4349

