
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 4323–4339

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

TART : An Open-Source Tool-Augmented Framework for Explainable
Table-based Reasoning

Xinyuan Lu1 Liangming Pan2∗ Yubo Ma3 Preslav Nakov4 Min-Yen Kan1

1National University of Singapore 2University of Arizona
3Nanyang Technology University 4MBZUAI

luxinyuan@u.nus.edu liangmingpan@arizona.edu yubo001@e.ntu.edu.sg
preslav.nakov@mbzuai.ac.ae kanmy@comp.nus.edu.sg

Abstract

Current Large Language Models (LLMs) ex-
hibit limited ability to understand table struc-
tures and to apply precise numerical reasoning,
which is crucial for tasks such as table question
answering and table-based fact verification.
To address these challenges, we introduce our
Tool-Augmented Reasoning framework for Ta-
bles (TART), which integrates LLMs with spe-
cialized tools. TART contains three key compo-
nents: a table formatter to ensure accurate data
representation, a tool maker to develop specific
computational tools, and an explanation gener-
ator to maintain explainability. We also present
the TOOLTAB dataset, a new benchmark de-
signed specifically for training LLMs in table–
tool integration. Our experiments indicate
that TART achieves substantial improvements
over existing methods (e.g., Chain-of-Thought)
by improving both the precision of data pro-
cessing and the clarity of the reasoning pro-
cess. Notably, TART paired with CodeLlama
achieves 90.0% of the accuracy of the closed-
sourced LLM GPT-3.5-turbo, highlighting
its robustness in diverse real-world scenarios.
Both code and data are openly available at
https://github.com/XinyuanLu00/TART.

1 Introduction

Tabular data is prevalent across multiple fields
such as scientific research, financial reporting, and
healthcare records (Dong et al., 2022). Manual
handling of such data can be both routine and
error-prone, or may require specialized skills, high-
lighting the need for automated table reasoning to
improve efficiency (Badaro et al., 2023). Typical
table-based reasoning tasks include table question
answering (TQA), which extracts precise informa-
tion from tables to answer given queries (Chen
et al., 2020b; Zhu et al., 2021; Nan et al., 2022) and
table-based fact verification (TFV), which verifies
the correctness of statements by cross-referencing

∗Corresponding Author

Haley is at Ocean City at 9:45 A.M. Is it true that it

will take her 4 hours to get to the Surfing Beach?
Yes.

Haley is at Ocean City at 9:45 A.M.

(locate the first row)

The next boat Haley can take arrive at 10:00 A.M.

It takes her 4 hours to get to the Surfing Beach.

(1:45 P.M. – 9:45 A.M. = 4 hours)

Reasoning Plan

The time that she can get to the Surfing Beach is 1:45 P.M.

(locate the last column & last element)

Figure 1: Example of the TableQA task, demonstrating
the verification of travel time via boat schedule and the
critical skills needed for accurate table reasoning: table
structure understanding, precise numerical calculations,
and executing sequential reasoning steps.

them with facts stored in tables (Wang et al., 2021;
Lu et al., 2023c).

Modern large language models (LLMs) such as
GPT-4 (OpenAI, 2023) have shown remarkable
reasoning capabilities across a variety of tasks,
spurring interest in their application to table-based
tasks (Ye et al., 2023). However, table-based
reasoning presents unique challenges for LLMs,
which are primarily trained on sequential text
data (Zhang et al., 2024a), as illustrated by a real-
world example in Figure 1. (1) Understanding and
operating on table structure: LLMs must adapt
to the non-linear format of the tables, which de-
mands unique reasoning skills such as recognizing
headers, interpreting the roles of the rows and the
columns, and precisely extracting information from
relevant table cells. (2) Precise numerical reason-
ing: Tables often contain quantitative information
that requires precise calculations and comparisons.
LLMs must perform operations such as summa-
tion, averaging, or trend analysis accurately, often
over multiple cells or tables, which is a shift from
their usual text-based reasoning tasks (Herzig et al.,

4323

https://github.com/XinyuanLu00/TART

What is the median amount of snowfall over these five days?

TABLE FORMATTER

Day Snowfall (inches)

Wednesday 7

Thursday 5

Friday 9

Saturday 0

Sunday 1

Caption: Daily Snowfall

TOOL MAKER

To answer this question, first, we should get the column that has the snowfall in inches.

EXPLANATION GENERATOR

def get_column_by_name(table, column_name):
```
Retrieve the column values by column name
```
Parameters:
- table: input table_data
- column_name (string): the column name

Returns:
- column (list): the retrieved column values

def find_median(list):

Tools

col_name = 'Snowfall (inches)'

col_1 = get_column_by_name(col_name)

answer = find_median(col_1)

Reasoning Plan

col_name = 'Snowfall (inches)’ col_1 = get_column_by_name(col_name)

answer = find_median(col_1)Then, we need to find the median of the snowfall amounts.

Figure 2: An overall framework of TART, which contains three main modules: (i) table formatter, which prepares
and organizes the raw table data, (ii) tool maker, which creates specialized tools for precise table manipulation, and
(iii) explanation generator, which produces user-friendly explanations integrating the output of different tools.

2020; Liu et al., 2022). (3) Reasoning planning:
LLMs often need to plan several reasoning steps
ahead. This includes decomposing the original
question, determining relevant table parts, and an-
ticipating intermediate calculations or data transfor-
mations. All three challenges manifest in Figure 1.

Existing approaches that use LLMs for table-
based reasoning can be broadly classified into two
categories. One is chain-of-thought (CoT) rea-
soning (Wei et al., 2022), in which the model
is prompted to perform step-by-step reasoning
over the input table flattened as a textual se-
quence (Zhang et al., 2024a; Jin and Lu, 2023;
Chen, 2023; Ye et al., 2023). Despite its flexibil-
ity, CoT often lacks precision in tabular operations
and numerical reasoning, such as sorting, counting,
and filtering (Wu and Feng, 2024). The second ap-
proach, program-based reasoning (PoT) (Gao et al.,
2023; Chen et al., 2023) prompts the model to gen-
erate SQL or Python code to enable precise reason-
ing (Liu et al., 2024; Zhang et al., 2024b; Wang
et al., 2024b; Wu and Feng, 2024). However, this
method struggles with reasoning planning and its
reasoning is less understandable to humans (Zhang
et al., 2024b). Therefore, there is potential value in
integrating the advantages of program-based and
textual reasoning, to achieve both high precision
and explainability in table-based reasoning.

Inspired by the recent paradigm of tool-
augmented language models (Wang et al., 2024a;
Schick et al., 2023), we propose Tool-Augmented
Reasoning framework for Tables (TART), which

integrates external tool calling into the chain-of-
thought reasoning process, as shown in Figure 2.
Initially, TART processes the input table using a
specialized module table formatter to clean and
to format the raw table data, preparing it for the
subsequent table operations. Subsequently, the tool
maker calls specialized tools (Python functions)
for tabular manipulation and numerical reasoning
(e.g., adding columns, selecting rows, and group-
ing). Alongside these tools, TART also crafts a
reasoning plan that outlines the programmatic call-
ing sequence of the tools, specifying the neces-
sary arguments and the expected return values for
each call. Finally, following the structured rea-
soning plan, the explanation generator produces a
hybrid text-and-program output, integrating calls
to external tools into coherent, human-readable
chain-of-thought explanations. In doing so, TART
efficiently delegates table operations and precise
numerical calculations to generated tools while pre-
serving CoT’s planning ability and explainability.

To train the modules in TART, we further synthe-
size the TOOLTAB dataset by distilling knowledge
from a teacher LLM. We evaluate TART on nine
different table-based reasoning benchmarks. The
results highlight the effectiveness of integrating
task-specific tools for enhancing complex reason-
ing capabilities. Notably, TART consistently out-
performed the CoT baseline, achieving near-parity
with GPT-3.5-turbo on benchmarks, showcasing
its usefulness in real-world scenarios.

In summary, our contributions are threefold:

4324

• We propose TART, a novel framework that en-
hances table-based reasoning by integrating tools
into the reasoning process, which addresses the
limitations of current LLMs in handling table struc-
tures and executing precise calculations.
• We develop TOOLTAB, a comprehensive

benchmark specifically designed to train LLMs
on table-tool integration. It includes diverse real-
world tables, uniform format, and careful validation
to ensure high-quality training.
• Our experiments confirm that TART not only

improves the precision and the explainability of
table-based reasoning, but also generalizes effec-
tively to out-of-domain datasets.

2 Related Work

Table-based reasoning tasks involve interpreting
and manipulating data from structured tabular
sources to answer questions, verify facts, or gener-
ate summaries. Early approaches used executable
SQL or SPARQL to interact with tabular data (Yin
et al., 2016; Yu et al., 2018), or graph neural net-
works to better encode table structures (Zhong
et al., 2020; Yang et al., 2020). However, they
typically suffer from poor generalization capabili-
ties due to their reliance on specific table formats
and linguistic patterns.

Recent advances in large language models
(LLMs) have demonstrated significant potential
in this area. Pre-training strategies that align
LLMs with sentence-table pairs (Chen et al., 2020a;
Herzig et al., 2020; Zhou et al., 2022; Gu et al.,
2022; Ye et al., 2023; Glockner et al., 2024) have
improved table reasoning capabilities, while frame-
works like TAP4LLM (Sui et al., 2024b) optimizes
table representations through sampling, augmen-
tation, and serialization. Other works, such as
ReAcTable (Zhang et al., 2024b) and Chain-of-
Table (Wang et al., 2024b), have introduced hybrid
or explicit reasoning mechanisms to better integrate
tabular data into reasoning chains. These methods
primarily rely on textual reasoning strategies, such
as chain-of-thought, which often lack the precision
necessary for table manipulations and numerical
reasoning. Efforts have also been made to evalu-
ate and enhance LLM capabilities for table-related
tasks. Studies like Table Meets LLM (Sui et al.,
2024a) and Text2Analysis (He et al., 2024) intro-
duce benchmarks for tasks such as cell lookup,
row retrieval, and Python-based advanced data
analysis, emphasizing challenges in table serial-

ization and query understanding. Meanwhile, Tab-
ularNet (Du et al., 2021) proposes novel architec-
tures, combining graph-based and relational rep-
resentations to improve semantic understanding
of tabular data. However, these approaches typi-
cally focus on either enhancing representation or
evaluation rather than augmenting reasoning preci-
sion. In addition to general-purpose frameworks,
domain-specific solutions such as EHRAgent (Shi
et al., 2024) have been developed for multi-tabular
reasoning in specialized domains like electronic
health records (EHRs). While EHRAgent inte-
grates domain-specific metadata and debugging
strategies, its focus contrasts with TART, which
is designed as a domain-agnostic solution for ta-
ble reasoning across diverse contexts. Similarly,
API-Assisted Code Generation (Cao et al., 2023)
translates queries into Python programs leverag-
ing fixed APIs, differing from TART ’s dynamic
tool-augmented reasoning approach.

To address the limitations of prior work, TART
extends the use of LLMs with integrated external
tools, enabling precise table manipulations and nu-
merical reasoning while maintaining explainability.
By combining strategies such as table formatting
for better representation, tool-based function ex-
ecution for precision, and LLM-based reasoning
for interpretability, TART advances the state of
table-based reasoning tasks.

3 Methodology

Generally, a table-based reasoning model, fθ(·),
parameterized by θ, takes an input query Q and
a table T to produce a response Y = fθ(Q, T).
Based on this generic formulation, the nature of
Q and Y differs depending on the specific table
reasoning task:

in table-based QA, Q is a question and Y is
the answer; in table-based fact verification, Q is
a claim and Y is its veracity label. A table T
is characterized by a caption P and its contents
Ti,j | i ≤ RT , j ≤ CT , where RT and CT repre-
sent the numbers of rows and columns, respectively.
Each cell (i, j) contains data Ti,j .

To build an accurate and explainable table-
reasoning framework, our proposed TART inte-
grates the call to external tools into the chain-of-
thought reasoning process. TART consists of three
reasoning modules (Figure 2): 1⃝ Table Formatter;
2⃝ Tool Maker; 3⃝ Explanation Generator.

4325

1. Table Formatter. TART first transforms the
original table T with guidance from the query Q
into a formatted table T ′. The formatter optimizes
data formats, aligns columns, and adjusts data types
as needed for the query, producing a well-formatted
table that is used in subsequent reasoning.

2. Tool Maker. Given T ′ , the tool maker gen-
erates a set of candidate tools S useful for solving
Q. It also develops a reasoning plan R that details
the high-level reasoning which includes the tool
calling order, as well as the necessary arguments
and the expected return values for the tool calls.

3. Explanation Generator. Given the reason-
ing plan R as a programmatic guide for chain-of-
thought reasoning, the explanation generator is re-
sponsible for producing a user-friendly explanation
E that incorporates the use of the tools. The ex-
planation also concludes with the final answer A,
derived from the reasoning plan R’s execution.

3.1 Table Formatter
We first train a specialized open-sourced large lan-
guage model as the table formatter F , which trans-
forms the noisy raw input table T , into a more
structured and manageable format, T ′, to facilitate
subsequent reasoning: T ′ = F(T , Q) where the
output table T ′ is formatted according to three as-
pects. 1) Data Cleaning: the model formats the cell
values, such as removing currency symbols and tex-
tual footnotes to facilitate the execution of external
functions to perform table operations or numeri-
cal reasoning. 2) Data Standardization converts
different data representations into a uniform for-
mat;e.g., transforming the data from “MM/DD/YYYY”
to a consistent “YYYY-MM-DD” format across the
entire table. 3) Error Handling: the model also
fixes obvious errors or missing values in the table,
such as automatically inferring header names for
columns without the table headers.

We introduce the table formatter to ensure that
the data in the input table is uniform and optimized
for subsequent reasoning, especially to make it
more compatible with function execution. In prac-
tice, we transform the formatted table T ′ into a
Python array, facilitating easier interpretation and
processing by subsequent reasoning modules.

3.2 Tool Maker
Recent studies have shown that LLMs have the
capability of synthesizing relevant tools by un-
derstanding the problem context and creating so-

lutions based on the crafted tools (Schick et al.,
2023; Cai et al., 2024; Wang et al., 2024a). Mo-
tivated by this, we train another specialized LLM
M as a tool maker, which takes as input the re-
formatted table T ′ and the query Q to generate a
set of candidate tools S and develops a reasoning
plan R that details the high-level reasoning steps:
S,R = M(T ′, Q). The tool set S = {s1, · · · , sn}
consists of n specialized tools, where each tool
si is a Python function that performs table op-
erations (e.g., get_column_by_name), numerical
reasoning (e.g., average, argmax), or higher-level
functions (e.g., linear_regression). These auto-
mated tools are essential to handle reasoning tasks
that textual-based LLMs cannot address effectively.

Unlike previous work that manually defined a
small number (< 10) of hand-crafted tools (Lu
et al., 2023a; Pan et al., 2023) or retrieved tools
from a predefined set (Qin et al., 2024; Ma et al.,
2024), we choose to train a specialized tool maker
model that learns to generate tools dynamically,
based on the specifics of the table and the con-
text of the problem. This approach not only
preserves the model’s ability to “extract” previ-
ously encountered tools from its parametric mem-
ory, but also empowers the model to create novel
tools as needed for unique problems, as shown
in Section 5.2. While generating tools offer
greater flexibility, it is crucial to prevent the tool
maker from creating overly-specific tools (e.g.,
count_people_on_third_floor), as this would
hinder its ability to generalize to new problems.
To address this issue, we incorporate tool abstrac-
tion and tool deduplication steps when constructing
synthetic data for training the module (Section 3.4).

The model also constructs a high-level reason-
ing plan R = [r1, · · · , rN], which outlines how
tools should be applied. The reasoning plan is for-
mulated as a sequence of N function calls. Each
function call ri = (si, Ai, Vi) includes the function
si ∈ S , the argument Ai passed to the function, and
the variable Vi that stores the result of the function
call si(Ai).

This reasoning plan acts as a programmatic
blueprint, guiding the table-based reasoning pro-
cess. Both the tool set S and the reasoning plan
R are then provided to the explanation generator,
producing the final explainable reasoning output.

4326

3.3 Explanation Generator
While program-based reasoning plans are precise,
they are often difficult for non-expert users to un-
derstand. Moreover, certain types of reasoning,
such as commonsense or narrative-based reason-
ing, are better communicated in natural language.
To address this, TART incorporates a specialized
module called the explanation generator E , which
generates chain-of-thought natural language expla-
nations integrated with function calls, following
the steps outlined in the reasoning plan R: O =
E(S,R). The final output O of TART provides
detailed explanations for the function calls. For
example, the function call get_column_by_name
is explained as, “First, retrieve the column listing
snowfall in inches.” Additionally, the explanation
generator groups related function calls together to
create coherent and easy-to-follow explanations, as
illustrated in Figure 2.

3.4 Model Training
As no prior work adopts the tool-augmented LLM
framework for table reasoning, there does not exist
training data to train the modules Table Formatter,
Tool Maker and Explanation Generator (F , M,
and E) in TART. Previous studies have demon-
strated that smaller LLMs can learn from distilling
the generated outputs of larger teacher LLMs that
have better reasoning capabilities (West et al., 2022;
Wang et al., 2023; Kim et al., 2024). Following
this, we use a teacher LLM L to first synthesize
tool-integrated solution trajectories for a set of seed
table-based reasoning tasks. These high-quality so-
lution trajectories serve as the blueprint from which
we automatically extract and rearrange their com-
ponents to build training sets for F , M, and E .

Training Data Synthesis. For all modules, we
use GPT-4 as the teacher LLM L to generate train-
ing data. As shown in Table 5, we select five
diverse table reasoning datasets: two from TQA
and three from TFV, spanning general knowledge
(Wikipedia) as well as domains such as finance,
health, and scientific documents. These datasets
provide a broad range of reasoning types. We few-
shot prompt L to generate tool-integrated solutions
for training instances for each dataset. In each so-
lution, the model is prompted to clean the table,
invent tools, and propose a reasoning plan with ex-
planations. We provide our prompt in Appendix F.

After generating the solutions, we evaluate the fi-
nal answers against the ground truth, retaining only

the instances with correct answers. Subsequently,
we refine the solutions by removing overly specific
tools through tool abstraction and tool deduplica-
tion. Tool abstraction filters out tools that appear
only once, keeping those with broader applicabil-
ity. Tool deduplication consolidates similar tools
that perform the same function, but have differ-
ent names or implementations (e.g., add and sum).
As a result, we obtain 11,701, 9,916, and 9,916
training instances for the table formatter F , tool
maker M, and explanation generator E , We refer
to this training dataset as TOOLTAB, with detailed
statistics provided in Table 6.

Training Configurations. Instruction fine-
tuning (Mishra et al., 2022; Chung et al., 2024)
has emerged as a critical strategy that directs
LLMs to adhere to specified instructions, facil-
itating their reasoning capability across a wide
range of table-based tasks. Therefore, we use
open-source LLMs with instruction tuning as
the backbone models for the modules of TART,
specifically Llama-2-7b (Touvron et al., 2023),
Llama-3-8b, CodeLlama-7b (Rozière et al., 2023)
and Deepseek-Coder-7b-Instruct-V1.5 (Guo
et al., 2024). We fine-tune all TART modules
independently on their respective training datasets
from TOOLTAB, using the standard next-token
prediction objective.

4 Experiments

Datasets and Baselines. To evaluate TART, we
select two categories of benchmarks for table-based
reasoning. (1) Table question answering (TQA):
WikiTableQuestion (WTQ) (Pasupat and Liang,
2015) focuses on simple factoid questions. HiTab
(HIT) (Cheng et al., 2022), TabMWP (TMP) (Lu
et al., 2023b) and FinQA (FQA) (Chen et al., 2021)
datasets focus on numerical reasoning reasoning.
TAT-QA (TAT) (Zhu et al., 2021) and HybridQA
(HYQ) (Chen et al., 2020b) require joint reason-
ing over the table and the text for financial re-
ports and Wikipedia tables, respectively. (2) Table-
based fact verification (TFV): We select TabFact
(TAF) (Chen et al., 2020a), SCITAB (SCT) (Lu
et al., 2023c), and PubHealthTab (PHT) (Akhtar
et al., 2022) datasets, which focus on verifying facts
based on tables from Wikipedia, scientific articles,
and public health articles, respectively.

For baseline comparisons, we select well-
known table-based open-source LLMs such as
TableLlama (Zhang et al., 2024a) , as well as

4327

TableFV TableQA
Model Setting TabFact PubHT SCITAB TabMWP FinQA Avg. Acc.

I. TableLlama w/o Fine-tuning 72.3 72.5 67.4 46.8 3.2 52.4
w/ DirectQA 72.9 70.5 74.2 48.4 3.7 54.0

II.

Llama2-7b
w/ DirectQA 64.4 81.2 64.0 55.3 6.4 54.3
w/ CoT 52.6 55.0 42.7 74.5 4.2 45.8
w/ TART 69.2 55.0 53.4 88.8 19.2 57.1 (+24.7%)

Llama3-8b
w/ DirectQA 74.5 85.9 82.0 68.6 10.6 64.3
w/ CoT 48.4 62.4 41.0 88.3 8.5 49.7
w/ TART 69.7 68.5 47.2 92.6 27.1 61.0 (+22.7%)

CodeLlama-7b
w/ DirectQA 65.4 75.8 64.6 44.7 4.3 51.0
w/ CoT 45.2 51.7 38.8 70.7 2.7 41.8
w/ TART 66.5 69.8 44.9 90.1 25.0 59.3 (+41.9%)

DeepSeek-7b
w/ DirectQA 72.9 76.5 73.0 62.2 9.0 58.7
w/ CoT 52.1 62.4 45.5 84.6 8.5 50.6
w/ TART 71.3 69.1 47.8 93.1 30.9 62.4 (+23.3%)

III.
GPT-3.5-turbo w/ TART 78.7 63.6 59.3 88.3 56.4 69.3
GPT-4 w/ TART 87.7 84.1 63.6 98.3 68.5 80.4

Table 1: Performance evaluation across backbone models using the TART framework, highlighting the best (bold)
and second-best (underlined) results. The accuracy is calculated on testing sets, with overall average accuracy in the
last column (Avg. Acc.). The red numbers indicate the average increase percentage over the CoT methods.

text-pretrained models (Llama2-7b, Llama3-8b)
and code-pretrained models (CodeLlama-7b,
DeepSeek-Coder-7b). We choose the 7b and the
8b versions to represent a balance between com-
putational efficiency and the capacity for complex
reasoning and generalization. For each model, we
fine-tune with two settings: (1) DirectQA, where
models generate answers directly from questions
and tables, and (2) Chain-of-Thought (CoT)
reasoning, which requires models to formulate a
step-by-step reasoning process before concluding
with an answer.

Implementation. For TART, we use the answer
given by executing the reasoning plan; if the reason-
ing plan is not executable, we use the answer given
by CoT. For each model, we train the model with
TOOLTAB while leaving the rest (WTQ, HIT, TAT,
and HYQ) as held-out unseen datasets. All experi-
ments were conducted on a GPU server with Intel
Xeon Platinum 8480C (224) @ 2.900GHz CPU and
8 NVIDIA H100 (80G) GPUs. The training pro-
cess for Llama-2-7b-hf, CodeLlama-7b-hf, and
deepseek-coder-7b-instruct-v1.5 requires a
single GPU for approximately 20 hours, using a
batch size of 4, learning rate of 5e-5, sequence
length of 1500, gradient accumulation steps of 2,
and 10 training epochs. Training Llama-3-8b re-
quired up to two GPUs for around 20 hours with
the same settings. To minimize randomness, a tem-
perature of 0.0 was used, while all other hyperpa-

rameters for sampling the output from the LLMs
remained at their default values. For the closed-
source version of TART, we use GPT-3.5-turbo
and GPT-4 with two in-context examples.

4.1 Main Results

We first evaluate TART and the baselines on in-
domain datasets, where their training sets are used
to construct TOOLTAB. The experimental results,
as shown in Table 1, reveal a notable performance
improvement in our model compared to baseline
models. We have four major observations.

1. TART consistently outperforms CoT across
all four backbone models and datasets. For exam-
ple, with CodeLlama-7b as the backbone model,
TART outperforms DirectQA and CoT by 16.3%
and 41.9% on average, respectively. This highlights
the effectiveness of integrating task-specific tools
in enhancing complex reasoning capabilities.

2. With CodeLlama-7b as the backbone model
of TART, it achieves the highest accuracy increase
of 41.9%., whereas Llama3-8b shows the least im-
provement of 22.7%. This discrepancy is likely be-
cause of CodeLlama-7b’s specialized pre-training
in coding tasks, which enhances the capabilities of
creating tools for structured queries and operations.

3. The performance gains of TART also vary
for different datasets, with FinQA showing the high-
est increase, while PubHealthTab shows the least.
This discrepancy suggests that the financial focus

4328

Model TAF PHT SCT TMP FQA Avg. Acc.

Llama2 69.2 55.0 53.4 88.8 19.2 57.1
- TabFT 67.7 39.1 50.4 67.8 17.2 48.4 (-15.2%)
Llama3 69.7 68.5 47.2 92.6 27.1 61.0
- TabFT 69.2 58.9 46.3 65.4 13.8 50.7 (-16.9%)

CodeLlama 66.5 69.8 44.9 90.1 25.0 59.3
- TabFT 66.6 64.9 36.6 69.1 20.2 51.5 (-13.2%)

DeepSeek 71.3 69.1 47.8 93.1 30.9 62.4
- TabFT 58.0 58.8 45.0 71.3 16.7 50.0 (-19.9%)

Table 2: The ablation study of Table Formatter (- TabFT)
in TART with different backbone models. The red
numbers indicate the average accuracy (Avg. Acc.) drop
percentage without Table Formatter for each model.

of the FinQA dataset, which demands extensive nu-
merical reasoning and structured data manipulation,
benefits significantly from the TART approach.

4. Using closed-source models (GPT-3.5-turbo
and GPT-4) as the backbone models for TART
achieves an average accuracy of 74.9, signif-
icantly outperforming the open-source counter-
parts, which average at 60.0 accuracy. Nonethe-
less, the highest-performing open-source model,
DeepSeek-7b, reaches up to 90.0% of GPT-3.5-
turbo’s performance and 77.6% of GPT-4, illustrat-
ing the competitiveness of open-source models in
the creation and use of tools despite the apparent
model size gap.

4.2 Ablation Study

Ablation of the Table Formatter. We conduct
ablation experiments across all backbone models
(Table 2). TART without the Table Formatter led
to significant and uniform performance drops of
over 10%. This clearly demonstrates the effective-
ness of the Table Formatter module in improving
reasoning capabilities by ensuring consistent table
representations.

Ablation of the Tool Maker. In this ablation,
the framework directly generates programs instead
of creating modular tools (Figure 3a). While
this approach achieves functionality, it impacts
both performance and explanability. These tools
(e.g., get_column_by_name) can be used repeat-
edly comparing to the tools that are overly specific
(e.g.,calculate_cookie_difference).

Ablation of the Explanation Generator. The
Explanation Generator module does not directly
impact the final performance in terms of accuracy,
but enhances the explanability of the outputs. For
example, in Figure 3(b), TART’s final answer pro-

Tab Formt TAF PHT SCT TMP FQA

Llama2 71.8/78.5 75.8/66.4 64.0/57.0 93.6/92.0 73.4/37.7
Llama3 76.6/84.7 79.2/67.8 62.4/55.9 94.1/94.4 71.8/40.0

CodeLlama 67.6/78.0 81.2/66.1 64.6/53.9 94.1/91.5 76.1/35.7
DeepSeek 70.7/79.7 72.5/71.3 63.5/51.3 95.7/93.9 74.5/38.6

Tool Mkr TAF PHT SCT TMP FQA

Llama2 70.2/81.8 65.8/60.2 53.9/61.5 95.7/91.1 61.7/31.0
Llama3 75.5/75.4 71.1/69.8 63.5/52.2 97.9/92.4 62.2/38.5

CodeLlama 75.5/85.2 74.5/71.2 62.9/57.1 95.7/91.7 68.1/39.8
Deepseek 76.6/84.7 79.2/67.8 62.4/55.9 94.1/94.4 71.8/40.0

Table 3: Results of TART with different backbone mod-
ules. The top half uses deepseek-code-7b as the Tool
Maker, while the bottom half uses Llama3-8b as the
Table Formatter. The best performance is highlighted
in bold and the second-best is underlined. Tab Formt is
Table Formatter and Tool Mkr is Tool Maker.

vides more human-readble explanations, compar-
ing to the program.

4.3 Impact of Foundation Models

To explore the optimal module combinations within
the TART framework, we explore various pairings
of table formatter and toolmaker modules shown
in Table 3. We find that using Llama3-8b as the
table formatter and DeepSeek-7b as the tool maker
achieves the best average execution rate (76.8) and
accuracy (68.6). This aligns with our expectations
given that Llama3-8b excels in processing long
tables while DeepSeek-7b, with its pre-training
on code, demonstrates superior capability in tool
creation (c.f. Table 7 in Appendix B).

5 Discussion

To further explore the usefulness of TART, we fo-
cus on the following research questions: 1) What
is the performance of TART on out-of-domain
(OOD) datasets? (Section 5.1); 2) How does TART
create and utilize tools? (Section 5.2); and 3)
What is the quality of the explanations generated
by TART in actual user cases? (Section 5.3).

5.1 Out-of-Domain Results

We hypothesize that the TART has enhanced gen-
eralization capabilities compared to CoT due to
its ability to create and use general tools. To
validate this, we further evaluate TART across
four different OOD datasets: HiTab (HIT),
WikiTableQuestion (WTQ), TAT-QA (TAT), and
HybridQA (HYQ). The results are shown in Table 4.

The TART method demonstrates variable ef-
fectiveness, with notable improvements in certain
contexts. For instance, it achieves an average ac-

4329

Question: Hannah baked cookies each day for a bake sale. How many more cookies did Hannah bake on Saturday than on Sunday?
Pure Program

TART's tool-augmented Program

TART's tool-augmented Program

TART’s final answer

(a) Ablation Study Example of TART’s Tool Maker (b) Ablation Study Example of TART’s Explanation Generator

Figure 3: Ablation Study of TART’s Tool Maker and Explanation Generator. Panel (a) compares the pure program
with TART’s tool-augmented program, highlighting the effectiveness of Tool Maker. Panel (b) compares TART’s
tool-augmented program with TART’s final answer, demonstrating the usefulness of Explanation Generator.

5 10 15 2020
0

5

10

15

2020

25

Tools (Rank)

Pe
rc

en
ta

ge

TART-Llama2-7b
TART-Llama3-8b

TART-Codellama-7b
TART-Deepseek-7b

70.9%

21.8%

7.3%

Table and Data Processing
Numerical and Statistics
Logical and Comparative Tools

Rank Tool Name

1 get_column_by_name
2 get_column_cell_value
3 get_row_index_by_value
4 extract_price
5 get_row_by_name
6 equal_to
7 get_column_by_index
8 subtract
9 divide
10 add

Figure 4: Analysis of tool usage in the TART frame-
work. Th left and center panels show the distribution
and the categories of the top 20 most-used tools across
models. The right shows the top-10 tools in TART
CodeLlama-7b.

curacy increase of 29.3% on the WTQ dataset, in-
dicating robust domain-transfer capabilities. The
Deepseek-7b backbone model excels, with 30.6%
increase in accuracy. We hypothesize that this supe-
riority stems from its pre-training on coding tasks,
which equips it with the capability of effectively
creating and using tools in novel domains, sur-
passing pure-text-based pretraining models such
as Llama2-7b. The analysis in Section 5.2 sup-
ports our hypothesis, suggesting that TART excels
in developing generic table reasoning functions that
generalize well across various domains.

5.2 Analysis of Tool Creation
We then performed an in-depth analysis of how
TART creates and utilizes tools.

5.2.1 Tool Distribution.
Figure 4 (top-left) illustrates the tool usage distri-
bution across different backbone models in TART,
highlighting a long-tail distribution. The most fre-
quently used tools are primarily associated with
table processing (e.g., get_column_by_name) and
numerical reasoning (e.g., add), aligning with our
observations in Section 4.1. Figure 4 (middle) pro-

TQA Hybrid TQA
Model Setting HIT WTQ TAT HYQ

Llama2-7b
w/ DirectQA 19.1 23.4 15.4 8.5
w/ CoT 22.1 12.7 20.0 6.7
w/ TART 19.2 17.0 17.0 6.4

Llama3-8b
w/ DirectQA 51.1 38.8 20.2 10.1
w/ CoT 33.8 26.8 29.3 11.0
w/ TART 34.6 32.5 29.3 12.2

CodeLlama-7b
w/ DirectQA 17.0 19.1 13.8 6.9
w/ CoT 16.1 22.6 14.6 9.7
w/ TART 22.3 30.3 13.8 9.0

Deepseek-7b
w/ DirectQA 27.1 26.2 19.7 11.2
w/ CoT 20.5 26.2 15.3 8.1
w/ TART 29.8 33.5 17.0 11.2

Table 4: Out-of-Domain evaluation results for TART
framework, highlighting the best (bold) and the second-
best (underlined) results.

vides a detailed breakdown of tool categories for
the top 30 tools, showing that table preprocess-
ing and numerical reasoning tools are the most
prevalent. This supports the consistency of tool
utilization patterns within TART.

5.2.2 Tool Overlap on OOD Datasets.
Figure 6 illustrates the tool overlap between in-
domain datasets and OOD datasets. We find
that code pre-training models (CodeLlama-7b and
DeepSeek-7b) exhibit a tendency to reuse exist-
ing tools when adapting to OOD data. However,
text pre-training models demonstrate less overlap,
indicating that they tend to solve problems by craft-
ing new tools. The tendency to reuse tools might
explain why code pre-training models gain better
generalization capabilities in unfamiliar data.

5.2.3 Tool Creation and Usage Analysis.
Figure 7 further reveals that although Llama2-7b
frequently reuses tools, it often applies them inap-

4330

column_name = 'Number of cookies'

Question: Hannah baked cookies each day for a bake sale. How many
more cookies did Hannah bake on Saturday than on Sunday?
GT Answer: 18
Chain-of-Thought (CoT):
Find the numbers in the table. Saturday: 281, Sunday: 263
Now subtract: 281 - 263 = 17 18
Hannah baked 17 more cookies on Saturday. Therefore, the answer is 17.
Output Answer: 17

table_data = [['Day', 'Number of cookies'], ['Friday', 163], ['Saturday', 281], ['Sunday', 263]]

Next, we need to find the specific days Hannah baked cookies: Saturday and Sunday. We do
this by searching for the row that matches each day's name.

column_ 1 = get_column_by_name(table_data, column_name)

Then, we get the number of cookies baked on each of these days.
index_1 = get_row_index_by_value(table_data, 'Saturday') index_2 = get_row_index_by_value(table_data, 'Sunday')

Finally, we subtract the number of cookies baked on Sunday from the number baked on
Saturday to find out how many more cookies were baked on Saturday.

cookies_1 = get_column_cell_value(index_1, column_1) cookies_2 = get_column_cell_value(index_2, column_1)

First, we should get the column that has the number of cookies baked each day.

 TART:

answer = subtract(cookies_1, cookies_2)Output Answer: 18

Question: How much money does Sidney need to buy a piece of mint chocolate and
7 peanut butter cups?
GT Answer: 1.47
Chain-of-Thought (CoT):
Find the cost of 7 peanut butter cups $0.10 * 7 = $0.70. Now find the total cost.
$0.14 + $0.70 = $0.84. Sidney needs $0.84. Therefore, the answer is 0.84.
Output Answer: 0.84

table_data = [['peanut butter cup', '$0.19'], ['gummy bear', '$0.10'], ['piece of mint chocolate', '$0.14'], ['piece of licorice', '$0.19'], ['piece of gum', '$0.13']]

Next, we need to find the specific items Sidney wants to buy: a piece of mint chocolate and 7 peanut butter cups. We do
this by searching for the row that matches each item's name.

Then, we extract the price information for each, removing the dollar sign to convert them into a numeric format suitable
for calculation.

index_1 = get_row_index_by_value(table_data, 'piece of mint chocolate') index_2 = get_row_index_by_value(table_data, 'peanut butter cup')

Finally, with the prices of both items now in numeric format, we multiply the price of the piece of mint chocolate
by 7 to find the total cost for 7 pieces.

price_1 = extract_price(get_column_cell_value(index_1, column_1)) price_2 = extract_price(get_column_cell_value(index_2, column_1))

First, we should focus on identifying the prices of items from the table by collecting all the values from the second
column, which contains the price information.

 TART:

Output Answer: 1.47

0.19

column_index = 1 column_1 = get_column_by_index(table_data, column_index)

total_mint_chocolate = multiply(price_1, 7)
Then, we multiply the price of the peanut butter cup by 1 to find the total cost for 1 piece. total_peanut_butter = multiply(price_2, 1)

Finally, with the total costs of both items now calculated, we add them together to find the total amount of money
Sidney needs. answer = add(total_mint_chocolate, total_peanut_butter)

(a) Case of numerical calculation error in CoT reasoning. (b) Case of table location error in CoT reasoning.

Figure 5: Case Study of TART comparing with CoT reasoning. Panel (a) illustrates a numerical calculation error in
CoT where incorrect arithmetic leads to a wrong answer, and panel (b) demonstrates a table location error where
CoT fails to retrieve the correct table values. Both errors can be reduced by TART through tool integration.

Codellama-7b Deepseek-7b Llama3-8b Llama2-7b
0

20

40

60

80

100

120

C
ou

nt
s

Overlapping Tools Distinct Overlapping Tools

Figure 6: Tool overlap distribution between in-domain
and OOD datasets across different backbone models.

Llama2-7b Llama3-8b CodeLlama-7b DeepSeek-7b

1,600

1,800

2,000

2,200

Backbone Models

N
o.

of
R

ep
ea

tT
oo

ls

800

850

900

950

1,000

N
o.

of
C

or
re

ct
To

ol
s

Figure 7: Comparison of the number of repeat tools and
correct tools across different backbone models.

propriately. In contrast, CodeLlama-7b not only
exhibits a high rate of tool reuse but also demon-
strates a greater accuracy in their appropriate appli-
cation. Meanwhile, Llama3-8b, despite its lower
rate of tool reuse, excels in the correct usage of
tools, contributing to its superior performance.

5.3 Case Study

To gain deeper insights into the advantages of
TART over CoT reasoning, we conducted a case
study, shown in Figure 5. The examples high-
light the limitation of CoT in numerical reasoning
and table preprocessing, such as incorrect calcu-
lation in Figure 5(a) and incorrect retrieval inFig-
ure 5(b). Conversely, TART overcomes these chal-
lenges effectively via integrating specialized tools
like subtract and get_column_by_index. De-

spite these strengths, TART still encounters issues
related to data type mismatches and incorrect pro-
gramming plans. A detailed analysis of error types
in TART can be found in Appendix E.

6 Conclusion

We introduce an open-source framework to im-
prove table-based reasoning through the Tool-
Augmented Reasoning framework for Tables
(TART). This framework solves the challenges
of current LLMs’ limited ability to understand ta-
ble structure and execute precise numerical cal-
culations, and maintains explainability. TART
consists of a table formatter for accurate data
representation, a tool maker for creating special-
ized tools, and an explanation generator maintain-
ing interpretable explanations. To train TART,
we present the TOOLTAB dataset, a novel bench-
mark containing a diverse set of real-world tables
and their tool-augmented solutions. Experiments
across nine benchmarks show that integrating our
TART method into different open-sourced LLMs
enhances accuracy on table-based reasoning. Fur-
thermore, in-depth analyses reveal that TART ef-
fectively learns and uses tools. Future work could
extend TART to a multimodal framework by incor-
porating image-based question-answering and fact-
verification to generate richer explanations. Ad-
ditionally, generating explanations to satisfy the
needs of different end users, such as laypersons
and experts, could further improve the TART’s
applicability and impact.

Limitations

Despite the promising results, our proposed frame-
work has certain limitations that warrant further

4331

investigation:

Computational Complexity. The TART model
may affect efficacy, especially when handling sim-
ple questions in quick-response scenarios.

Dataset Coverage. While our efforts have fo-
cused on expanding the range of our dataset to
include a variety of tableQA datasets, some table-
related datasets remain unrepresented in TOOLTAB.
As a result, despite TART’s capacity to adapt to
different OOD datasets and tasks, its performance
might still different with the complexities and
unique challenges of new table tasks and datasets
that it has not yet encountered. Having initiated
the development of an expansive, versatile tool-
enhanced model for tables, we encourage for con-
tinued research in this area to further advance the
model’s ability to generalize across diverse table
configurations.

Ethics Statement

Transparency and Integrity. We ensure that all
methodologies, data sources, and technologies used
in this study are disclosed transparently. We aim
to provide a comprehensive and honest account of
our findings, acknowledging both the capabilities
and limitations of our proposed solution.

Data Privacy and Security. Our research uti-
lizes datasets that are either publicly available or
collected with explicit consent. We adhere to strict
data privacy and security protocols to protect the
information and ensure it is used solely for the
purposes of this research.

Acknowledgements

This research is supported by the Ministry of Ed-
ucation, Singapore, under its MOE AcRF TIER 3
Grant (MOE-MOET32022-0001). The computa-
tional work for this article was partially performed
on resources of the National Supercomputing Cen-
tre, Singapore (https://www.nscc.sg).

References
Mubashara Akhtar, Oana Cocarascu, and Elena Simperl.

2022. PubHealthTab: A public health table-based
dataset for evidence-based fact checking. In Find-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT), pages 1–16.

Gilbert Badaro, Mohammed Saeed, and Paolo Papotti.
2023. Transformers for tabular data representation:
A survey of models and applications. Transactions
of Association Computational Linguistics (TACL),
11:227–249.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2024. Large language models
as tool makers. In Proceedings of The 12th Inter-
national Conference on Learning Representations
(ICLR).

Yihan Cao, Shuyi Chen, Ryan Liu, Zhiruo Wang, and
Daniel Fried. 2023. Api-assisted code generation
for question answering on varied table structures. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing (EMNLP)
2023, pages 14536–14548.

Wenhu Chen. 2023. Large language models are few(1)-
shot table reasoners. In Findings of the 17th Con-
ference of the European Chapter of the Association
for Computational Linguistics (EACL), pages 1090–
1100.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research (TMLR), 2023.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020a. Tabfact: A large-scale
dataset for table-based fact verification. In Proceed-
ings of the 8th International Conference on Learning
Representations (ICLR).

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Yang Wang. 2020b. Hy-
bridqa: A dataset of multi-hop question answering
over tabular and textual data. In Findings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1026–1036.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan R. Routledge,
and William Yang Wang. 2021. Finqa: A dataset of
numerical reasoning over financial data. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
3697–3711.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia,
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and
Dongmei Zhang. 2022. Hitab: A hierarchical table
dataset for question answering and natural language
generation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 1094–1110.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac

4332

https://www.nscc.sg
https://doi.org/10.18653/v1/2022.findings-naacl.1
https://doi.org/10.18653/v1/2022.findings-naacl.1
https://doi.org/10.1162/TACL_A_00544
https://doi.org/10.1162/TACL_A_00544
https://openreview.net/forum?id=qV83K9d5WB
https://openreview.net/forum?id=qV83K9d5WB
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.897
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.897
https://doi.org/10.18653/v1/2023.findings-eacl.83
https://doi.org/10.18653/v1/2023.findings-eacl.83
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=rkeJRhNYDH
https://openreview.net/forum?id=rkeJRhNYDH
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78

Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex
Castro-Ros, Marie Pellat, Kevin Robinson, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Yu,
Vincent Y. Zhao, Yanping Huang, Andrew M. Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2024. Scaling instruction-finetuned
language models. Journal of Machine Learning Re-
search (JMLR), 25:70:1–70:53.

Haoyu Dong, Zhoujun Cheng, Xinyi He, Mengyu Zhou,
Anda Zhou, Fan Zhou, Ao Liu, Shi Han, and Dong-
mei Zhang. 2022. Table pre-training: A survey
on model architectures, pre-training objectives, and
downstream tasks. In Proceedings of the 31st Inter-
national Joint Conference on Artificial Intelligence
(IJCAI), pages 5426–5435.

Lun Du, Fei Gao, Xu Chen, Ran Jia, Junshan Wang,
Jiang Zhang, Shi Han, and Dongmei Zhang. 2021.
Tabularnet: A neural network architecture for un-
derstanding semantic structures of tabular data. In
Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD),
pages 322–331.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: program-aided language
models. In Proceedings of the International Con-
ference on Machine Learning (ICML), volume 202,
pages 10764–10799.

Max Glockner, Yufang Hou, Preslav Nakov, and Iryna
Gurevych. 2024. Grounding fallacies misrepre-
senting scientific publications in evidence. CoRR,
abs/2408.12812.

Zihui Gu, Ju Fan, Nan Tang, Preslav Nakov, Xiao-
man Zhao, and Xiaoyong Du. 2022. PASTA: table-
operations aware fact verification via sentence-table
cloze pre-training. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4971–4983.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. CoRR, abs/2401.14196.

Xinyi He, Mengyu Zhou, Xinrun Xu, Xiaojun Ma,
Rui Ding, Lun Du, Yan Gao, Ran Jia, Xu Chen,
Shi Han, Zejian Yuan, and Dongmei Zhang. 2024.
Text2analysis: A benchmark of table question an-
swering with advanced data analysis and unclear
queries. In Proceedings of the 38th AAAI Confer-
ence on Artificial Intelligence (AAAI), pages 18206–
18215.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. Tapas: Weakly supervised table parsing
via pre-training. In Proceedings of the 58th Annual

Meeting of the Association for Computational Lin-
guistics (ACL), pages 4320–4333.

Ziqi Jin and Wei Lu. 2023. Tab-cot: Zero-shot tabular
chain of thought. In Findings of the Association
for Computational Linguistics (ACL), pages 10259–
10277.

Joongwon Kim, Bhargavi Paranjape, Tushar Khot, and
Hannaneh Hajishirzi. 2024. Husky: A unified,
open-source language agent for multi-step reason-
ing. CoRR, abs/2406.06469.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022.
TAPEX: table pre-training via learning a neural SQL
executor. In Proceedings of the 10th International
Conference on Learning Representations (ICLR).

Tianyang Liu, Fei Wang, and Muhao Chen. 2024. Re-
thinking tabular data understanding with large lan-
guage models. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT), pages 450–482.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023a. Chameleon: Plug-and-play
compositional reasoning with large language models.
In Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS).

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2023b. Dynamic prompt learn-
ing via policy gradient for semi-structured mathe-
matical reasoning. In Proceedings of the 11th In-
ternational Conference on Learning Representations
(ICLR).

Xinyuan Lu, Liangming Pan, Qian Liu, Preslav Nakov,
and Min-Yen Kan. 2023c. SCITAB: A challenging
benchmark for compositional reasoning and claim
verification on scientific tables. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7787–7813.

Yubo Ma, Zhibin Gou, Junheng Hao, Ruochen Xu,
Shuohang Wang, Liangming Pan, Yujiu Yang, Yixin
Cao, and Aixin Sun. 2024. Sciagent: Tool-
augmented language models for scientific reasoning.
In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 15701–15736.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
3470–3487.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victo-
ria Lin, Neha Verma, Rui Zhang, Wojciech Kryscin-
ski, Hailey Schoelkopf, Riley Kong, Xiangru Tang,

4333

https://jmlr.org/papers/v25/23-0870.html
https://jmlr.org/papers/v25/23-0870.html
https://doi.org/10.24963/IJCAI.2022/761
https://doi.org/10.24963/IJCAI.2022/761
https://doi.org/10.24963/IJCAI.2022/761
https://doi.org/10.1145/3447548.3467228
https://doi.org/10.1145/3447548.3467228
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://doi.org/10.48550/arXiv.2408.12812
https://doi.org/10.48550/arXiv.2408.12812
https://aclanthology.org/2022.emnlp-main.331
https://aclanthology.org/2022.emnlp-main.331
https://aclanthology.org/2022.emnlp-main.331
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.1609/AAAI.V38I16.29779
https://doi.org/10.1609/AAAI.V38I16.29779
https://doi.org/10.1609/AAAI.V38I16.29779
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.651
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.651
https://doi.org/10.48550/arXiv.2406.06469
https://doi.org/10.48550/arXiv.2406.06469
https://doi.org/10.48550/arXiv.2406.06469
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://doi.org/10.18653/V1/2024.NAACL-LONG.26
https://doi.org/10.18653/V1/2024.NAACL-LONG.26
https://doi.org/10.18653/V1/2024.NAACL-LONG.26
http://papers.nips.cc/paper_files/paper/2023/hash/871ed095b734818cfba48db6aeb25a62-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/871ed095b734818cfba48db6aeb25a62-Abstract-Conference.html
https://openreview.net/pdf?id=DHyHRBwJUTN
https://openreview.net/pdf?id=DHyHRBwJUTN
https://openreview.net/pdf?id=DHyHRBwJUTN
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.483
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.483
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.483
https://aclanthology.org/2024.emnlp-main.880
https://aclanthology.org/2024.emnlp-main.880
https://doi.org/10.18653/V1/2022.ACL-LONG.244
https://doi.org/10.18653/V1/2022.ACL-LONG.244

Mutethia Mutuma, Ben Rosand, Isabel Trindade,
Renusree Bandaru, Jacob Cunningham, Caiming
Xiong, and Dragomir R. Radev. 2022. Fetaqa: Free-
form table question answering. Transactions of the
Association for Computational Linguistics (TACL),
10:35–49.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Liangming Pan, Xiaobao Wu, Xinyuan Lu, Anh Tuan
Luu, William Yang Wang, Min-Yen Kan, and Preslav
Nakov. 2023. Fact-checking complex claims with
program-guided reasoning. In Proceedings of the
61st Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 6981–7004.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing of the Asian Federation of Natural Lan-
guage Processing (ACL-IJCNLP), pages 1470–1480.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2024. Toolllm: Fa-
cilitating large language models to master 16000+
real-world apis. In The 12th International Confer-
ence on Learning Representations (ICLR).

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems (NeurIPS).

Wenqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Jieyu
Zhang, Hang Wu, Yuanda Zhu, Joyce C. Ho, Carl
Yang, and May Dongmei Wang. 2024. Ehragent:
Code empowers large language models for few-
shot complex tabular reasoning on electronic health
records. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
(EMNLP), pages 22315–22339.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024a. Table meets LLM: can large
language models understand structured table data?

A benchmark and empirical study. In Proceedings
of the 17th ACM International Conference on Web
Search and Data Mining (WSDM), pages 645–654.

Yuan Sui, Jiaru Zou, Mengyu Zhou, Xinyi He, Lun Du,
Shi Han, and Dongmei Zhang. 2024b. TAP4LLM:
table provider on sampling, augmenting, and pack-
ing semi-structured data for large language model
reasoning. In Findings of the Association for Compu-
tational Linguistics (EMNLP), pages 10306–10323.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Nancy Xin Ru Wang, Diwakar Mahajan, Marina
Danilevsky, and Sara Rosenthal. 2021. Semeval-2021
task 9: Fact verification and evidence finding for tabu-
lar data in scientific documents (SEM-TAB-FACTS).
In Proceedings of the 15th International Workshop on
Semantic Evaluation, SemEval@ACL/IJCNLP 2021,
pages 317–326.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (ACL), pages 13484–
13508.

Zhiruo Wang, Zhoujun Cheng, Hao Zhu, Daniel Fried,
and Graham Neubig. 2024a. What are tools any-
way? A survey from the language model perspective.
CoRR, abs/2403.15452.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024b. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
In Proceedings of The 12th International Conference
on Learning Representations (ICLR).

4334

https://doi.org/10.1162/tacl_a_00446
https://doi.org/10.1162/tacl_a_00446
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/V1/2023.ACL-LONG.386
https://doi.org/10.18653/V1/2023.ACL-LONG.386
https://doi.org/10.3115/v1/p15-1142
https://doi.org/10.3115/v1/p15-1142
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://doi.org/10.48550/ARXIV.2308.12950
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
https://aclanthology.org/2024.emnlp-main.1245
https://aclanthology.org/2024.emnlp-main.1245
https://aclanthology.org/2024.emnlp-main.1245
https://aclanthology.org/2024.emnlp-main.1245
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://aclanthology.org/2024.findings-emnlp.603
https://aclanthology.org/2024.findings-emnlp.603
https://aclanthology.org/2024.findings-emnlp.603
https://aclanthology.org/2024.findings-emnlp.603
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.48550/ARXIV.2403.15452
https://doi.org/10.48550/ARXIV.2403.15452
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/forum?id=4L0xnS4GQM

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS).

Peter West, Chandra Bhagavatula, Jack Hessel, Jena D.
Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu,
Sean Welleck, and Yejin Choi. 2022. Symbolic
knowledge distillation: from general language mod-
els to commonsense models. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL), pages 4602–
4625.

Zirui Wu and Yansong Feng. 2024. Protrix: Building
models for planning and reasoning over tables with
sentence context. In Findings of the Association for
Computational Linguistics (EMNLP), pages 4378–
4406.

Xiaoyu Yang, Feng Nie, Yufei Feng, Quan Liu, Zhigang
Chen, and Xiaodan Zhu. 2020. Program enhanced
fact verification with verbalization and graph atten-
tion network. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 7810–7825.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. In
Proceedings of the 46th International ACM Confer-
ence on Research and Development in Information
Retrieval (SIGIR), pages 174–184.

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao.
2016. Neural enquirer: Learning to query tables in
natural language. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 2308–2314.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3911–3921.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun.
2024a. Tablellama: Towards open large general-
ist models for tables. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pages 6024–
6044.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M. Patel. 2024b.
Reactable: Enhancing react for table question answer-
ing. Proceedings of VLDB Endowment, 17(8):1981–
1994.

Wanjun Zhong, Duyu Tang, Zhangyin Feng, Nan Duan,
Ming Zhou, Ming Gong, Linjun Shou, Daxin Jiang,
Jiahai Wang, and Jian Yin. 2020. Logicalfactchecker:
Leveraging logical operations for fact checking with
graph module network. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 6053–6065.

Yuxuan Zhou, Xien Liu, Kaiyin Zhou, and Ji Wu. 2022.
Table-based fact verification with self-adaptive mix-
ture of experts. In Findings of the 60th Associa-
tion for Computational Linguistics (ACL), pages 139–
149.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual content
in finance. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguis-
tics and the 11th International Joint Conference on
Natural Language Processing (ACL-IJCNLP), pages
3277–3287.

4335

http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.naacl-main.341
https://doi.org/10.18653/v1/2022.naacl-main.341
https://doi.org/10.18653/v1/2022.naacl-main.341
https://aclanthology.org/2024.findings-emnlp.253
https://aclanthology.org/2024.findings-emnlp.253
https://aclanthology.org/2024.findings-emnlp.253
https://aclanthology.org/2020.emnlp-main.628
https://aclanthology.org/2020.emnlp-main.628
https://aclanthology.org/2020.emnlp-main.628
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
http://www.ijcai.org/Abstract/16/329
http://www.ijcai.org/Abstract/16/329
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://doi.org/10.18653/V1/2024.NAACL-LONG.335
https://doi.org/10.18653/V1/2024.NAACL-LONG.335
https://doi.org/10.14778/3659437.3659452
https://doi.org/10.14778/3659437.3659452
https://doi.org/10.18653/v1/2020.acl-main.539
https://doi.org/10.18653/v1/2020.acl-main.539
https://doi.org/10.18653/v1/2020.acl-main.539
https://doi.org/10.18653/v1/2022.findings-acl.13
https://doi.org/10.18653/v1/2022.findings-acl.13
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254

A Dataset Composition for TART
Training

In Table 5, we show the composition of the seed
datasets utilized for training our TART model.
These datasets vary in terms of the tasks, the do-
mains, and the types of input and output data. For
instance, TabMWP and FinQA focus on TableQA
tasks within mathematics and finance domains re-
spectively, requiring a combination of tables, text,
and questions as inputs, with short answers as out-
puts. Meanwhile, PubHealthTab, TabFact, and SC-
ITAB target table fact-checking tasks across health,
general Wikipedia, and scientific article domains.
These datasets similarly involve tables and claims
as inputs but differ in the specifics of the domain-
related claims, each producing a short label as an
output.

Dataset Task Domain Input Output

1. TabMWP TableQA Maths Table, Question Answer (Short)
2. FinQA TableQA Finance Table, Text, Question Answer (Short)

3. PubHealthTab Table Fact Checking Health Table, Claim Label (Short)
4. TabFact Table Fact Checking Wikipedia Table, Claim Label (Short)
5. SCITAB Table Fact Checking Scientific Articles Table, Claim Label (Short)

Table 5: Statistics of the seed datasets for TART train-
ing, highlighting their respective tasks, domains, and
the nature of input and output data.

To construct the TOOLTAB, we obtain 11,701,
9,916, and 9,916 training instances for the table
formatter F , tool maker M, and explanation gen-
erator E , respectively. The detailed statistics is
provided in Table 6.

Dataset Train Dev Generated Executable Table Tool Explanation
Sample Sample Formatter Maker Generator

TabMWP 23,059 7,686 6,000 5,835 6,000 5,713 5,713
FinQA 6,251 883 1,984 1,609 1,967 1,148 1,148
TabFact 92,283 12,792 1,866 1,773 1,866 1,701 1,705

PubHealthTab 1,180 152 1,180 1,075 1,180 958 958
SciTab 690 - 690 625 688 396 396
Total 123,463 21,513 5,720 10,917 11,701 9,916 9,916

Table 6: Statistics in dataset TOOLTAB for training
TART model.

B Different Backbone Combinations

In the pursuit of identifying optimal module com-
binations within the TART framework, we ex-
plore various pairings of table formatter and tool-
maker modules shown in Table 7. The combi-
nation of Llama3-8b as the table formatter and
DeepSeek-7b as the tool maker performs the most
effective pairing, having the best average execu-
tion rate and accuracy (76.8 and 68.6 respectively).
This best combination aligns with our expectations

given that Llama3-8b excels in processing long ta-
bles while DeepSeek-7b, with its pre-training on
code, demonstrates superior capability in tool cre-
ation.

C Tool Use on Different Backbone Models

Table 8 show the top 10 tools dominate the table
processing (e.g., get_column_by_name) and nu-
merical reasoning (e.g., add), consistent with our
earlier findings in Section 4.1. Further illustrating
this, Figure 4 (b) presents a tool categorization for
the top 30 functions. Table preprocessing tools con-
stitute the highest percentage at 71.0%, followed
by numerical reasoning tools at 21.8%. Together,
these categories account for over 90% of tool us-
age, verifying our assumption that TART is better
at table preprocessing and numerical reasoning.

D CoT Baseline Implementation

For a direct and fair comparison with TART,
the same number of CoT samples are generated
using the same IDs from the TART training
dataset. These samples are generated using GPT-4,
prompted with two in-context examples (detailed
in Appendix F). In total, we obtain 9,916 training
instances.

Similar to TART, the CoT baseline was im-
plemented across four different backbone models:
Llama-2-7b-hf, Llama3-8b, CodeLlama-7b-hf,
and DeepSeek-Coder-7b-Instruct-V1.5. Each
model was instructed to generate a step-by-step
reasoning explanation followed by the final answer
as per the instructions: INSTRUCTION: Given the
following table, and question, generate
a step-by-step reasoning explanation and
the final answer.

The training process was aligned with
that of TART to ensure experimental consis-
tency. Llama-2-7b-hf, CodeLlama-7b-hf,
and deepseek-coder-7b-instruct-v1.5 each
requires a single GPU for approximately 12 hours,
using a batch size of 4, a learning rate of 5e-5, a
sequence length of 1500, gradient accumulation
steps of 2, and 10 training epochs. Training
Llama3-8b requires up to 2 GPUs for around 10
hours with the same settings.

4336

Module Name TableFV TableQA Avg.
Table Formatter Tool Maker TabFact PubHealthTab SCITAB TabMWP FinQA Exe./Acc.

Llama2 Llama2 64.9/79.5 65.8/59.2 55.1/60.2 90.4/91.8 65.4/26.0 68.3/63.3
Llama2 Llama3 70.7/75.9 73.2/65.1 64.0/46.5 91.0/93.6 60.6/37.7 71.9/63.8
Llama2 CodeLlama 70.2/76.5 73.8/74.5 64.6/56.5 94.7/88.8 71.8/34.1 75.0/66.1
Llama2 Deepseek 71.8/78.5 75.8/66.4 64.0/57.0 93.6/92.0 73.4/37.7 75.7/66.3
Llama3 Llama2 70.2/81.8 65.8/60.2 53.9/61.5 95.7/91.1 61.7/31.0 69.5/65.1
Llama3 Llama3 75.5/75.4 71.1/69.8 63.5/52.2 97.9/92.4 62.2/38.5 74.0/65.7
Llama3 CodeLlama 75.5/85.2 74.5/71.2 62.9/57.1 95.7/91.7 68.1/39.8 75.3/69.0
Llama3 Deepseek 76.6/84.7 79.2/67.8 62.4/55.9 94.1/94.4 71.8/40.0 76.8/68.6

CodeLlama Llama2 64.9/76.2 69.1/59.2 53.4/58.9 94.1/89.3 66.0/26.6 69.5/62.0
CodeLlama Llama3 66.5/71.2 75.2/69.6 62.4/57.7 94.1/91.0 60.1/36.3 71.2/65.2
CodeLlama CodeLlama 64.9/75.4 77.9/75.0 68.5/50.8 95.2/92.2 71.3/34.3 75.6/65.5
CodeLlama DeepSeek 67.6/78.0 81.2/66.1 64.6/53.9 94.1/91.5 76.1/35.7 76.7/65.0
DeepSeek Llama2 63.3/79.8 67.1/60.0 50.0/56.2 94.7/92.1 63.3/32.8 67.7/64.2
DeepSeek Llama3 66.5/80.8 65.1/69.1 63.5/54.0 94.1/93.2 59.6/42.9 69.8/68.0
DeepSeek CodeLlama 67.0/80.2 71.1/70.8 58.4/52.9 96.8/90.1 69.7/36.6 72.6/66.1
DeepSeek DeepSeek 70.7/79.7 72.5/71.3 63.5/51.3 95.7/93.9 74.5/38.6 75.4/67.0

Table 7: The TART framework with different backbone modules,highlighting the best (bold) and the second-best
(underlined) results.

Rank Llama2 Llama3 DeepSeek

1 get_column_by_name get_column_by_name get_column_by_name
2 get_column_cell_value get_column_cell_value get_column_cell_value
3 get_row_index_by_value get_row_index_by_value get_row_index_by_value
4 extract_price extract_price extract_price
5 equal_to equal_to get_row_by_name
6 get_column_by_index get_row_by_name equal_to
7 subtract get_column_by_index divide
8 get_row_by_name divide get_column_by_index
9 add subtract subtract
10 multiply add add

Table 8: The top 10 functions across TART Llama2-7b,
TART Llama3-8b, and TART DeepSeek-7b.

50.0%

30.8%

19.2%

numerical reasoning table operation
wrong reasoning

Error Type in CoT

57.1%
21.4%

21.4%

Data type mismatch Tool calling
Wrong reasoning plan

Errors in TART

Figure 8: The error types and their distributions of CoT
method and our TART framework.

E Error Analysis

To precisely categorize error types in CoT reason-
ing and TART, we annotate 50 randomly selected
error cases for each method. The results (Figure 8)
shows that the major error type is incorrect numer-
ical reasoning, followed by errors related to table
operations. This analysis verifies the necessity for
our proposed TART, which addresses these issues
by integrating specialized numerical and table op-
eration tools.

F Prompts

We provide detailed prompts of the TART frame-
work, including the tool discovery process and ex-
planation generation process.

4337

Tool Discovery Prompt:
Task Description: Given a table
and a question,
the task is to generate a python
program to
answer the question.
Requirements:
1. First define some functions
to be used in the program.
2. Try to reuse the functions
defined in the previous problems
if possible.
3. When defining a new function,
make sure this function is
general enough to be used in
other problems.
4. Define a function called
solution(table_data) that takes
the table data as input and
returns the answer to the
question.
——
”’
Table: Table Content
Question: Question

Answer: Answer
”’
table_data = table data array

#FUNCTION1 Description
def FUNCTION1():
Function Body

#FUNCTION2 Description
def FUNCTION2():
Function Body
...

def solution(table_data):
Solution Body
return answer

print(solution(table_data))
——
[[FUNCTION_SOLUTION]]

Explanation Generation Prompt:
Task: Transform Python code
used for a table question
answering task into an easily
understandable explanation in
natural language embedded with
function calls.
Follow these requirements:
1. The explanation should be the
natural language combined with
bracketed segments «< »> for
code.
2. The code segments in the
brackets «< »> should indicate
the line number of the code, with
the format: ###<line number>.
3. Multiple lines of codes are
separated with ’;;;’ in the
brackets «< »>.
——
”’
Table: Table Content
Question: Question

Answer: Answer
”’
Python Code:
table_data = table data array

def solution(table_data):
Line 1 ###1
Line 2 ###2
...
Line 5 ###5
return answer

print(solution(table_data))

Output Explanation:
First, we should get the column

that ... «<###1 ;;; ###2»>.
...
Finally, we find that «<###5»>.
——
[[OUTPUT_EXPLANATION]]

4338

CoT Prompt:
Task Description: Given a table
and a question, the task is
to generate a step-by-step
reasoning explanation and the
final answer.
——
“‘
Table: Table Content
Question: Question

Answer: Answer
“‘
Python Code:
table_data = table data array

Output Explanation:
To answer this question, first, we ...

Second, to determine..., we compare ...
...

Therefore, the answer is ...
——
[[OUTPUT_EXPLANATION]]

TART (GPT-4) Prompt for Table
Formatter:
Task Description: Given the
following table, context and
question, format the table into
a python array.
——
“‘
Table: Table Content
Question: Question

Answer: Answer
“‘
Python Code:
table_data = table data array

——
[[LINEARIZED_TABLE]]

TART (GPT-4) Prompt for Tool
Maker:
Task Description: Given the
following table, context and
question, the table_data,
generate the python code to
solve it.
——
“‘
Table: Table Content
Question: Question

Answer: Answer
table_data = table data array
“‘

Python Code:
#FUNCTION1 Description
def FUNCTION1():
Function Body

#FUNCTION2 Description
def FUNCTION2():
Function Body
...

def solution(table_data):
Solution Body
return answer

print(solution(table_data))
——
[[FUNCTION_SOLUTION]]

4339

