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Abstract

Humans attempt to understand the real world by
asking the fundamental question “Why?” when
faced with incomprehensible situations in ev-
eryday life. Such why-questions provide essen-
tial knowledge that can help in understanding
these situations. In this study, we conducted
an end-to-end process to verify the utility of
consecutive why-questions, from constructing
a large language model (LLM)-based dataset
to performing quantitative evaluation and anal-
ysis. Firstly, we created a WHY-Chain dataset,
consisting of answers generated by an LLM in
response to chain-of-why-questions, including
a validity check. We also incorporated objec-
tives that effectively capture the “consecutive”
characteristic of the data. Using the WHY-Chain
dataset and two types of self-supervised ob-
jectives, we trained the pre-trained model. As
a result, the refined model demonstrated im-
proved performance on downstream tasks that
require commonsense reasoning. Additionally,
we conducted various ablation studies to as-
sess the impact of different factors, confirm-
ing the scalability of the proposed approach.
Lastly, we confirmed the consistency of the
logical information by reasoning chain anal-
ysis of the answers generated from consecu-
tive why-questions. Our code is available at
https://github.com/GeonYeongSon/FCC.

1 Introduction

Some problems we encounter daily are difficult
to understand or solve using existing frameworks
or knowledge (Joo et al., 2020). To better under-
stand and address these issues, we often ask a
fundamental and universal question: “Why?” (Joo
et al., 2022). This is part of a process to explore
the essence of a problem (Karyawati et al., 2015;
Scrivner, 2022), and it helps satisfy our curios-
ity about new information (Litman and Jimerson,
2004; Friston et al., 2017; Barbieri et al., 2024).

*Corresponding Author

Figure 1: The example of chain-of-why-questions

Furthermore, when the simple why-question is re-
peated multiple times, the process of finding an-
swers can expand our knowledge base, leading
to more complex and comprehensive solutions.
This process moves beyond surface-level expla-
nations gained from a single why-question and
helps solve problems by integrating external knowl-
edge (McAuliffe et al., 2006; Gillham, 2017). For
example, this situation often occurs when talking
with children. As shown in Figure 1, when chil-
dren are given a statement, they can gain more
informative answers by asking consecutive why-
questions. Previous studies have also shown that
external knowledge can aid in solving problems.
For instance, the TellMeWhy (Lal et al., 2021) task
involves inferring the causes of events in narra-
tives to provide answers (Kayesh et al., 2019; Lal
et al., 2022a,b), or using external commonsense
knowledge generated by models like COMET (Bosse-
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Figure 2: Overall proposed framework. We constructed the WHY-Chain dataset based on the answers generated
through chain-of-why-questions for a generic statement. Furthermore, we refined the pre-trained model through
transfer learning using two types of self-supervised objectives.

lut et al., 2019a) to improve answering perfor-
mance (Kayesh et al., 2019; Lal et al., 2022b). How-
ever, these studies have limitations as they rely only
on fragmented and surface-level knowledge.

2 Methodology

We aim to investigate the impact of using an-
swers generated from consecutive why-questions
on generic statements as an external knowledge to
enhance performance on downstream tasks that re-
quire commonsense reasoning ability. To this end,
the overall framework proposed in this paper is
illustrated in Figure 2.

This study proposes a new framework that lever-
ages a large language model (LLM) based on the
idea that humans use consecutive why-questions to
utilize broad knowledge effectively when solving
problems. We aim to investigate whether extract-
ing increasingly deeper and broader information
through consecutive why-questions can enhance
the performance of language models. To do this,
we carried out an end-to-end process, including
dataset creation, model design, quantitative evalu-
ation, and analysis. First, using an LLM, we con-
structed a dataset by generating answers to chain-
of-why-questions for general statements. Then, to
improve understanding of the answers to these why-
questions, we enhanced the language model’s per-
formance through two types of self-supervised ob-
jectives: span-level and sentence-level. Finally, we
fine-tuned the pre-trained language model (e.g., T5)
using consecutive why-questions for downstream
tasks that require commonsense reasoning. To ver-
ify the model’s generality, we conducted various
ablation studies to assess the impact of our pro-
posed objectives, model size, training order of the
two objectives, number of why-questions, and the
impact of the answers generated from the consecu-
tive why-questions. We also performed a reasoning
chain analysis using informativeness and correct-

ness scores throughout the inference process.
Overall, our main contributions of this paper are

as follows:

• To verify the positive impact of consecutive
why-questions on learning, we conducted a
novel end-to-end process from data construc-
tion to quantitative evaluation and analysis.

• We incorporated various sentence-level objec-
tives suitable for the “consecutive” character-
istic of the dataset and confirmed significant
performance improvements in the model.

• We conducted various ablation studies for scal-
ability and generality analysis and performed
reasoning chain analysis to evaluate connec-
tions, thereby validating the effectiveness of
our approach.

First, we construct a dataset called WHY-Chain
through consecutive why-questions using an LLM.
Then, to effectively learn the deep information in
the answers to consecutive why-questions, we de-
sign a learning strategy that enhances reasoning
capabilities using two types of self-supervised ob-
jectives: span-level and sentence-level. In this sec-
tion, we detail each component of the framework.

2.1 WHY-Chain Dataset
2.1.1 Data Generation
We constructed a dataset based on answers
generated through chain-of-why-questions start-
ing from a generic statement. Sentences from
the GenericsKB-simplewiki1 (Bhakthavatsalam
et al., 2020) dataset were used as the starting point
for the initial why-question. This dataset consists of
high-quality sentences commonly used in everyday
life, forming a knowledge base. Using a prompt
like the one shown in Figure 3, we used an LLM to

1https://huggingface.co/datasets/generics_kb
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Pair Premise-Hypothesis Entailment↑ Hallucination↓
Entity-error Relation-error Unverifiability

gen.-all(answers) gen.-c(answers) 0.896(0.159) 1.079(0.403) 1.145(0.594) 1.100(0.557)

consecutive pair
gen.-answer1 0.811(0.206) 1.032(0.238) 1.072(0.459) 1.043(0.379)

answer1-answer2 0.880(0.181) 1.033(0.245) 1.059(0.371) 1.020(0.275)

answer2-answer3 0.897(0.173) 1.028(0.175) 1.050(0.306) 1.011(0.151)

Table 1: The average hallucination and entailment scores between generic statements and the answers to chain-of-
why-questions. The entailment score ranges from 0 to 1, with higher values indicating better performance, while the
hallucination score ranges from 1 to 10, with lower values being better. Parentheses indicate standard deviation.

generate answers to the why-question for a generic
statement. Then, we generated further data by re-
peatedly asking why-questions about the previously
generated answers. This process was repeated con-
secutively n times. In this study, we set n=3 for data
generation. We used the GPT-3.5-turbo model,
with user instructions provided through the prompt.
The hyperparameters were set to their default
values for both top-p and temperature, and the max-
imum output length was set to 64.

Figure 3: Instruction prompt to generate an answer to
the why-question. We utilize a pre-defined instruction
prompt to construct the WHY-Chain dataset, consisting
of consecutive why-questions and answers, using LLM

Repeated why-questions can sometimes exceed
the system’s knowledge or capabilities, making it
difficult to generate deep-level answers. This can
cause delays in answer generation, resulting in re-
sponses that are either not in the correct format
or are uninterpretable. Therefore, to ensure the
reliability of the dataset, we filtered out consec-
utive why-questions if answers were not generated
within a certain time threshold. In this study, we
empirically set this threshold to 20 seconds. The
statistical summary of the final WHY-Chain dataset,

generated through this preprocessing process, is
shown in Table 2.

Statistics Values

Min-Mean-Max value of lans 55-127-390

Min-Mean-Max value of N (tans) 13-20-56

Duplicated ratio of sentences 0.01%

Table 2: The statistical summary of all the answers gen-
erated during the chain-of-why-questions process. lans
indicates the length of the answer, N (tans) indicates the
number of tokens.

Through this process, we confirmed the length
and token count of responses to consecutive why-
questions, originated from a generic statement. Ad-
ditionally, we observed that the majority of the
answers were uniquely generated.

2.1.2 Data Validity Check
We conducted entailment verification and hallu-
cination evaluation for validity checks on the
WHY-Chain dataset.

Entailment Verification
For entailment verification, we used the
question as the premise and the answer
as the hypothesis and verified whether the
premise supports the hypothesis. We used the
nli-entailment-verfier-xxl2 (Sanyal et al.,
2024) model for this purpose, measuring an en-
tailment score between 0 and 1 for each pair. The
results are shown in Table 1. The gen.-all(answers)
pair consists of the initial generic statement and the
concatenated sentences of all the corresponding
why-answers. In contrast, the consecutive pair
consists of each generated answer paired with
the preceding sentence used to generate it. The
average entailment score across all pairs is above

2https://huggingface.co/soumyasanyal/nli-entailment-
verifier-xxl
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0.8, demonstrating that the dataset maintains a
high level of logical consistency. Furthermore,
Figures A1 and A2 illustrate the distribution of
entailment scores, indicating that scores below 0.5
account for 4.1% in the gen.-all(answers) pair and
less than 10% in the consecutive pair.

Hallucination Evaluation
Based on prompts as illustrated in Figure A3 (Lin
and Chen, 2023; Li et al., 2024), we measured
the hallucination score using the GPT-3.5-turbo
model on a scale of 1 to 10. As illustrated in Ta-
ble 1, we assessed three types of hallucinations in
the sentences generated by the LLM. First, entity-
error hallucinations arise when the generated text
includes incorrect entities, such as people, dates,
places, or objects, that conflict with known facts.
Second, relation-error hallucinations occur when
the text contains inaccurate quantitative or temporal
relationships. Lastly, unverifiability hallucinations
occur when the generated information cannot be
validated using available sources. The results indi-
cate that, for all pairs, the hallucination scores are
close to 1, demonstrating that the dataset’s pairs are
factual and consistent. Additionally, as shown in
Figures A4 and A5, the proportion of hallucination
scores above 5.5 across all relationships in the three
types of hallucinations is less than 0.2%. Further-
more, to verify the robustness of the data generation
method, we generated sentences using three types
of prompts with the latest LLM, GPT-4o-mini, and
external evaluation confirmed that there were no
hallucination issues in the generated data (see Ta-
ble A1).

2.2 Learning Strategy for
Chain-of-Why-Questions

After constructing the WHY-Chain dataset, we pro-
ceeded to train a pre-trained language model (e.g.,
T5) to enhance its reasoning capabilities using this
data. As part of our model learning strategy, we
employed two types of self-supervised objectives:
a span-level text-infilling objective and sentence-
level objectives. We aim to improve the pre-trained
language model through transfer learning for these
self-supervised objectives.

2.2.1 Span-Level Objective
Span-level text infilling is a traditional span cor-
ruption technique used in the pre-training of the T5
model. Unlike the BERT(Devlin et al., 2019)-style
masked language modeling objective, it replaces

spans with sentinel tokens such as <extra_id_0>
and <extra_id_1> for masking (see Figure 4).

Figure 4: Illustration of the span-level text infill-
ing objective. It involves masking parts of the in-
put text and instructing them to be predicted. In con-
trast to the WHY-Chain, when training the model with
GenericsKB-simplewiki, there is a key difference in
those responses generated through consecutive why-
questions (which contain more complex information)
are not incorporated as input text.

In this way, spans consisting of multiple to-
kens in the input text are masked with sentinel
tokens, and in the target text, the unmasked parts
of the input text are masked. The span-level text
infilling technique is essential for training to accu-
rately and effectively capture the answers, which
are progressively expanded through consecutive
why-questions. We first train the model using a tra-
ditional span corruption technique before training
sentence-level objectives that reflect the “consecu-
tive” characteristic.

2.2.2 Sentence-Level Objectives
The WHY-Chain dataset has a chain structure, so
we propose three sentence-level objectives that can
reflect the “consecutive” characteristic. We per-
formed transfer learning on the model trained with
span-level text infilling using these sentence-level
objectives. This section provides a detailed expla-
nation of the three sentence-level objectives.

Irrelevant Why-Answer Detection (IWD)
Irrelevant why-answer detection (IWD) is the
task of identifying answers that are not generated
through chain-of-why-questions starting from a
generic statement. As shown in Figure 5, two of
the three candidates are answers to the first and
second why-questions for the generic statement,
while the remaining one is the answer to the first
why-question of a different generic statement. This
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process enables the model to filter out information
that is difficult to derive from the original generic
statement, allowing it to select relevant information
at the sentence level.

Figure 5: IWD objective example. The task is to se-
lect the sentence least related to the statement from the
candidates.

Why-Answer Order Prediction (WOP)
Why-answer order prediction (WOP) is a task for
predicting the sequence of a series of answers gen-
erated through chain-of-why-questions from the
initial generic statement. The candidates in Fig-
ure 6 were created by randomly shuffling three
consecutive why-answers from the generic state-
ment. This helps the model develop the ability to
understand and infer causal or sequential relation-
ships between questions and answers. Additionally,
it enhances the model’s ability to maintain consis-
tency in long conversations and to understand the
overall context.

Figure 6: WOP objective example. It involves leading
to correctly reordering randomly shuffled sentences.

Reverse Relevant Statement Selection (RRSS)
Reverse Relevant Statement Selection (RRSS) is a
task that contrasts with the IWD objective, where,
given all the answers generated through the chain-
of-why-questions, the goal is to select the corre-
sponding generic statement. As shown in Figure 7,
the candidates consist of the correct generic state-
ment and a different one. This objective, which
involves reverse training by predicting the cause

from the result, can improve the model’s ability to
better understand the correlation between causes
and effects. It also enhances the model’s general-
ization ability and its capacity to comprehend the
multifaceted meaning of text.

Figure 7: RRSS objective example. The task is to iden-
tify the generic statement corresponding to the why-
answers.

2.3 Learning Through Combined Objectives

By utilizing the span-level text infilling objective
from Section 2.2.1 and the three objectives from
Section 2.2.2, the model can learn from detailed
span-level to comprehensive sentence-level. The
final loss used for training with sentence-level ob-
jectives is as follows:

Ltotal =
1

3
(LIWD + LWOP + LRRSS). (1)

This final objective function not only reflects the
characteristics of the span-level objective but also
enables the model to be trained in a way that in-
corporates the specific characteristics of the data
through three novel sentence-level objectives.

3 Experimental Setup

3.1 Data

The WHY-Chain dataset consists of [generic state-
ment, question, why-answer] pairs and contains
37,455 instances. The generic statement repre-
sents the initial generic sentence, the question de-
notes the answer to the preceding why-question,
and the why-answer denotes the answer gen-
erated through the current why-question. Addi-
tionally, we employed five commonsense rea-
soning datasets—COPA, CODAH, OBQA, CSQA, and
PIQA—along with the WHY-Chain dataset to ob-
serve the impact of commonsense on answering.
Detailed descriptions of each dataset are provided
in Appendix C.
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Method Dataset Accuracy (official dev)

COPA CODAH OBQA CSQA PIQA

T5-base(STI) GenericsKB-simplewiki 69.00 58.45 57.00 61.34 68.55

T5-base(STI) WHY-Chain(proposed) 69.80 60.41 59.80 61.75 69.63

T5-base(STI, total-loss) WHY-Chain(proposed) 73.40 62.23 61.80 63.14 71.27

Flan-T5-base(STI) GenericsKB-simplewiki 81.60 68.71 64.00 72.24 74.21

Flan-T5-base(STI) WHY-Chain(proposed) 81.80 69.24 64.40 73.05 74.48

Flan-T5-base(STI, total-loss) WHY-Chain(proposed) 82.40 69.42 65.20 73.14 74.81

UnifiedQA-v2-base(STI) GenericsKB-simplewiki 71.20 59.35 59.20 58.15 70.40

UnifiedQA-v2-base(STI) WHY-Chain(proposed) 71.80 59.53 59.40 59.13 70.43

UnifiedQA-v2-base(STI, total-loss) WHY-Chain(proposed) 72.60 60.61 60.20 59.71 70.48

Table 3: The performance of various refined pre-trained language models depends on using the dataset and objective
function. STI indicates the span-level text infilling objective, and total-loss indicates to the three sentence-level
objectives.

3.2 Pre-Trained Language Model

In our experiments, we aim to enhance the popu-
lar pre-trained model, T5 (Raffel et al., 2020), by
applying answers to the chain-of-why-questions.
To evaluate the generalization and versatility of
our proposed approach, we utilized five models as
pre-trained language models: T5-small, T5-base,
T5-large, UnifiedQA-v2-base (Khashabi et al.,
2022), and Flan-T5-base (Chung et al., 2022). A
detailed explanation of the models is provided in
Appendix B.1.

3.3 Training

We refined the pre-trained language model using
the WHY-Chain dataset. To train the model, we uti-
lized two types of self-supervised objectives to pro-
ceed with transfer learning. Our models were im-
plemented using pytorch (Paszke et al., 2019) and
huggingface’s pytorch transformers (Wolf et al.,
2020). Transfer learning and fine-tuning details are
included in the Appendix B.2.

4 Experimental Results

4.1 Commonsense Reasoning Results

We experimented with the refined pre-trained
model on the commonsense reasoning task us-
ing the WHY-Chain dataset, and the results are
presented in Table 3. As shown in Table 3,
the model pre-trained on the WHY-Chain dataset
and trained solely with the span-level text infill-
ing objective demonstrated improved common-
sense reasoning performance compared to the
model pre-trained exclusively on the GenericsKB

dataset, which consists of generic statements. This
emphasizes the contribution of the WHY-Chain
dataset to enhancing commonsense reasoning ca-
pabilities. Furthermore, the highest performance
was achieved when the model was trained with
three sentence-level objectives (total-loss) that
leverage the “consecutive” characteristic of the
WHY-Chain dataset. This demonstrates that train-
ing objectives effectively capturing the charac-
teristic of the WHY-Chain dataset lead to perfor-
mance improvements. Moreover, consistent per-
formance enhancements were observed across all
three models: T5-base, UnifiedQA-v2-base, and
Flan-T5-base. This demonstrates that the pro-
posed approach is both generalizable and versatile
across various models.

Method Accuracy (official dev)

COPA OBQA CSQA PIQA

KnowBERT 69.40 58.50 53.88 66.61

ERNIE-base 68.90 58.90 54.06 66.47

COMET 69.10 51.20 45.32 60.73

Ours(T5-base) 73.40 61.80 63.14 71.27

Ours(Flan-T5-base) 82.40 65.20 73.14 74.81

Ours(UnifiedQA-v2-base) 72.60 60.20 59.71 70.48

Table 4: Performance comparison with popular
knowledge-enhanced pre-trained models. Our models
are based on the WHY-Chain dataset and incorporate STI
and total-loss.

Next, we conducted comparative ex-
periments with three popular knowledge-
enhanced pre-trained models that utilize
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Method Dataset Accuracy (official dev)

COPA CODAH OBQA CSQA PIQA

T5-small(STI) GenericsKB-simplewiki 49.80 41.17 50.80 45.21 49.51

T5-small(STI) WHY-Chain 49.80 43.88 51.00 45.74 49.56

T5-small(STI, total-loss) WHY-Chain 50.60 46.94 51.20 45.95 50.65

T5-large(STI) GenericsKB-simplewiki 75.80 73.38 65.30 69.93 73.04

T5-large(STI) WHY-Chain 77.20 73.56 65.40 69.93 73.91

T5-large(STI, total-loss) WHY-Chain 77.80 65.60 67.80 70.59 75.22

Table 5: Performance of commonsense reasoning across model sizes. These results were obtained by training on
the WHY-Chain dataset with two types (span, sentence) of self-supervised objectives.

external knowledge: KnowBERT (Peters et al.,
2019), ERNIE-base (Zhang et al., 2019), and
COMET (Bosselut et al., 2019b). As shown in
Table 4, the performance of our proposed model is
superior. This demonstrates that the diverse and
complex information obtained through consecutive
why-questions has significantly improved the
model’s reasoning ability.

4.2 Ablation Study

Impact of Model Size

We examined the impact of model size, T5-small
and T5-large, on the proposed approach, and the
results are shown in Table 5. We observed perfor-
mance improvements across all datasets, regardless
of model size. This demonstrates the size-invariant
effectiveness of the proposed approach, highlight-
ing its general applicability.

Comparative Experiments with Retrieved Data

We extracted three statements similar to the generic
statement from the GenericsKB dataset to con-
struct a comparison dataset, Retrieval, and con-
ducted comparative experiments. The process of
constructing the Retrieval data is detailed in Ap-
pendix D. The results are shown in Table 6.

Dataset (Objectives) Accuracy (official dev)

COPA CODAH OBQA CSQA PIQA

Retrieval (STI) 69.20 60.20 57.40 61.02 68.99

Retrieval (proposed) 69.80 60.25 58.60 61.82 69.15

WHY-Chain (STI) 69.80 60.41 59.80 61.75 69.63

WHY-Chain (proposed) 73.40 62.23 61.80 63.14 71.27

Table 6: Performance comparison of the Retrieval
and WHY-Chain datasets, both starting from the same
simplewiki statements but differing in subsequent sen-
tences.

The experimental results demonstrate that the
WHY-Chain dataset has a significantly positive im-
pact compared to the dataset composed of similar
knowledge to the generic statement. Additionally,
it was found that the proposed objectives are par-
ticularly effective for training on the WHY-Chain
dataset.

Impact of Why-Question Count
We conducted a performance comparison based
on the number of consecutive why-questions. As
shown in Table 7, the best performance across
all commonsense reasoning datasets was achieved
when N=3. This suggests that with N=2, the model
does not fully capture the characteristics and rela-
tionships in the data. In contrast, with N=4, the in-
creased complexity of the proposed objective tasks
may introduce challenges that limit the model’s
learning.

N
Accuracy (official dev)

COPA CODAH OBQA CSQA PIQA

2 69.80 60.61 58.00 61.75 69.86

3 73.40 62.23 61.80 63.14 71.27

4 68.60 59.71 60.20 61.59 69.48

Table 7: Performance comparison based on the number
of why-questions. N is the number of consecutive ‘why-
questions.

Impact of Each Sentence-Level Objective
We evaluated the impact of the three sentence-level
objectives on the performance of downstream tasks,
as detailed in Table 8. This evaluation demonstrates
that each sentence-level objective enhances per-
formance, indicating that the additional learning
strategies are well-suited to the “consecutive” char-
acteristic of the tasks.
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Objectives Accuracy (official dev)

COPA CODAH OBQA CSQA PIQA

STI, total-loss 73.40 62.23 61.80 63.14 71.27

STI, w/o IWD 72.80 60.97 60.40 61.83 69.75

STI, w/o WOP 70.00 60.43 60.20 62.24 70.13

STI, w/o RRSS 71.80 60.97 61.20 62.57 70.89

Table 8: Model performance based on sentence-level
objectives. The pre-trained model utilized T5-base and
was trained on the WHY-Chain dataset.

Impact of Objective Order

We compared the performance based on the train-
ing order of two types of self-supervised objectives.
Table 9 shows better performance when transfer
learning is applied from the span-level objective to
the sentence-level objectives. This is likely because
the span-level text infilling objective follows the
traditional pre-training approach, while the three
sentence-level objectives are structurally more sim-
ilar to downstream tasks.

Objective Order Accuracy (official dev)

COPA CODAH OBQA CSQA PIQA

sentence->span 72.00 60.07 60.32 62.42 70.46

span->sentence 73.40 62.23 61.80 63.14 71.27

Table 9: Performance comparison based on the training
order of two types of self-supervised objectives using
T5-base.

5 Reasoning Chain Analysis

We performed a reasoning chain analysis on the
WHY-Chain dataset, examining the relationship be-
tween the generic statement and answers generated
through chain-of-why-questions using informative-
ness and correctness scores. We believe that chain-
of-why-questions and multi-step reasoning are sim-
ilar in deeply exploring information for better un-
derstanding and resolving situations (Prasad et al.,
2023). Therefore, we analyze these two scores to
evaluate the connection between the generic state-
ment and the answer to the current why-question.

5.1 Informativeness Score

The informativeness score indicates how well the
generated why-question answers help derive the
generic statement. This score is calculated for the
current answer using the overall flow from the

generic statement to the current why-question an-
swer, as shown in Equation 2.

Si =
1

N

N∑

k=1

(pinput(k)− pref (k)) , (2)

where pz = log σ(f(z)), for z = {input, ref},
input represents the concatenation of previous an-
swers, the current answer, the term “Therefore,”
and the target “generic statement”, and ref is ob-
tained by removing the current answer from input
and concatenating the remaining components. f
uses GPT-2-xl3 (Radford et al., 2019) model. k is
the index for each token in the label sequence, and
N is the number of tokenized labels in the target
sentence.

Figure 8: Average correctness and informativeness
scores. The graph represents a decrease as the turn pro-
gresses.

Figure 9: Distribution of Informativeness scores. Turn
indicates the ordinal number of the why-question. The
average score is approximately 0.5, indicating that the
answers generated through consecutive why-questions
are indirectly but coherently connected within the over-
all flow of the generic statement.

3https://huggingface.co/openai-community/gpt2-xl
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As illustrated in Figure 8, each turn exhibits a
sufficiently large positive value, indicating that the
current answer has enough informativeness to de-
rive the generic statement. Additionally, as shown
in Figure 9, the generated answers are indirectly
but coherently connected within the overall flow of
the generic statement.

5.2 Correctness Score

The correctness score evaluates the level of contra-
diction in the answer to the current why-question.
By comparing the current answer to the preced-
ing why-question answers and the target generic
statement, we can simultaneously assess both intra-
connection and inter-connection. For this purpose,
we used the exponential moving average (EMA)
score, a widely used technical analysis tool for
identifying tendencies. We were motivated by (Cai
et al., 2021; Morales-Brotons et al., 2024), where
the EMA score captures temporal dynamics, re-
duces fluctuations in data and weights, and en-
hances stability, ultimately leading to performance
improvements. Based on this, we adopted the EMA
score to ensure a stable evaluation while tracking
the logical consistency between responses and re-
flecting evolving patterns in conversations with
temporal flow. The correctness score based on the
EMA score, as shown in Equation 3.

St
c = wt(1−max

r∈R
{p(at, r)})+(1−wt)S

t−1
c , (3)

where St
c represents the correctness score of the

current turn t, and wt = 2/{len(A1:t−1) + 2} de-
notes the weight of the current turn where A1:t−1

is the set of all past turn answers. Adding 2 to
the denominator in wt ensures that the weight re-
mains below 1 even when there are no past turns.
at is the answer of the current turn, and R is
a set where each element of A1:t−1 is concate-
nated with a generic statement. Finally, p repre-
sents the probability distribution calcuated by the
DeBERTa-v3-large-mnli-fever-anli-ling-w
anli4 (Laurer et al., 2024) model. As shown in
Equation 3, using wt allows us to give greater im-
portance to recent data while still incorporating
information from all past periods. The results of
the correctness score are shown in Figure 8, where
the score tends to decrease over time. This suggests
that no contradictory sentences were generated dur-

4https://huggingface.co/MoritzLaurer/DeBERTa-v3-
large-mnli-fever-anli-ling-wanli

ing the answer generation process, indicating low
volatility and high stability in the data.

6 Conclusion

We constructed a WHY-Chain dataset by generat-
ing answers to chain-of-why-questions. Next, we
conducted a validity check on the dataset through
entailment verification and hallucination evalua-
tion. To refine the pre-trained language model, we
applied two types of self-supervised objectives that
capture the characteristics of the data. The exper-
imental results indicated that the refined model
achieved improved performance in commonsense
reasoning tasks, and various ablation studies con-
firmed the scalability of the approach. Furthermore,
using informativeness and correctness scores, rea-
soning chain analysis validated the positive con-
nections within the data. Our findings suggest that
consecutive why-questions effectively enhance the
model’s understanding by extracting deeper knowl-
edge from the statements. In future research, we
plan to expand the dataset by incorporating var-
ious question techniques that humans use to ac-
quire knowledge in the real world beyond just
Why-questions. Furthermore, we aim to design
multimodal datasets that include text and other el-
ements, such as images. Based on the enhanced
dataset, we seek to apply it broadly to various tasks.
For instance, we plan to extend its application to
fact-checking tasks, which focus on precisely iden-
tifying the essence of claims and providing reli-
able verification results. Additionally, we intend to
explore Retrieval-Augmented Generation (RAG)
tasks, which effectively analyze the implicit infor-
mation within queries to understand the core issue
better and generate high-quality responses tailored
to users’ inquiries.

Limitations

Pre-training LLMs requires increasingly signifi-
cant time and computational resources as the vol-
ume of generated data expands. In this paper, GPT-
3.5-turbo was utilized to generate answers to why-
questions. However, the computational cost may
vary depending on the model used. For instance,
employing a higher-performance model such as
GPT-4o (Achiam et al., 2023) may incur additional
API or GPU computation costs.
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A WHY-Chain Dataset

A.1 Entailment Verification Visualization
Figures A1 and A2 show the distribution of en-
tailment scores, indicating that the proportion of
scores below 0.5 is 4.1% for the gen.-all(answers)
pair and less than 10% for the consecutive pair.

Figure A1: Distribution of entailment scores for generic
statement and all answer pairs. The proportion of entail-
ment scores below 0.5 is 4.1%.

Figure A2: Distribution of entailment scores for each
consecutive pair. All three types of relationships main-
tain a low proportion of entailment scores below 0.5,
with the proportion staying under 10%.

A.2 The Average of Hallucination Scores
We externally evaluated hallucinations using sen-
tences generated through three distinct prompt-
ing strategies. The first approach employed the
G-Eval(Liu et al., 2023) method, leveraging its
evaluation steps for the prompting strategy. The
second approach adopted the Let’s think step
by step(Yang et al., 2024) prompting strategy. The
third approach utilized the Take a deep breath
and work on this problem step-by-step (Ko-
jima et al., 2022) prompting strategy.

A.3 Hallucination Evaluation Visualization
For hallucination evaluation using LLM, we devel-
oped instruction prompts based on finely catego-
rized types of hallucinations, following the method-
ologies described in (Lin and Chen, 2023; Li et al.,

2024). Additionally, as shown in Figures A4 and
A5, the proportion of hallucination scores above
5 is below 0.4% for all pairs, indicating very low
hallucination rates.

Figure A3: An instruction prompt for generating halluci-
nation scores between question and answer pairs using
the LLM.

B Training

B.1 Pre-trained Language Models

We experiment with T5-small, which consists of
60 million parameters, 6 layers, a 512 hidden state
size, 2048 feed-forward hidden state size, and 8
attention heads; T5-base, consisting of 220 mil-
lion parameters, 12 layers, a 768 hidden state size,
3072 feed-forward hidden states, and 12 atten-
tion heads; and T5-large, consisting 770 million
parameters, 24 layers, a 1024 hidden state size,
4096 feed-forward hidden states, and 16 atten-
tion heads. Flan-T5 is a model fine-tuned through
instruction-based training, possessing robust gen-
eralization capabilities to handle a wide range of
tasks. In contrast, UnifiedQA is a widely used
model for question-answering tasks, trained by in-
tegrating multiple QA formats. This model consis-
tently performs strongly across various question
types, demonstrating robust generalization capabil-
ities and providing reliable results across diverse
contexts.
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Strategy Pair Premise-Hypothesis Hallucination↓
Entity-error Relation-error Unverifiability

G-Eval

gen.-all(answers) gen.-c(answers) 1.119(0.616) 1.553(0.932) 1.964(1.034)

consecutive pair
gen.-answer1 1.072(0.450) 1.365(0.722) 1.579(0.863)

answer1-answer2 1.047(0.350) 1.419(0.728) 1.492(0.773)

answer2-answer3 1.049(0.333) 1.457(0.741) 1.509(0.791)

Let’s think step by step

gen.-all(answers) gen.-c(answers) 1.143(0.649) 1.607(0.919) 2.341(1.075)

consecutive pair
gen.-answer1 1.215(0.668) 1.613(0.895) 2.174(1.119)

answer1-answer2 1.131(0.479) 1.649(0.824) 2.149(0.989)

answer2-answer3 1.125(0.477) 1.68(0.83) 2.18(0.993)

Take a deep breath
and work on this problem

step-by-step

gen.-all(answers) gen.-c(answers) 1.122(0.627) 1.602(0.864) 2.428(1.046)

consecutive pair
gen.-answer1 1.168(0.595) 1.551(0.847) 2.191(1.059)

answer1-answer2 1.086(0.361) 1.573(0.783) 2.138(0.945)

answer2-answer3 1.094(0.395) 1.624(0.799) 2.192(0.962)

Table A1: The hallucination score ranges from 1 to 10, with higher scores indicating a greater degree of hallucination.
As a result, for all four pairs, none of the hallucination evaluation criteria exceeded a score of 2.5, indicating very
low levels of hallucination. This demonstrates that no significant hallucination issues were detected after verifying
the data quality through various prompting methods.

B.2 Training Details

At first, for span-level text infilling objective, we
employed the Adafactor(Shazeer and Stern, 2018)
optimizer with epoch 1, batch size 8, and learn-
ing rate 2e-5. Subsequently, we performed transfer
learning using three sentence-level objectives. We
used the Adafactor optimizer with epoch 1, batch
size 8, and learning rate 2e-5. Utilizing the re-
fined pre-trained language model, we fine-tuned the
model for downstream tasks that require common-
sense reasoning. For this fine-tuning process, we
used the AdamW (Loshchilov and Hutter, 2017) op-
timizer with maximum sequence length 256, adam
epsilon 1e-8, epoch 20, and batch size 8. The hy-
perparameter settings for each commonsense rea-
soning dataset are presented in Table A2. All ex-
periments were conducted identically on NVIDIA
GeForce RTX 3090 4ea.

C Dataset Properties

We used the following five datasets to evaluate the
model’s performance on downstream tasks that re-
quire commonsense reasoning ability.
COPA (Roemmele et al., 2011) The Choice Of Plau-
sible Alternatives dataset is used to assess common-
sense causal reasoning. Each question is formulated
with a premise and two alternatives of cause or ef-
fect, structured as multiple-choice QA, where the
alternative that more plausibly shares a causal rela-
tionship with the premise is to be selected.

CODAH (Chen et al., 2019) The COmmonsense
Dataset Adversarially-authored by Humans is an
adversarially curated dataset for commonsense test-
ing, consisting of multiple-choice QA that includes
sentence completion questions describing scenar-
ios.
CSQA (Talmor et al., 2019) CommonsenseQA is a
dataset created by extracting concepts with seman-
tic relationships from ConceptNet (Speer et al.,
2018), a knowledge graph designed to represent
commonsense relationships.
OBQA (Mihaylov et al., 2018) The OpenBook Ques-
tion Answering dataset models open-book exams,
comprising questions about scientific facts in a 4-
way multiple-choice QA format.
PIQA (Bisk et al., 2020) The Physical Interac-
tion Question Answering dataset evaluates physical
knowledge, focusing on the affordances and inter-
actions provided by everyday objects, presented as
a question with two possible solutions.

D Construction for Retrieval Data

First, from the GenericsKB dataset composed
of over 3.5M entries (Bhakthavatsalam et al.,
2020), we filtered out sentences that were
identical to the generic statements in the
GenericsKB-simplewiki dataset. Next, we em-
ployed the sentence-transformers (Reimers and
Gurevych, 2019) and FAISS5 (Douze et al., 2024;

5https://github.com/facebookresearch/faiss
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COPA CODAH OBQA CSQA PIQA

Learning rate [1e-4, 2e-4, 3e-4, 1e-5, 3e-5] [1e-4, 2e-4, 3e-4, 5e-4] [1e-4, 2e-4, 3e-4, 3e-5] [1e-4, 2e-4, 3e-4, 3e-5] [1e-4, 2e-4, 3e-4, 3e-5]

Table A2: Fine-tuning hyperparameters

Figure A4: Distribution of hallucination scores for
generic statement and all answer pairs. The proportion
of all three types of hallucination scores above 5.5 is
below 0.4%.

Johnson et al., 2019) libraries to retrieve generic
statements from the filtered GenericsKB dataset
that were similar to the generic statements in the
GenericsKB-simplewiki dataset. Utilizing this
constructed dataset, in the same manner as the
WHY-Chain, we performed transfer learning on the

Figure A5: Distribution of hallucination scores for each
consecutive pair. The proportion of scores above 5.5 for
all relationships in the three types of hallucinations is
below 0.2%.

model and evaluated its performance on tasks re-
quiring commonsense reasoning ability.

E Dataset Example

Figures A6 and A7 are examples from the
WHY-Chain dataset.
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Figure A6: An example of WHY-Chain dataset

Figure A7: An example of WHY-Chain dataset
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