
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 3047–3057

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

The Power of Bullet Lists: A Simple Yet Effective Prompting Approach to
Enhancing Spatial Reasoning in Large Language Models

Ikhyun Cho1 and Changyeon Park2 and Julia Hockenmaier1
1University of Illinois at Urbana-Champaign 2Seoul National University

ihcho2@illinois.edu blackco@snu.ac.kr juliahmr@illinois.edu

Abstract

While large language models (LLMs) are dom-
inating the field of natural language process-
ing, it remains an open question how well these
models can perform spatial reasoning. Contrary
to recent studies suggesting that LLMs strug-
gle with spatial reasoning tasks, we demon-
strate in this paper that a novel prompting tech-
nique, termed Patient Visualization of Thought
(PATIENT-VOT), can boost LLMs’ spatial rea-
soning abilities. The core idea behind PATIENT-
VOT is to explicitly integrate bullet lists, coordi-
nates, and visualizations into the reasoning pro-
cess. By applying PATIENT-VOT, we achieve
a significant boost in spatial reasoning perfor-
mance compared to prior prompting techniques.
We also show that integrating bullet lists into
reasoning is effective in planning tasks, high-
lighting its general effectiveness across differ-
ent applications.

1 Introduction

Large language models (LLMs) are massive neu-
ral networks trained on a vast and diverse range
of corpora, that are currently leading the field of
natural language processing (NLP) (Brown, 2020).
Beyond their remarkable achievements in NLP, re-
searchers are gradually focusing on broader goals,
such as artificial general intelligence, where they
envision the development of versatile, if not univer-
sal, AI assistants (Zheng et al., 2024a). In this con-
text, LLMs play a pivotal role due to their strong
reasoning capabilities, their characteristics as gen-
eral pattern machines (Mirchandani et al., 2023),
and their capacity to produce human-friendly expla-
nations. However, spatial reasoning ability, one of
the key requirements for these assistants, is known
to be lacking in LLMs (Bang et al., 2023; Sharma,
2023). Multiple recent studies point out that even
the top-performing LLMs, such as GPT4, struggle
significantly with spatial reasoning tasks, including

relatively simple grid-based tasks (Li et al., 2024;
Yamada et al., 2023). Achieving satisfactory per-
formance in these grid-based tasks is a necessary
first step toward tackling more advanced spatial
reasoning challenges.

Among various efforts to enhance LLMs’ spatial
reasoning abilities, a notable approach is prompt
engineering (Bommasani et al., 2021), which aims
to trigger and maximize the model’s spatial rea-
soning capabilities by designing effective prompts.
One major advantage of prompt engineering is that
it does not require additional training or external
resources, making it a cost-effective and generally
applicable approach. While some recent studies
have emerged in this field (Wu et al., 2024; Li et al.,
2024; Yasunaga et al., 2023), we believe this area
remains under-explored.

Our Objective and Approach In this paper, we
aim to tackle the following research question from
a prompt engineering perspective: How can we ef-
fectively trigger and improve the spatial reasoning
abilities of LLMs via prompting?

To this end, we introduce Patient Visualization-
of-Thought (PATIENT-VOT), a simple yet effective
prompting technique designed to enhance the spa-
tial reasoning abilities of LLMs. PATIENT-VOT
builds on the Visualization-of-Thought approach
(Wu et al., 2024) with two novel practical findings:

1. Patient Spatial Understanding (PSU) Sum-
marizing information into a bullet list (done by
LLMs) boosts their ability to understand informa-
tion, leading to a substantial reduction in errors
during subsequent reasoning steps.

2. Patient Spatial Reasoning (PSR) Combining
visual-based and coordinate-based reasoning cre-
ates a synergistic effect, leading to a more effective
spatial reasoning in LLMs.

In a nutshell, we find that the bullet list for-
mat is generally more LLM-friendly than the text-
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only format or other common structured formats
(e.g., tables, JSON, and HTML) (see Section 3.1
and Appendix B). We then leverage this finding
to address a common limitation in recent prompt-
ing techniques, such as Chain-of-Thought (Wei
et al., 2022) and Visualization-of-Thought (Wu
et al., 2024): their difficulty in handling informa-
tion presented in a text-only format, as highlighted
in recent studies (Golovneva et al., 2024). We
empirically demonstrate that instructing the LLM
to summarize information into a bullet list (i.e.,
PSU) significantly enhances its ability to under-
stand information—not only in spatial reasoning
tasks but also in planning tasks (see Section 5.1
and Appendix B). Furthermore, PSR activates an
additional modality, coordinate-based reasoning,
that enhances LLMs’ spatial reasoning abilities
when combined with visualization (see Table 4).
PATIENT-VOT consistently boosts the performance
of various models (GPT-4o, GPT-4o-mini, GPT-
4-turbo, Claude-3.5-Sonnet, and Claude-3-Haiku)
on a variety of challenging spatial reasoning and
planning tasks.

2 Related Work

Spatial Reasoning in LLMs Several recent stud-
ies have examined the spatial reasoning capabilities
of LLMs, consistently finding that LLMs continue
to struggle with spatial reasoning tasks (Li et al.,
2024; Bang et al., 2023). Existing research on
spatial reasoning in LLMs can be broadly catego-
rized into three approaches: (1) Analyzing LLM be-
havior to gain insights into their underlying mech-
anisms (Xie et al., 2023; Cohn and Hernandez-
Orallo, 2023), (2) Augmenting spatial reasoning
abilities by conducting additional training on cu-
rated datasets (Hong et al., 2023; Cheng et al.,
2024), and (3) Improving spatial reasoning perfor-
mance using effective prompting methods instead
of further training (Wu et al., 2024; Sharma, 2023).
We focus on the prompting approach, due to its
cost-effectiveness, as explained in the Introduction.

Prompt Engineering Approaches to LLM Spa-
tial Reasoning Recently, various prompting tech-
niques have been introduced, such as chain-of-
thought (Wei et al., 2022), self-consistency (Wang
et al., 2022), tree-of-thought (Yao et al., 2024),
and prompt template engineering (Cho et al., 2024;
Shivagunde et al., 2024; Cho et al., 2023). How-
ever, these methods are primarily designed for gen-
eral reasoning tasks. Given the unique challenges

of spatial reasoning, some prompting techniques
have been specifically tailored for this purpose
(Wu et al., 2024; Sharma, 2023). Among those,
visualization-of-thought (VoT) (Wu et al., 2024)
has demonstrated promising results with a unified
prompt. Our work aims to address a common weak-
ness of these prompting techniques—their inability
to effectively process large volumes of information
when presented solely in text—by incorporating
bullet lists.

3 PATIENT-VOT

3.1 Motivation

The goal of this paper is to discover a universal
prompt that can effectively trigger and enhance
spatial reasoning across various LLMs. Identifying
such a prompt holds substantial practical value, as
it allows LLM practitioners to improve task perfor-
mance with a simple tweak to the input prompt.

With this motivation in mind, we present
PATIENT-VOT, designed to unlock LLMs’ latent
spatial reasoning abilities through two novel ideas:
(1) Patient spatial understanding, where LLMs are
guided to first translate the information into a bul-
let list to enhance information understanding (also
applicable to planning tasks); (2) Patient spatial
reasoning, which activates two modalities, visual
and coordinate, in LLMs to improve spatial rea-
soning performance. Detailed insights behind the
use of bullet lists and coordinates are provided in
Section 5.2 and Appendices B and C.

3.2 Patient Spatial Understanding (PSU)

Recent studies (Golovneva et al., 2024), as well
as our preliminary experiments detailed in Ap-
pendix B, have shown that LLMs struggle with
seemingly simple tasks, such as converting a nat-
ural language description of a grid into a visual
representation (see Figure 1). To address this limi-
tation, we propose a simple yet effective approach:
First translating the provided information into a bul-
let list (done by the LLM) before converting it into
a visualization. This method significantly reduces
the error rate from 52% to 8% when visualizing
the initial grid in the GPT-4o model. Additionally,
we show that PSU is applicable to other reasoning
tasks, such as planning, verifying its general effi-
cacy (See Section 5.1). Specifically, we append the
following sentence to the input: “Before starting,
convert the initial information into a detailed bullet
list to effectively grasp the map’s information.”
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3.3 Patient Spatial Reasoning (PSR)

Visualizing the state has been shown to be ef-
fective for spatial reasoning in LLMs (Wu et al.,
2024). We propose activating an additional modal-
ity: Coordinate-based reasoning. While LLMs
may naturally engage in this type of reasoning,
our observations indicate that explicitly prompt-
ing it is highly effective. Additionally, combin-
ing coordinate-based reasoning with visual-based
reasoning results in a synergistic effect, leading
to an additional increase in performance. Conse-
quently, we add the following sentence into our
final prompt: “Solve the problem twice with the
following approach: ‘Visualize the state after each
reasoning step’. In the first attempt, use coordi-
nates instead of visualization. In the second at-
tempt, use direct visualization and fix any errors in
the first attempt.”

4 Experiments

4.1 Experimental Settings

Datasets We selected three spatial reasoning
tasks from Wu et al. (2024) and three planning
tasks from Zheng et al. (2024b). Specifically, the
spatial reasoning tasks include Natural Language
Navigation (NLN), Route Planning (RP), and Vi-
sual Tiling (VT), while the planning tasks consist of
Trip Planning (TP), Calendar Scheduling (CS), and
Meeting Planning (MP). Details about the datasets
can be found in Appendix A.

Models and Settings We employ the GPT-4
model family, including GPT-4o, GPT-4o-mini,
and GPT-4-turbo (Achiam et al., 2023) and the
Claude family, including Claude-3.5-Sonnet and
Claude-3-Haiku (Anthropic, 2024). For baseline
prompts, we follow the approach from Wu et al.
(2024), using “Let’s think step by step.” for the
CoT baseline (Kojima et al., 2022) and “Visualize
the state after each reasoning step.” for the VoT
baseline. Experiments are conducted using a basic
greedy decoding scheme (i.e., temperature set to
0), with three different random seeds.

4.2 Results

Table 1 presents the performance of PATIENT-VOT
and the baseline methods on the three spatial rea-
soning tasks. We observe that PATIENT-VOT sig-
nificantly and consistently improves performance
across all models and datasets, outperforming re-
lated prompting techniques by a substantial mar-

gin. Table 4 presents the results of several abla-
tion studies. The top section highlights the impact
of each component in PATIENT-VOT, where both
PSU and PSR independently demonstrate consis-
tent improvements, and their combination results
in even greater performance gains. Notably, PSU,
which involves incorporating bullet lists, proves
generally effective for planning tasks as well, as
described in Section 5.1 and Table 2. An additional
error analysis is provided in Appendix D, offering
insights into how PSU influences model outputs.

Spatial Reasoning Tasks
Model NLN RP VT

GPT-4o

CoT 8.50 1.32 7.27 3.75 28.67 2.02

VoT 26.17 1.26 5.15 0.49 29.00 1.50

Ours: PATIENT-VOT 83.831.44 30.230.37 36.331.61

GPT-4o-mini

CoT 2.67 0.29 5.15 0.25 17.33 5.03

VoT 22.17 1.04 5.80 0.14 17.67 3.06

Ours: PATIENT-VOT 61.001.50 41.581.48 24.003.00

GPT-4-turbo

CoT 21.50 2.18 5.56 0.14 21.00 2.65

VoT 25.67 1.04 3.43 0.49 19.00 1.73

Ours: PATIENT-VOT 51.671.44 7.520.93 24.331.15

Claude-3.5-Sonnet

CoT 37.67 0.58 9.90 0.22 15.17 0.76

VoT 50.67 1.15 10.00 0.84 22.33 1.04

Ours: PATIENT-VOT 85.672.52 21.891.74 24.830.58

Claude-3-Haiku *

CoT 0.00 0.00 0.70 0.00 16.00 0.00

VoT 0.00 0.00 0.49 0.00 15.00 0.00

Ours: PATIENT-VOT 5.000.00 1.720.00 25.000.00

Table 1: Effectiveness of PATIENT-VOT. Reported num-
bers are average and standard errors of three runs. We
can observe that PATIENT-VOT consistently outper-
forms existing prompting baselines with a huge margin.

5 Main Findings

5.1 The Power of Bullet Lists
In spatial reasoning tasks As mentioned in Sec-
tion 3.2, even the most advanced GPT-4 models
make significant errors in translating descriptions
into accurate grids (See Figure 1). This aligns with
recent research showing that LLMs often struggle
with simple tasks involving counting or retracing
steps (Golovneva et al., 2024). We believe that
converting the description into a structured format,
such as a bullet list with clear delimiters, and then

*Note that Claude-3-Haiku does not have a seed parame-
ter, resulting in same outputs across runs.
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Figure 1: (Left) The overall template of PATIENT-VOT. Key trigger words, “bullet list” and “coordinates”, are
marked in blue, while the VoT prompt element is highlighted in yellow. (Right) The intuition behind patient spacial
understanding. The structured bullet list significantly reduces mistakes when creating the initial visualization.

using this structured format for visualization, helps
minimize mistakes. Quantitatively, this approach
reduces the error rate of the initial grid in the natu-
ral language navigation task from 52% to 8% for
GPT-4o, and from 65% to 13% for GPT-4o-mini.

In planning tasks Incorporating bullet lists into
the reasoning process is not limited to spatial rea-
soning tasks. Therefore, we extend our experiments
to another type of task, selecting planning tasks
(Zheng et al., 2024b) due to their broad applicabil-
ity.

For planning tasks, we compare (PSU+CoT)
with the CoT baseline in Table 2, as incorporat-
ing coordinates (i.e., VoT and PSR) is unsuitable
for these tasks and showed no performance im-
provement. Due to the strict rate limits of Claude-
3.5-Sonnet, we excluded it from the table. Given
the large volume of the datasets, we conducted the
experiments using a single fixed seed of 42. The re-
sults in Table 2 demonstrate that PSU is also highly
effective for planning tasks, indicating its general
efficacy across different task types.

5.2 Bullet list is significantly better than other
structures

A fundamental question regarding PATIENT-VOT
is: “Do we need to use bullet lists, or can similar
performance gains be achieved with other com-
mon structures such as tables, JSON, or HTML?”
To explore this, we conducted experiments to de-
termine whether the performance improvements
of PATIENT-VOT are specifically attributable to
bullet lists or if they can also be obtained us-
ing alternative formats. We evaluated three for-
mats—table, HTML, and JSON—by testing three
prompts for each structure on two models (GPT-

Plannng Tasks
Model CS TP MP

GPT-4o

CoT 48.40 4.00 46.50
Ours: PSU+CoT 60.40 5.19 49.40

GPT-4o-mini

CoT 29.40 5.56 19.60
Ours: PSU+CoT 34.70 8.37 26.30

GPT-4-Turbo

CoT 45.10 29.69 36.50
Ours: PSU+CoT 48.90 32.50 38.30

Claude-3-Haiku

CoT 26.50 20.94 19.50
Ours: PSU+CoT 30.00 22.75 23.30

Table 2: Effectiveness of bullet lists in planning tasks.
We can see that integrating bullet lists is consistently
effective in planning tasks as well.

4o and GPT-4o-mini) using the natural language
navigation task (detailed prompts are provided in
Appendix F). The results, summarized in Table 3,
indicate that although these alternative structures
do offer some improvement over the baseline (i.e.,
the original CoT/VoT), their performance gains are
significantly smaller than those achieved with bul-
let lists—particularly for the smaller GPT-4o-mini
model. This underscores the superior effective-
ness of bullet lists compared to other structures.
We speculate that their advantage lies in (1) their
prevalence in pretraining corpora and (2) their rela-
tive simplicity, which makes them especially LLM-
friendly, particularly for smaller models.
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Task: NLN Prompt Variants PATIENT-VOT VoT CoT
Model Acc(%) Acc(%) Acc(%)

GPT-4o Baseline (No structures) 31.00 26.00 8.50

Bullet lists 83.00 53.00 34.50
1. Tables (Prompt 1) 33.00 20.00 18.00
1. Tables (Prompt 2) 33.00 22.50 17.00
1. Tables (Prompt 3) 40.50 33.00 29.50

2. HTML (Prompt 1) 30.50 28.50 27.00
2. HTML (Prompt 2) 57.50 36.50 23.50
2. HTML (Prompt 3) 60.00 42.50 13.50

3. JSON (Prompt 1) 29.50 29.00 23.00
3. JSON (Prompt 2) 62.50 49.50 33.50
3. JSON (Prompt 3) 25.00 23.50 24.50

GPT-4o-mini Baseline (No structures) 25.50 22.00 3.00

Bullet lists 61.00 37.50 44.50
1. Tables (Prompt 1) 23.00 18.50 13.00
1. Tables (Prompt 2) 21.00 22.50 15.50
1. Tables (Prompt 3) 4.00 5.50 5.00

2. HTML (Prompt 1) 4.00 5.00 2.00
2. HTML (Prompt 2) 15.00 8.50 2.50
2. HTML (Prompt 3) 15.50 8.00 2.50

3. JSON (Prompt 1) 10.00 3.50 2.00
3. JSON (Prompt 2) 19.00 11.50 12.00
3. JSON (Prompt 3) 6.50 4.00 4.50

Table 3: Bullet lists are key to PATIENT-VOT. Other
widely used structures, such as tables, HTML, and
JSON, perform significantly worse compared to bul-
let lists.

5.3 Coordinate-based reasoning and
visual-based reasoning create synergy

Intuitively, LLMs can inherently use coordinates
when dealing with spatial reasoning tasks. How-
ever, our findings show that explicitly prompting
the LLM to employ coordinates is far from redun-
dant. In fact, it proves effective on its own and also
creates a synergistic effect when combined with
visual-based reasoning. The empirical evidence
supporting this claim is summarized in the bottom
section of Table 4.

Specifically, we compared the following three
variants: (1) PATIENT-VOT: which incorporates
both coordinates and visualizations, (2) PSR
(Visualization-Only): which uses only visualiza-
tions, and (3) PSR (Coordinate-Only): which relies
solely on coordinates. The specific prompts for
each variant are detailed in Appendix E. The results
in Table 4 indicate that explicitly instructing GPT
to perform coordinate-based reasoning is generally
more effective than relying solely on visualizations.
Most importantly, combining coordinate-based and
visual-based reasoning yields even better perfor-
mance than using either method alone.

6 Conclusion

This paper introduces a novel prompting technique,
PATIENT-VOT, designed to enhance the spatial rea-
soning capabilities of LLMs. PATIENT-VOT incor-

Ablation #1. Effectiveness of PSU and PSR.

Baseline: GPT-4o NLN RP VT

• VoT 26.171.26 5.150.49 29.001.50
• VoT + PSU 48.832.57 21.730.57 34.882.21
• VoT + PSR 31.330.76 12.170.75 34.331.26
• VoT + PSU + PSR (=PATIENT-VOT) 83.83 1.44 30.23 0.37 36.33 1.61

Ablation #2. The synergy between coordinate-based and visual-based reasonings.

Baseline: GPT-4o NLN RP VT

• PSR (Coordinate-Only) 80.502.65 26.060.51 35.33 0.76

• PSR (Visualization-Only) 48.832.57 21.730.57 34.882.21
• PSR (Both) (=PATIENT-VOT) 83.83 1.44 30.23 0.37 36.33 1.61

Table 4: A summary of two ablation study results. The
upper half illustrates the individual effectiveness of each
component and their combined impact, while the bottom
half highlights the synergy between coordinates and
visualizations.

porates two straightforward yet powerful concepts:
patient spatial understanding and patient spatial rea-
soning. It demonstrates effectiveness across mul-
tiple GPT-4 and Claude-3 models on three spatial
tasks and three planning tasks, achieving up to a
35% absolute improvement.

7 Limitations

Our work has a few limitations. Firstly, our study
lies in the area of “prompt engineering” which may
lack strong theoretical justification for why our ap-
proach is effective. Additionally, we concentrated
on greedy decoding for computational efficiency.
Nevertheless, exploring the integration of PATIENT-
VOT with sampling-based prompting techniques
remains a promising area for future research.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Anthropic. 2024. Claude. Anthropic Artificial Intel-
ligence. Large language model. Available: https:
//www.anthropic.com.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multi-
task, multilingual, multimodal evaluation of chatgpt
on reasoning, hallucination, and interactivity. arXiv
preprint arXiv:2302.04023.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

3051

https://www.anthropic.com
https://www.anthropic.com


Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint ArXiv:2005.14165.

An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan
Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang, and
Sifei Liu. 2024. Spatialrgpt: Grounded spatial rea-
soning in vision language model. arXiv preprint
arXiv:2406.01584.

Ikhyun Cho, Yoonhwa Jung, and Julia Hockenmaier.
2023. Sir-absc: Incorporating syntax into roberta-
based sentiment analysis models with a special aggre-
gator token. In The 2023 Conference on Empirical
Methods in Natural Language Processing.

Ikhyun Cho, Gaeul Kwon, and Julia Hockenmaier. 2024.
Tutor-icl: Guiding large language models for im-
proved in-context learning performance. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2024, pages 9496–9506.

Anthony G Cohn and Jose Hernandez-Orallo. 2023. Di-
alectical language model evaluation: An initial ap-
praisal of the commonsense spatial reasoning abilities
of llms. arXiv preprint arXiv:2304.11164.

Olga Golovneva, Tianlu Wang, Jason Weston, and Sain-
bayar Sukhbaatar. 2024. Contextual position en-
coding: Learning to count what’s important. arXiv
preprint arXiv:2405.18719.

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong
Zheng, Yilun Du, Zhenfang Chen, and Chuang Gan.
2023. 3d-llm: Injecting the 3d world into large lan-
guage models. Advances in Neural Information Pro-
cessing Systems, 36:20482–20494.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Fangjun Li, David C Hogg, and Anthony G Cohn. 2024.
Advancing spatial reasoning in large language mod-
els: An in-depth evaluation and enhancement us-
ing the stepgame benchmark. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 18500–18507.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter,
Danny Driess, Montserrat Gonzalez Arenas, Kan-
ishka Rao, Dorsa Sadigh, and Andy Zeng. 2023.
Large language models as general pattern machines.
arXiv preprint arXiv:2307.04721.

Manasi Sharma. 2023. Exploring and improving the
spatial reasoning abilities of large language models.
In I Can’t Believe It’s Not Better Workshop: Failure
Modes in the Age of Foundation Models.

Namrata Shivagunde, Vladislav Lialin, Sherin Muck-
atira, and Anna Rumshisky. 2024. Deconstructing
in-context learning: Understanding prompts via cor-
ruption. arXiv preprint arXiv:2404.02054.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia,
Li Dong, Lei Cui, and Furu Wei. 2024. Visualization-
of-thought elicits spatial reasoning in large language
models. arXiv preprint arXiv:2404.03622.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong,
and Harold Soh. 2023. Translating natural language
to planning goals with large-language models. arXiv
preprint arXiv:2302.05128.

Yutaro Yamada, Yihan Bao, Andrew K Lampinen,
Jungo Kasai, and Ilker Yildirim. 2023. Evaluat-
ing spatial understanding of large language models.
arXiv preprint arXiv:2310.14540.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong
Pasupat, Jure Leskovec, Percy Liang, Ed H Chi, and
Denny Zhou. 2023. Large language models as ana-
logical reasoners. arXiv preprint arXiv:2310.01714.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. 2024a. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang,
Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. 2024b.
Natural plan: Benchmarking llms on natural lan-
guage planning. arXiv preprint arXiv:2406.04520.

A Tasks and Datasets

We use three spatial reasoning tasks from Wu
et al. (2024) and three planning tasks from (Zheng
et al., 2024b). Specifically, spatial reasoning tasks
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sequential movements within it; (2) Route Plan-
ning (408), where the model must generate multi-
hop navigation instructions on a 2D grid; (3) Vi-
sual Tiling (200), which requires fitting appro-
priate tetrominoes into a square grid, similar to
the game Tetris. The planning tasks include (1)
Calendar Scheduling (1000), which requires the
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on the constraints of each participant; (2) Trip
planning (1600), which involves generating an
itinerary for visiting European cities, considering
flight availability and constraints; (3) Meeting plan-
ning (1000), where the model must create a plan
that satisfies various constraints, including person-
specific and location-specific requirements. The
numbers in parantheses are the total number of
instances in each dataset.

Since the original paper (Wu et al., 2024)
does not provide the original datasets, we re-
implemented them by following the dataset gen-
eration algorithms outlined in the paper. We made
a slight modification to the Natural Language Nav-
igation task to make the evaluation more accurate:
instead of evaluating correctness based only on
the final item, as done in the original paper, we
evaluate based on the accuracy of all items encoun-
tered during the moves. That is, we consider the
model’s output correct only if all eight items during
the moves are accurately identified, making this a
much stricter and more precise evaluation criterion.
For the planning tasks, we use the official code
and metrics provided by the authors (Zheng et al.,
2024b).

Examples of each task are provided below and
we recommend reading the original papers (Wu
et al., 2024; Zheng et al., 2024b) for full details.

Natural Language Navigation Example “You
have been given a 3 by 3 square grid. Starting
from a vertex, you will move along the edges of
the grid. Initially, you are positioned at the bottom-
left corner of the grid, where you will find a wool,
then you go right, where you will find a football
player, then you go right, where you will find a
black-and-white colobus. Then you go up, where
you will find a pot pie, then you go left, where you
will find a torch, then you go left, where you will
find a minivan. Then you go up, where you will
find a conch, then you go right, where you will find
an american dipper, then you go right, where you
will find a jay.

Now you have all the information on the map.
The given map is a 3 by 3 map. You start at the
position where the wool is located, then you go
right by one step, then you go right by one step,
then you go left by one step, then you go up by one
step, then you go left by one step, then you go up
by one step, and then you go right by one step. For
your final answer, list all eight items encountered
during the moves (including the starting item and

any duplicates) under the title ’Final List of Items
Encountered’ as a bullet list.”

Route Planning Example Provided in Figure 2
below.

Visual Tiling Example Provided in Figure 3 be-
low.

Planning Tasks We recommend referring to the
original paper (Zheng et al., 2024b) for detailed in-
formation, as we have directly used their published
datasets without modification.

B Motivating Experiments and Core
Insights

To provide clear insights into why the idea of inte-
grating bullet list into reasoning works, we sum-
marize the core insights and present two additional
experiments as motivating evidence:

Core Insights and Corresponding Evidence

Insight #1. LLMs Struggle with Text-Only In-
puts: Despite employing CoT or VoT, LLMs still
struggle to process information provided in text-
only format, as evidenced by the poor perfor-
mances when using CoT or VoT, shown in Table 1
of the paper.
Insight #2. Bullet Lists Enhance Information
Understanding in LLMs: We claim that the bullet
list format is a more LLM-friendly representation
than text-only, enabling LLMs to process infor-
mation more accurately. We verify this claim by
conducting two experiments provided below.
Insight #3. Strong Baselines (CoT/VoT) Benefit
from Bullet Lists: As a result, we believe that ex-
plicitly integrating bullet lists can complement CoT
or VoT, leading to improved performance. This is
supported by the performance boost observed when
comparing “Baseline (CoT/VoT)” with “Bullet List
+ Baseline (CoT/VoT)” (as presented in Table 1 and
Table 2).

Evidence for Insight #2 (Bullet Lists Enhance
Information Understanding in LLMs): In addi-
tion to the downstream performance improvements,
and to ensure a more comprehensive and fundamen-
tal evaluation, we conducted two experiments in
simpler, distinct contexts: (1) Accurate Information
Retrieval and (2) Accurate Counting.
Experiment 1 (Accurate Information Retrieval):
We hypothesize that the bullet list format allows
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LLMs to more easily locate and retrieve informa-
tion with greater accuracy. To test this, we con-
ducted a simple experiment where the task is to ac-
curately retrieve specific information. We present
LLMs with a sequence of N fruits and ask them
to identify the M -th fruit. Despite the simplicity
of this task, it is known that such tasks often pose
challenges for even the most recent and advanced
LLMs (Golovneva et al., 2024).

N := Number of total fruits. We used 5, 10, 15,
20.
M := Specific location of the fruit. We used
1,2,...,N . 30 random examples for each value of
M .
Example prompt (text-only form): “You have
the following fruits in a sequence: pineapple,
mango, lychee, kiwi, persimmon, fig, peach,
mulberry, strawberry, raspberry, apricot, passion
fruit, orange, grapes, plum, watermelon, dragon
fruit, papaya, blueberry, and apple. What is the
eleventh fruit?”
Example prompt (bullet-list form): “’You have
the following fruits in a sequence:\n- pineapple\n-
mango\n- lychee\n- kiwi\n- persimmon\n- fig\n-
peach\n- mulberry\n- strawberry\n- raspberry\n-
apricot\n- passion fruit\n- orange\n- grapes\n-
plum\n- watermelon\n- dragon fruit\n- papaya\n-
blueberry\n- apple\n- What is the eleventh fruit?”

The experiment results are summarized in Ta-
ble 5. We can observe that providing information
in a bullet list format allows the LLMs to more
accurately locate and retrieve relevant information.

Accurate Information Retrieval

Model: GPT-4o N = 5 N = 10 N = 15 N = 20
Text-Only 100.00 99.67 92.44 85.00
Bullet-List 100.00 100.00 96.22 91.67

Model: GPT-4o-mini N = 5 N = 10 N = 15 N = 20
Text-Only 100.00 81.00 69.78 66.83
Bullet-List 100.00 85.00 79.78 72.50

Table 5: Accurate information retrieval results on GPT-
4o and GPT-4o-mini. It is evident that bullet list format
is more LLM-friendly than text-only format.

Experiment 2 (Accurate Counting): We conducted
an additional experiment, which is a slightly more
challenging variant of the previous one. Specifi-
cally, we asked the LLM to count the number of
a specific fruit, given a sequence of fruits. This
allows us to further assess whether the bullet list
format facilitates better manipulation of the pro-

vided information.

N := number of total fruits. We used N = 20.
M := number of counts of a specific fruit. We
used 1,2,...,20, 30 random examples for each value
of M .
Example Prompt (text-only form): “You have
the following fruits in a sequence: raspberry,
peach, blueberry, plum, cherry, apricot, pineapple,
fig, watermelon, banana, strawberry, apple, papaya,
plum, kiwi, passion fruit, mango, plum, guava, and
orange. How many plums are there?”
Example Prompt (bullet-list form): “You have
the following fruits in a sequence:\n- raspberry\n-
peach\n- blueberry\n- plum\n- cherry\n-
apricot\n- pineapple\n- fig\n- watermelon\n-
banana\n- strawberry\n- apple\n- papaya\n-
plum\n- kiwi\n- passion fruit\n- mango\n-
plum\n- guava\n- orange\n- How many plums are
there?”

Accurate Counting
Model Text-Only Bullet-List

GPT-4o 72 80.33
GPT-4o-mini 46.8 50.17

Table 6: Accurate counting results on GPT-4o and GPT-
4o-mini. It is evident that bullet list format is more
LLM-friendly than text-only format.

The experiment results are summarized in Table 6.
We can observe that providing information in a bul-
let list format allows the LLMs to more accurately
process the information.

Conclusion: We believe these two experiments
support our claim that bullet lists could be more
LLM-friendly than text-only formats.

C Why bullet lists and coordinates?

Given the performance improvements from in-
corporating bullet lists, a natural question arises:
“What about other structures?” To explore this, we
experimented with various common structures, in-
cluding tables, JSON, and HTML, and evaluated
their performance on the natural language naviga-
tion task using GPT-4o. We present the results in
Table 7.

We observe that bullet lists are significantly
more effective than other structures; only the bul-
let list format improved performance, while the
other structures resulted in a significant decline.
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We speculate that this effectiveness is due to their
widespread inclusion in training data, as well as
their simplicity, which makes them easier for mod-
els to learn and process.

Model: GPT-4o NLN

Ablation #1. Effectiveness of Bullet Lists
VoT 21.00
VoT + PSU (using bullet lists) 46.00
VoT + PSR (using tables) 7.00
VoT + PSR (using JSON) 4.50
VoT + PSR (using HTML) 0.50

Ablation #2. Effectiveness of Coordinates
PATIENT-VOT 61.00
PATIENT-VOT with cardinal directions 39.00
PATIENT-VOT with no specific instructions 36.00

Table 7: Results of replacing bullet lists with other struc-
tures (i.e., tables, JSON format, and HTML) and of
substituting coordinates with alternative candidates.

Next, to justify the use of coordinates, we con-
ducted additional ablation studies in which we re-
placed “coordinates” with other alternatives in our
final Patient-VoT prompt. We tested the use of
“cardinal directions” instead of “coordinates”, as
well as a case in which no specific instruction was
provided, to assess the effectiveness of coordinates
under the fair compute-matched settings. The re-
sults are summarized in Table 7. We observe that
coordinates are much more effective than other al-
ternatives.

D Error Analysis

We have conducted an error analysis, to offer in-
sights into how integrating bullet list affects the
model’s outcome. We used GPT-4o-mini and the
Natural Language Navigation task as representa-
tives. We compared PSU with VoT using 100 ran-
dom samples.

Finding #1. Bullet lists significantly improve in-
formation understanding (i.e., getting correct
initial grid representation): As briefly men-
tioned in Section 5.1 of our paper, the initial grid
accuracy increases dramatically when GPT-4o con-
verts text-only information into a bullet list as an
intermediate step towards visualization. Likewise,
the initial grid accuracy for GPT-4o-mini improves
from 35% to 87% as shown below. Furthermore, a
detailed analysis reveals that VoT produced 10 in-
stances where question marks (“?”) were placed in

the grid, meaning the LLM does not know what to
place, while Patient-VoT had no such cases. These
numbers (87% vs. 35%) and the qualitative dif-
ferences in output demonstrate the effectiveness of
bullet lists in enhancing information understanding.

Finding #2. Coordinate-based reasoning en-
hances the reasoning process: Additionally,
among cases with correct initial grid represen-
tations, the ratio that resulted in correct final
answers was 60% (21/35) for VoT and 70.1%
(61/87) for Patient-VoT, indicating that incorporat-
ing coordinate-based reasoning aids the reasoning
process. We provide further details on different
types of errors the model made across 100 samples
in Table 8 and Table 9 below:

Model: GPT-4o-mini + VoT Counts

Wrong initial grid representations 65
• 10 out of 65 initial grid representations contain one

or more “?” marks, whereas PATIENT-VOT has none

Correct initial grid representations, but wrong afterwards:
• Omitting one move (out of 7 move directives) 3
• Wrong item recall during moves 2
• Moving in wrong directions 5
• Wrong coordinate calculation during moves (Note that

coordinates are often naturally evoked when using VoT)
4

Table 8: Error analysis results of VoT.

Model: GPT-4o-mini + PSU Counts

Wrong initial grid representations 13
Correct initial grid representations, but wrong afterwards:
• Omitting one move 5
• Moving one additional move than directed 1
• Wrong item recall during moves 3
• Using different (x,y)-coordinate axes for understanding

and reasoning, resulting in wrong final answer:
11

• Moving in wrong directions 2
• Wrong coordinate calculation during moves 4

Table 9: Error analysis results of PATIENT-VOT.

E Prompt Templates Used in Ablation
Study #2

Variant 1: (=PATIENT-VOT): “Before starting,
convert the initial information into a detailed bul-
let list to effectively grasp the map’s information.
Then, solve the problem twice with the following
approach: ‘Visualize the state after each reasoning
step’. In the first attempt, use coordinates instead
of visualization. In the second attempt, use direct
visualization and fix any errors in the first attempt.”
Variant 2: PSR (Visualization-Only): “Before
starting, convert the initial information into a
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detailed bullet list to effectively grasp the map’s
information. Then, solve the problem with the
following approach: ‘Visualize the state after each
reasoning step’.”
Variant 3: PSR (Coordinate-Only): “Before
starting, convert the initial information into a
detailed bullet list to effectively grasp the map’s
information. Then, solve the problem with the
following approach: ‘Visualize the state after
each reasoning step’. Use coordinates instead of
visualization.”

F Prompt Templates Used in Section 5.2

Table prompts

Prompt 1: “Before starting, convert the initial in-
formation into a 3 by 3 table to effectively grasp
the map’s information.”
Prompt 2: “Before starting, convert the initial in-
formation into a table where each column and row
corresponds to a key aspect, to effectively grasp the
map’s information.”
Prompt 3: “Before starting, convert the initial in-
formation into a table with appropriate column
names to effectively grasp the map’s information.”

HTML prompts

Prompt 1: “Before starting, convert the initial in-
formation into an HTML format using appropriate
semantic tags to effectively grasp the map’s infor-
mation.”
Prompt 2: “Before starting, convert the initial in-
formation into an HTML format using the <ul> or
<ol> tags to effectively grasp the map’s informa-
tion.”
Prompt 3: “Before starting, convert the initial in-
formation into an HTML format using the list tag
to effectively grasp the map’s information.”

JSON prompts

Prompt 1: “Before starting, convert the initial in-
formation into a JSON format, with keys repre-
senting the main aspects and values containing the
detailed information, to effectively grasp the map’s
information.”
Prompt 2: “Before starting, convert the initial in-
formation into a JSON format with key as the sum-
mary and value as the detailed information to effec-
tively grasp the map’s information.”
Prompt 3: “Before starting, convert the initial in-
formation into a JSON format using descriptive
keys for key elements and associating each with

detailed information as values to effectively grasp
the map’s information.”
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Figure 2: Route planning example.

Figure 3: Visual tiling example.
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