Plot2Code: A Comprehensive Benchmark for Evaluating Multi-modal
Large Language Models in Code Generation from Scientific Plots

Chengyue Wu'»?
Qiushan Guo! Zeyu Lu?

'The University of Hong Kong

Zhixuan Liang'
Jiahao Wang'

Yixiao Ge?*

Ying Shan? Ping Luo!

2ARC Lab, Tencent PCG

3Shanghai Jiao Tong University

https://github.com/TencentARC/Plot2Code

Abstract

Multi-modal Large Language Models have
shown remarkable progress in visual contexts,
yet their ability to convert visual figures into
executable code remains underexplored. To ad-
dress this, we introduce Plot2Code, a compre-
hensive benchmark designed to assess MLLMs’
visual coding capabilities. Plot2Code includes
132 high-quality matplotlib plots across six plot
types, as well as an additional 150 and 86 plots
from Python’s and R’s plotly libraries respec-
tively, totaling 368 plots. Each plot is paired
with its source code and a descriptive instruc-
tion generated by GPT-4, enabling thorough
evaluation across diverse inputs. Furthermore,
we propose three automatic evaluation met-
rics—code pass rate, text-match ratio, and GPT-
4V rating judgement—to assess the quality of
generated code and rendered images. Notably,
the GPT-4V rating demonstrates strong reliabil-
ity, as it correlates well with human evaluations,
particularly for datasets of a certain size. Cross-
validation across MLLMs (GPT-4V, Gemini-
1.5-Pro, and Claude-3-Opus) also shows high
consistency in ratings, which likely stems from
the fact that ratings are based on rendered im-
ages rather than direct MLLM outputs, indicat-
ing minimal bias for this metric. Our evaluation
of 14 MLLMs, including both proprietary, and
open-source models, highlights significant chal-
lenges in visual coding, particularly for text-
dense plots, where MLLMs heavily rely on
textual instructions. We believe these findings
will advance future development of MLLMs.

1 Introduction

In the wake of significant advancements in big data
and computational power, Large Language Models
(LLMs) (Touvron et al., 2023; Brown et al., 2020;
Hoffmann et al., 2022; Kaplan et al., 2020), such
as ChatGPT (OpenAl, 2023a) and GPT-4 (OpenAl,
2023b), have become focal points of interest in both

*Correspondence to yixiaoge@tencent.com.

academic and commercial spheres. To extend their
versatility across various contexts, Multi-modal
Large Language Models (MLLMs) (Ge et al., 2024;
Lu et al., 2024; OpenAl, 2023c) have rapidly
evolved, as exemplified by the latest models such as
GPT-4V (OpenAl, 2023c), Gemini (Gemini Team,
2023), Claude-3 (Anthropic, 2024), and the open-
source models LLaVA (Liu et al., 2024a,b), Mini-
GPT (Zhu et al., 2023; Chen et al., 2023a) and so
on (Ge et al., 2024; Chen et al., 2023b). Concur-
rently, a diverse array of evaluation benchmarks
(Li et al., 2023b,a; Yue et al., 2023; Ying et al.,
2024) are curated to assess their visual comprehen-
sion performance across different domains. How-
ever, there remains a notable gap towards diagrams
within text-dense images, which are crucial for as-
sessing the multi-modal reasoning proficiency of
MLLMs (Masry et al., 2022; Mathew et al., 2021).
While Masry et al. (2024) proposes the benchmark
evaluating chart understanding capabilities, it does
not assess the ability of MLLMs to generate code
that renders a provided plot, which is crucial for a
full understanding of chart comprehension skills.
In line with Richard Feynman’s philosophy,
"What I cannot create, I do not understand," eval-
uating the capability of MLLMs to generate code
that renders a provided chart effectively further
showcases their multi-modal understanding and
reasoning prowess. This particular challenge de-
mands MLLMs to accurately interpret the visual
elements present in input diagrams, correlate them
with textual context provided, and finally derive
executable code to generate the plots. Although the
development of code generation from uni-modal
natural language has experienced rapid progress
in recent years (Roziere et al., 2023; Guo et al.,
2024; Wu et al., 2024), the exploration of code
generation using multi-modal inputs remains an
active area of research. Previous efforts, e.g. Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021), have concentrated on uni-modal code

3006

Findings of the Association for Computational Linguistics:
NAACL 2025, pages 3006-3028
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

https://github.com/TencentARC/Plot2Code
mailto:yixiaoge@tencent.com

(a) Ground truth plot samples

os 10 15 20 3 2 o

GPT-4v Judgement

The Al-generated image appears to be a
very close match to the reference image,
with only minor differences that ...

Input

P Requirement sy
Generate the matplotlib code to

0

(c) Overall pipeline

create a plot that looks like the
given image. The generated code
should be surrounded by
““python and "™

Instruction
(Optional) ___

The figure is a 3x2 grid of
subplots, each with a different
variation of a streamplot. The

"rating": 9

streamplots are created using a

(b) Generated plot samples

grid of X and Y values ranging
from-3to3 ...

s RESPONSE mun
s " python
W import matplotlib.pyplot as plt
i t
import numpy as np

Execute ;')‘I.t.show()

Figure 1: Overview of Plot2Code. Left: (a) Representative samples from the ground truth plots in our Plot2Code
dataset. (b) Plot samples generated by multi-modal LLMs using the reference image. Right: (c) The comprehensive
pipeline employed to assess the code generation ability of multi-modal LLMs. We consider two distinct settings:

Direct Asking and Conditional Asking.

problems, while the more recent Design2Code (Si
et al., 2024) has expanded the scope to include user-
interface (UI) design, particularly HTML files, for
evaluating MLLMs. However, these studies focus
on unimodal scenarios (e.g., text-only (Chen et al.,
2021; Austin et al., 2021) or image-only (Si et al.,
2024) inputs) and have limited capabilities when
evaluating models with multimodal inputs.

To this end, our work underscores the critical mo-
tivation by addressing these three key challenges
in evaluating MLLMs’ coding capabilities: i) Do
the evaluation settings accommodate all modal-
ities, including text and images, for both input
and output? This fundamental question pertains
to the scope of visual coding. By employing exten-
sive evaluation settings, we can conduct thorough
ablation analyses of MLLMs’ performance across
various input modalities and their combinations,
while also assessing outputs across different modal-
ities. 1ii) Are the evaluation metrics accurate,
straightforward, and comprehensive? Most ex-
isting code benchmarks rely on unit tests to obtain
binary evaluation results. While this approach may
suffice for uni-modal code tasks, it falls short for vi-
sual coding tasks that require not only the code pass
rates but also the assessments of generated image
fidelity. iii) Are the evaluations for visual coding
tasks relevant to real-world applications? It is
imperative that benchmarks align with real-world
uses and applications, particularly in coding tasks.

Employing the commonly used multiple-choice for-
mat for evaluating code tasks would be inadequate
and incongruous.

Hence, in response to the aforementioned chal-
lenges, we present Plot2Code, a comprehen-
sive and specialized multi-modal code benchmark
crafted to evaluate the multi-modal understand-
ing, reasoning, and coding capabilities of MLLM:s.
This benchmark comprises of 132 high-quality mat-
plotlib plots across six plot types, alongside an ad-
ditional 150 and 86 plots from Python’s and R’s
plotly libraries, respectively, totaling 368 plots.!
Each plot is paired with its corresponding code and
a detailed description generated by GPT-4. To cater
to diverse input and output formats, Plot2Code in-
cludes two evaluation settings, Direct Asking and
Conditional Asking, supporting automatic metric-
based evaluations for both text and image outputs.
MLLMs can be evaluated using text, images, and a
blend of both as inputs, while the text and image
outputs can be assessed based on the code pass
rate, text-match ratio and GPT-4V rating judge-
ment, which consistently aligns with human eval-
uations and shows minimal bias across different
advanced MLLMs.

We evaluate 14 publicly accessible MLLMs
across various evaluation settings. Our findings

'The matplotlib and plotly libraries are released under
BSD-compatible license (Hunter, 2007; Inc., 2015). We ac-
knowledge the use and adhere to the licensing terms provided.

3007

underscore the significant challenges posed by
Plot2Code, with GPT-4V achieving an overall
score of 7.68/10, indicating considerable room for
enhancement in visual coding tasks. The contribu-
tions of this study can be summarized as follows:

¢ We construct a novel evaluation benchmark,
tailored for multi-modal code tasks, enabling
the assessment of advancements in multi-
modal understanding and reasoning.

* Development of a diverse array of evaluation
settings for Plot2Code, accommodating varied
modalities for input and output through image-
code pairs and automatic evaluation metrics.

» Evaluations of various publicly available
MLLMs on Plot2Code, revealing that cur-
rent MLLMs like GPT-4V, Gemini-Pro, and
Claude-3, demonstrate modest performance
in visual coding tasks.

We anticipate that Plot2Code will stimulate the
research community to further explore and advance
the realm of MLLMs, propelling us towards the re-
alization of truly intelligent multi-modal systems.

2 Related Work

2.1 Advancements in Multi-modal Large
Language Models

With the rapid progress of Large Language Mod-
els (LLMs) (OpenAl, 2023a; Touvron et al., 2023;
OpenAl, 2023b), integrating multi-modal input into
LLMs has gained significant interest (Liu et al.,
2024a; Gemini Team, 2023; Lu et al., 2024; Ope-
nAl 2023c; Mu et al., 2024). Research focuses on
developing encoders for processing multi-modal
inputs via LLMs. Some studies (Haoran et al.,
2023; Lu et al., 2024; Gemini Team, 2023) target
text-dense images like documents and charts us-
ing high-resolution vision encoders. Our aim is to
evaluate MLLMs’ ability to generate code from ref-
erence plots, showcasing their visual coding skills.

2.2 Multi-modal Code Benchmark

Specialized models called Code LLMs (Roziere
etal., 2023; Li et al., 2023c; Guo et al., 2024) focus
on tasks like code completion and infilling, demon-
strating reasoning abilities. Uni-modal benchmarks
like HumanEval and MBPP (Chen et al., 2021;
Austin et al., 2021) use unit tests and Pass @k met-
rics. Recent evaluations include multi-turn interac-
tive settings (Wang et al., 2023c; Yang et al., 2024).
MMCode (Li et al., 2024) integrates images into

code tasks, while Design2Code (Si et al., 2024)
uses CLIP scores for HTML generation. Work
like (Rodriguez et al., 2023) explores extracting
SVG code from images. Plot2Code offers diverse
evaluation scenarios with uni-modal and multi-
modal inputs, using metrics like code pass rate
and plot similarity to assess MLLMs’ reasoning
capabilities. See Table 2 for details.

3 Dataset Collection

In this section, we outline the process of curating
and processing our benchmark data. We began by
crawling every website link listed in the gallery of
Python’s matplotlib, Python’s plotly and R’s plotly,
and extracting the code block.

3.1 Test Set Curation

Our goal was to acquire plot-code pairs that effec-
tively evaluate MLLLM’s code generation capabili-
ties. Since the initial Python code may not always
generate high-quality plots, we used both automatic
processing and manual filtering.

Generation Filtering. We found some HTML
files contained multiple code segments focusing on
imports and initializations, which didn’t produce
plots. Thus, we extracted single code block from
each HTML file that’s directly for rendering plots.

Type Filtering. We assumed plots were simple
and static figures rendered by the matplotlib engine,
excluding animations and interactive plots. We
filtered out plots tagged with animation, widget,
and event handling.

Manual Curation. After processing, we manu-
ally curated examples based on these criteria: (1)
Plots are free of external file dependencies and can
be directly rendered. (2) Plots exhibit diversity
in size, text, colors, and types, providing a com-
prehensive evaluation benchmark. (3) Plots are
distributed across various difficulty levels, from
beginner to specialized. This stringent manual fil-
tering resulted in 368 high-quality test examples
for our benchmark.

3.2 Evaluation Setting

We assess the test set under two distinct evaluation
scenarios: direct asking and conditional asking. To
facilitate convenient extraction of code from the
MLLM-generated responses, we request the code
to be enclosed between specific markers, enabling
the use of regular expressions for extraction.

3008

Subplots, Axes & Figures

Instruction: The first subplot is located at the bottom of the
figure. It displays the function with default margins, meaning
the plot fits exactly within the axes. The second subplot is
located at the top left of the figure. It is zoomed out with
margins set to 2 on both the x and y axes. The third subplot is
located at the top right of the figure. It is zoomed in towards the
center with the x margin set to 0 and the y margin set to -0.25.

Zoomed out Zoomed in

Contours & Fields

Instruction: The plot is created using a grid of 100 points in the
x-direction ranging from -3.0 to 3.0 and 100 points in the y-
direction ranging from -2.0 to 2.0. The z-values for the plot are
calculated using two exponential functions. The z-values are set
to be negative in the lower left corner of the plot. The color map
used for the plot is 'PuBu_r'.

20 10

15 100

10 100

Pie & Polar

Instruction: The chart has four sections, each labeled as 'Frogs',
'Hogs', 'Dogs', and 'Logs'. The sizes of these sections are 15, 30,
45, and 10 respectively. These sizes represent the proportion of
each section in the pie chart.

Hogs

Lines, Bars & Markers

Instruction: The figure size is 9x3. The first subplot is a bar
chart, the second is a scatter plot, and the third is a line plot. All
three plots use the same data, which is a dictionary with four
items: 'apple' with a value of 10, 'orange’ with a value of 15,
'lemon' with a value of 5, and 'lime' with a value of 20. The keys
of the dictionary (‘apple’, 'orange’, 'lemon’, 'lime') are used as the
x-axis labels, and the values of the dictionary (10, 15, 5, 20) are
used as the y-axis values.

Categorical Plotting

Statistics

Instruction: The figure is a scatter plot with error bars. The x-
values range from 0.1 to 4 with increments of 0.5. The y-values
are calculated as the exponential of the negative x-values. The
error in the x-values is 0.2 and the error in the y-values is 0.4.

oo o5 10 15 20 25 30 35

Text, Labels & Annotations

Instruction: first text, "eggs", is positioned at the coordinates
(0.6, 0.7) on the plot. It has a font size of 50 and is rotated 30
degrees. It is enclosed in a rounded box with an edge color of
(1.,0.5,0.5) and a face color of (1., 0.8, 0.8). The second text,
"spam", is positioned at the coordinates (0.55, 0.6) on the plot.
It also has a font size of 50 but is rotated -25 degrees. The text
is aligned to the right horizontally and to the top vertically.

05 107

00 102

05 107 10 0

-10 107

15 10

0 QQ6

201 1076 apple orangelemon lime apple orange lemon fme apple orange lemon lime

Figure 2: Examples of Plot2Code benchmark. We show different-type plots with instructions.

Contours & Fields

Pie & Polar 22.8%

6.9%

Lines, Bars

o
22T & markers

Subplots, Axes 18:3%

& Figures

12.9% 10.9%

Texts, Labels
& Annotations

Statistics

Figure 3: Type Distribution of Plot2Code.

Direct Asking. This setting means giving a
MLLM an image as input and requiring it to gener-
ate executable code that produces a diagram closely
resembling the input image. The specific prompt
can be found in Appendix A.l. Figure 10 illus-
trates an example in this case.

Conditional Asking. For MLLMs, this setup in-
volves receiving an image and text instructions to
generate executable code that meets the specified
conditions. For LLMs, only the text instructions are
provided. GPT-4 extracts these instructions from
the ground truth code, retaining essential informa-
tion for reproduction without revealing the code
itself. The prompt used to construct these instruc-
tions can be found in Appendix A.2. Figure 11
illustrates an example in this case.

3.3 Data Statistics

Key Statistics. Table 1 presents key statis-
tics to gauge the difficulty, where we use
matplotlib.pyplot subset for illustration. Our
132 test samples contain a total of 293 subplots
(min=1, max=18). Tokenizing the scraped code
with the LLaMA-2 tokenizer (Touvron et al., 2023),
we found an average of 409 tokens per code file
(standard deviation = 291), and 242 tokens per
instruction (standard deviation = 58). Using Pad-
dleOCR2, we calculated an average of 23 text ele-
ments per plot (standard deviation = 13), highlight-
ing the complexity of our benchmark.

Type Distribution. Figure 3 shows the type dis-
tribution of plots, classified by tags from the mat-
plotlib gallery. The most common types are lines,
bars, and markers, while others include contours,
fields, pie charts, polar plots, subplots axes, statisti-
cal representations, and text annotations.

3.4 Evaluation Metrics

Unlike uni-modal code generation tasks assessed
using straightforward metrics like unit tests and
code pass rate, multi-modal tasks require more pre-
cise and comprehensive evaluation methods. We
propose code pass rate, text match ratio, and GPT-
4V judgement score for this purpose.

https://github.com/PaddlePaddle/PaddleOCR

3009

https://github.com/PaddlePaddle/PaddleOCR

Statistic Number
Total Samples 132
- Contours & Fields 30 (22.7%)
- Lines, Bars & Markers 37 (28.0%)
- Texts, Labels & Annotations 14 (10.6%)
- Statistics 17 (12.9%)
- Subplots, Axes & Figures 25 (18.9%)
- Pie & Polar 9 (6.8%)
Total Subplot Count 293
Code Length (tokens) 401 + 281
- Minimum Length 60
- Maximum Length 1823
Instruction Length (tokens) 279 + 115
- Minimum Length 72
- Maximum Length 628
Text Count 23+ 13

Table 1: Key Statistics of Plot2Code. Tokens are
counted by LLaMA-2 tokenizer.

Code Pass Rate. This metric checks if the
MLLM-generated code can render an image us-
ing the specified plotting library, i.e., Python’s
matplotlib, Python’s plotly and R’s plotly, en-
suring the code is executable.

GPT-4V Rating Judgement. We use state-of-
the-art MLLM i.e. GPT-4V to assess the high-level
similarity between generated plots and ground truth
plots. This evaluation involves providing both im-
ages to the models with a detailed prompt asking
them to consider factors including overall appear-
ance, colors, shapes, positions, and other visual
elements. The models then rate the similarity on
a scale of 1 to 10. The specific prompt used is
shown in Appendix A.3. As illustrated in Sec. 5,
the GPT-4V overall rating shows a strong correla-
tion with human ratings on datasets exceeding 60
samples. Besides, cross-validation among multiple
MLLMs (GPT-4V, Gemini-1.5-Pro, and Claude-3-
Opus) also shows high consistency in ratings, in-
dicating minimal bias of this metric. This compre-
hensive approach ensures a detailed and objective
assessment of visual similarity between plots.

Text-Match Ratio. While high-level evaluation
provided by the GPT-4V rating is valuable, it
misses detailed plot components like text. To ad-
dress this, we introduce text-match ratio to measure
the fine-grained similarity between text elements in
generated and reference plots by considering both
textual content and spatial positions. Concretely,
we first align the size and positions between two di-
agrams. Then, text elements are extracted by OCR.
After that, we compute the absolute distance be-
tween positions of texts and convert it to similarity.

Finally, texts are considered matched if the content
is matched and the similarity exceeds 0.8. Details
are shown in Algorithm 1. This ratio indicates the
accuracy of text reproduction in generated plots.

3.5 Comparison with Other Datasets

As depicted in Table 2, our dataset encompasses
the most extensive range of evaluation settings and
metrics compared to all other uni-modal and multi-
modal code benchmarks.

4 Experiments

In this section, we evaluate a variety of multi-
modal large language models and methods on
our Plot2Code benchmark to compare their perfor-
mance, including both closed-source commercial
models and state-of-the-art open-source models.

4.1 Evaluation Details

Evaluated (M)LLMs. To ensure a comprehen-
sive evaluation, we assess 14 representative closed-
source and open-source (M)LLMs that vary in pa-
rameters, resolution settings, and backbone LLMs,
such as GPT (OpenAl, 2023a), DeepSeek (Bi et al.,
2024), Mistral (Jiang et al., 2023), Mixtral (Jiang
et al., 2024), and Yi (Young et al., 2024). The
quantitative evaluation is provided in Sec. 4.2. We
also explore different prompt strategies, including
Chain-of-Thought (Wei et al., 2022a) and Plan-
and-Solve (Wang et al., 2023a). We investigate the
influence of different designs of MLLMs on the
performance of our benchmark in Sec. 4.3.

Evaluation Methods. As mentioned in Sec. 3.2,
we employ two distinct evaluation settings: Direct
Asking and Conditional Asking. For LLMs lacking
vision capabilities, we evaluate them solely in the
Conditional Asking setting with instruction input.
Furthermore, we extend the GPT-4V judgement
setting to conduct pairwise evaluations between
two (M)LLMs and perform a correlative analysis
between GPT-4V judgement and human evaluation.
More details are provided in Sec. 4.4.

4.2 Overall Evaluation

We showcase the quantitative results of (M)LLMs
on our Plot2Code benchmark here. The code pass
rate, text-match ratio, and GPT-4V overall rating
for both direct asking and conditional asking sce-
narios are reported in Table 3.

The Comprehensive Challenge of Plot2Code.
The benchmark poses considerable challenges,

3010

Input Format

Output Eval Format Evaluation Metric

Dataset Task Type T I+T I T I+T Pass Rate Component Match ~ Rating
HumanEval (Chen et al., 2021) Programming v/ X X v X v X X
SVGEditBench (Nishina and Matsui, 2024) SVG v X vV X X X X X
MMcode (Li et al., 2024) Algorithm v v X v X (4 X X
Design2Code (Si et al., 2024) Websites X 4 vV X X X v v
Plot2Code Plots v v v Vv v v v v

Table 2: Comparison with other uni-modal and multi-modal code benchmarks.“I" represents images, “T"
represents text, and “I+T" stands for the multi-modal information with images and text.

Model Backbone LLM Direct Asking Conditional Asking
Pass Rate Text-Match ~ Rating | Pass Rate Text-Match Rating
LLMs
ChatGPT (OpenAl, 2023a) ChatGPT (OpenAl, 2023a) - - - 80.3 56.7 6.59
GPT-4 (OpenAl, 2023b) GPT-4 (OpenAl, 2023b) - - - 80.3 68.0 7.36
GPT-4 (CoT) (OpenAl, 2023b) GPT-4 (OpenAl, 2023b) - - - 78.8 66.0 7.09
GPT-4 (PS+) (OpenAl, 2023b) GPT-4 (OpenAl, 2023b) - - - 77.3 66.8 7.26
Closed-source MLLMs
Claude-3-Opus (Anthropic, 2024) Claude-3 (Anthropic, 2024) 84.1 57.5 4.37 78.0 69.7 7.68
Claude-3-Sonnet (Anthropic, 2024) Claude-3 (Anthropic, 2024) 75.8 46.7 5.38 65.9 57.0 7.20
Gemini-Pro (Gemini Team, 2023) Gemini (Gemini Team, 2023) 68.2 53.6 5.06 55.3 66.9 7.10
GPT-4V (OpenAl, 2023c) GPT-4 (OpenAl, 2023b) 84.1 57.7 6.48 81.8 70.7 7.68
GPT-4V (CoT) (OpenAl, 2023c) GPT-4 (OpenAl, 2023b) 89.4 56.3 6.30 81.8 69.7 7.75
GPT-4V (PS+) (OpenAl, 2023c) GPT-4 (OpenAl 2023b) 86.4 553 6.25 85.6 71.4 7.83
Open-source MLLMs (Low resolution setting)
Mini-Gemini-2B (Li et al., 2023d) Gemma-2B (Team et al., 2024) 394 214 1.96 22.7 31.8 2.80
Mini-Gemini-8x7B (Li et al., 2023d) Mixtral-8x7B (Jiang et al., 2024) 75.8 33.9 3.76 62.1 52.3 5.74
Mini-Gemini-34B (Li et al., 2023d) Yi-34B (Young et al., 2024) 67.4 30.5 2.78 50.0 51.2 4.79
Open-source MLLMs (High resolution setting)

DeepSeek-VL-7B (Lu et al., 2024) DeepSeek-7B (Bi et al., 2024) 72.0 38.7 3.69 56.8 50.1 5.19
LLaVA-1.6-Mistral-7B (Liu et al., 2024a) | Mistral-7B (Jiang et al., 2023) 64.4 32.6 3.06 424 45.1 4.48
LLaVA-1.6-34B (Liu et al., 2024a) Yi-34B (Young et al., 2024) 72.0 34.6 3.18 53.0 50.7 5.60
Mini-Gemini-8x7B-HD (Li et al., 2023d) | Mixtral-8x7B (Jiang et al., 2024) 73.5 40.7 3.87 58.4 53.7 6.08
Mini-Gemini-34B-HD (Li et al., 2023d) Yi-34B (Young et al., 2024) 55.8 34.0 3.06 43.4 46.1 5.35

Table 3: Quantitative results for 14 MLLMs across two settings, Direct Asking and Conditional Asking. The

maximum value of GPT-4V overall rating is bolded.

as even advanced models like Claude-3-Opus,
Gemini-Pro, and GPT-4V achieve only 7.68, 7.10,
and 7.68, respectively, in the overall assessment for
the conditional asking scenario, indicating substan-
tial room for improvement. In addition to the over-
all rating, the pass rate also presents challenges for
MLLMs, particularly when instructions are added.
For example, Gemini-Pro’s pass rate decreases
from 68.2% to 55.3% after incorporating the in-
struction, as the added requirements will make it
harder to generate the corresponding code. In con-
trast to widely used benchmarks like MT-bench
and HumanEval, where recent advanced models
attain ratings above 9.00 and code pass rates ex-
ceeding 80%, Plot2Code necessitates both visual
understanding and reasoning abilities to analyze
the plot, generate executable code, and create a
plot resembling the reference plot. This heightened
challenge for (M)LLMs serves as a rigorous exam-
ination of visual reasoning and coding capabilities.

Gap between Closed-source and Open-source
Models. Open-source models significantly lag
behind closed-source models. We evaluated ad-

vanced open-source MLLMs, such as DeepSeek-
VL (Lu et al., 2024), Mini-Gemini (Gemini Team,
2023), and LLaVA-Next (Liu et al., 2024a). The
best-performing open-source model, Mini-Gemini-
8x7B-HD, achieved a 6.08 GPT-4V judgement
score and a 58.4% code pass rate. However, this
still falls short compared to commercial closed-
source MLLMs. There is a need for the open-
source community to develop more powerful mod-
els to compete with proprietary ones.

4.3 Influence of Different Settings

We analyze the results from various perspectives,
encompassing prompt strategies, backbone LLMs,
and the resolution settings. The key findings are
summarized as follows.

The Influence of LLLMs. As depicted in Tab. 3,
there is a strong correlation between model per-
formance and the backbone LLM used, evident
in both Mini-Gemini and LLaVA. This suggests
that the Plot2Code task may require powerful back-
bone LLMs to facilitate the reasoning process and
generate executable code.

3011

. \Win Tie mmm Loss

GPT-4V vs GPT-4 49%

GPT-4V vs GPT-4V (CoT) kA 69%

30%

GPT-4V vs Gemini-Pro

GPT-4V vs Claude-3-Opus 37%

0 20 40 60
Percentage (%)

Figure 4: Pair evaluation results in the conditional
asking setting. We use GPT-4V without prompt strate-
gies as the baseline (this method is not shown in the
table as it serves as the basis for pairwise comparison).

100 10

W= w/o OCR (Direct Ask)
w/ OCR (Direct Ask)

80 wj/o OCR (Con. Ask) 8

w/ OCR (Con. Ask)

60 6
40 4
0

Code Péss Rate Text-Mafch Ratio GPT—4VJ\jdgement

Percentage (%)
Rating

[N]

o

Figure 5: Ablation experiments involving the addi-
tion of OCR tokens or not. The base model is Mini-
Gemini-8x7B-HD. OCR tokens are extracted using Pad-
dleOCR, supported by Mini-Gemini’s official codebase.

Evaluation Settings. As discussed in Sec. 3.2,
we have two evaluation settings. Table 3 shows that
in the conditional asking setting, MLLMs generally
achieve a lower pass rate but higher similarity than
in the direct asking setting. This is likely because
the added instruction imposes stricter requirements,
making it harder to generate executable code, but
enhancing image similarity to the reference.

Apply Prompt Techniques. We also explored
different prompt strategies like Chain-of-Thought
(Wei et al., 2022b) and Plan-and-Solve (Wang et al.,
2023b) in Fig. 4, finding no clear advantage over
default prompt, indicating ongoing exploration in
multi-modal reasoning prompts.

Nuance Evaluation across Plot Types. We rate
GPT-4V, Gemini-1.5-Pro, and Claude-3-Opus, for
different plot types. The results are shown in Figure
6. We find that the model is relatively balanced in
all types. The stronger model generally performs
better across all types.

Image Resolution Settings. We examined vi-
sion encoder settings focusing on image resolution.
Higher resolution encoders provide more detailed

Statistics

Lines, Bars &

Contours & Fields marker

Subplots, Axes &
Figures

Texts, Labels &
Annotations

—— Claude
Gemini
— GPT-4V

Pie & Polar

Figure 6: Radar chart comparing the average scores of
different chart types for three models: Claude, Gemini,
and GPT-4V. Each axis represents a different chart type.

information from input images, and we found that
MLLMs with higher resolution consistently per-
formed better—similar to trends seen in ChartQA
(Masry et al., 2022) and DocQA (Mathew et al.,
2021). Additionally, adding OCR tokens, as shown
in Figure 5, improved performance similar to high-
resolution settings, suggesting that current MLLMs
may need more powerful vision encoders to capture
detailed image information.

4.4 Pairwise Model Comparison

In accordance with the conventional practice of
pairwise model evaluation (Zheng et al., 2024;
Zhou et al., 2024), we expand the GPT-4V judge-
ment setting to perform pairwise evaluations be-
tween two (M)LLMs. The detailed prompt em-
ployed for pairwise model comparison can be
found in the Appendix A.3. For each reference
sample, we request GPT-4V to determine which
generated image is more similar when comparing a
pair of MLLMs. To mitigate the influence of differ-
ing positions, we swap the two generated images
for an additional evaluation. A model is considered
victorious only if it wins both rounds; otherwise,
the result is deemed a tie. We utilize GPT-4V as
the baseline for comparison. The results are illus-
trated in Figure 4, from which we can infer that:
(i) Compared to GPT-4, the inclusion of image in-
put for GPT-4V is beneficial in generating higher
quality plots. (ii) The commonly used prompt strat-
egy, Chain-of-Thought, does not yield additional
advantages in our benchmark.

5 Statistical Analysis

In this section, we perform statistical analyses to
justify our benchmark design. We first investigate
the effectiveness of our proposed metrics in indicat-

3012

Indicators t-statistic p-value Reject Hy
MSE -1.24 0.22 X
SSIM 1.28 0.21 X
CLIP-Score 4.23 1.24 x 1074 (4
Text-Match Ratio 5.69 9.62 x 1077 v
GPT-4V Judgement 9.07 1.22 x 1071 v

Table 4: Comparison of indicators in distinguishing
image groups w/ and w/o significant differences.

%) Traditional low-level metrics can not precisely
reflect the quality of the test sample.

Test Sample A
MSE: 0.074

== J S SSIM:0.781

Ground Truth Plot -
‘ Rating: 9

Test Sample B

MSE: 0.089
SSIM: 0.776
Rating: 3

Figure 7: Inaccuracy of traditional low-level metrics.

ing image similarity. Additionally, we analyze the
correlation between GPT-4V judgement and human
evaluation to substantiate our metric’s validity.

Hypothesis Tests for Image Similarity Metrics.
To evaluate indicators’ ability to distinguish images
with different visual similarities, we conducted hy-
pothesis tests comparing two groups: one with high
similarity (generated by GPT-4V) and another with
lower similarity (from Mini-Gemini-2B). Using a
two-sample t-test, we calculate:

. X — X,
- 2 2
514 52

ni no

where X1, X» are sample means, s7, s3 are vari-

ances, and n1, ng are sample sizes. With a p-value
less than 0.05, we reject the null hypothesis (Hp) in
favor of a significant difference (alternative hypoth-
esis, H1). Results showed MSE and SSIM p-values
of 0.22 and 0.21, respectively, not rejecting Hy.
However, GPT-4V Judgement and Text-Match Ra-
tio had p-values of 1.22 x 10~ and 9.62 x 107,
indicating significant differences, outperforming
the CLIP-score with a p-value of 1.24 x 1074,

Correlative Analysis between GPT-4V Judge-
ment and Human Evaluation. To investigate
the similarity between the GPT-4V judgement and
human evaluation, a correlative analysis was per-
formed using different correlation coefficients, in-
cluding Kendall’s Tau, Pearson correlation coeffi-
cient, and Spearman’s rank correlation coefficient.

Details can be found in the Appendix C. As shown
in Table 5, All three correlation coefficients indi-
cated a moderate positive relationship between the
GPT-4V judgement and human evaluation. More-
over, the p-values were all smaller than the signifi-
cance level of 0.05, suggesting that the correlations
were statistically significant. These findings imply
that the GPT-4V judgement is in general agreement
with human evaluation, demonstrating its effective-
ness in assessing the similarity.

Robustness Analysis upon Sample Size. We
randomly sample entries to evaluate the relation-
ship between the score variance and the dataset size.
In Figure 8, our experiments show that the score
does not vary much once the dataset size exceeds
60, which demonstrates that our dataset is enough
to assess the ability to generate plots reliably. Ad-
ditionally, the absolute ratings from humans and
GPT-4V are highly correlated when the dataset size
exceeds 60, with average ratings of 7.17 and 7.71
for humans and GPT-4V, respectively.

Potential Bias with AI Rating. To investigate
potential biases in each business MLLM, we con-
ducted a cross-validation using GPT-4V, Gemini-
1.5-Pro, and Claude-3-Opus to generate plots and
rate each other. The results, presented in the Figure
9, indicating high consistency among the MLLM
judges. The Cronbach’s Alpha values for GPT-4V,
Gemini, and Claude samples are 0.77, 0.84, and
0.82, respectively, suggesting minimal bias when
MLLMs evaluate their own generated samples.

6 Conclusion

In this study, we introduced Plot2Code, a bench-
mark for assessing multi-modal language models’
code generation capabilities. We proposed evalu-
ation metrics like code pass rate, text-match ratio,
and GPT-4V rating judgement to provide a holis-
tic assessment of model performance. The study
found notable performance differences among mod-
els, highlighting challenges in reproducing text el-
ements and details. Plot2Code aims to advance
multi-modal reasoning, text-dense image under-
standing, and code generation in MLLMs. Future
research may explore multi-modal prompts and
vision encoder design to bridge the gap between
open-source MLLMs and commercial APIs.

Limitations: This benchmark suffers from poten-
tial contamination, as pre-trained models might use
the data as part of its training data. Additionally,

3013

while the dataset is comprehensive on code gen-
eration for plotting, it may not fully capture the
complexity and variety of other types of program-
ming tasks beyond chart generation.

Ethical considerations: Reliance on automated
code generation may erode human coding skills,
and increased dependence on Al reduce oversight,
leading to errors in critical systems.

References

Anthropic. 2024. Claude 3 haiku: our fastest model yet.
Available at: https://www.anthropic.com/news/
claude-3-haiku.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, et al. 2024. Deepseek Ilm: Scal-
ing open-source language models with longtermism.
arXiv preprint arXiv:2401.02954.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun
Liu, Pengchuan Zhang, Raghuraman Krishnamoor-
thi, Vikas Chandra, Yunyang Xiong, and Mohamed
Elhoseiny. 2023a. Minigpt-v2: large language model
as a unified interface for vision-language multi-task
learning. arXiv preprint arXiv:2310.09478.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo
Chen, Sen Xing, Zhong Muyan, Qinglong Zhang,
Xizhou Zhu, Lewei Lu, et al. 2023b. Internvl:
Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. arXiv preprint
arXiv:2312.14238.

Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi,
Lin Song, Chen Li, Xiaohan Ding, and Ying Shan.
2024. Seed-x: Multimodal models with unified multi-
granularity comprehension and generation. arXiv
preprint arXiv:2404.14396.

Google Gemini Team. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Lij, et al. 2024. Deepseek-coder: When the
large language model meets programming—the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Wei Haoran, Kong Lingyu, Chen Jinyue, Zhao Liang,
Ge Zheng, Yang Jinrong, Sun Jianjian, Han Chunrui,
and Zhang Xiangyu. 2023. Vary: Scaling up the
vision vocabulary for large vision-language models.
arXiv preprint arXiv:2312.06109.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

J. D. Hunter. 2007. Matplotlib: A 2d graphics en-
vironment. Computing in Science & Engineering,
9(3):90-95.

Plotly Technologies Inc. 2015. Collaborative data sci-
ence.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, et al.
2024. Mixtral of experts. arXiv preprint
arXiv:2401.04088.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui
Wang, Ruimao Zhang, and Ying Shan. 2023a. Seed-
bench-2: Benchmarking multimodal large language
models. arXiv preprint arXiv:2311.17092.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix-
iao Ge, and Ying Shan. 2023b. Seed-bench: Bench-
marking multimodal 1lms with generative compre-
hension. arXiv preprint arXiv:2307.16125.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo,
and Jing Ma. 2024. Mmcode: Evaluating multi-
modal code large language models with visu-
ally rich programming problems. arXiv preprint
arXiv:2404.09486.

3014

https://www.anthropic.com/news/claude-3-haiku
https://www.anthropic.com/news/claude-3-haiku
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://plot.ly
https://plot.ly

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023c. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng
Zhong, Yixin Chen, Ruihang Chu, Shaoteng Liu,
and Jiaya Jia. 2023d. Mini-gemini: Mining the po-
tential of multi-modality vision language models.
arXiv:2403.18814.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. 2024a. Llava-
next: Improved reasoning, ocr, and world knowledge.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024b. Visual instruction tuning. Advances in
neural information processing systems, 36.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai
Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhu-
oshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng,
Hanwei Xu, Zhenda Xie, and Chong Ruan. 2024.
Deepseek-vl: Towards real-world vision-language
understanding. Preprint, arXiv:2403.05525.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty,
and Enamul Hoque. 2022. Chartqa: A benchmark
for question answering about charts with visual and
logical reasoning. arXiv preprint arXiv:2203.10244.

Ahmed Masry, Mehrad Shahmohammadi, Md Rizwan
Parvez, Enamul Hoque, and Shafiq Joty. 2024.
Chartinstruct: Instruction tuning for chart
comprehension and reasoning. arXiv preprint
arXiv:2403.09028.

Minesh Mathew, Dimosthenis Karatzas, and CV Jawa-
har. 2021. Docvga: A dataset for vqa on document
images. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision,
pages 2200-2209.

Yao Mu, Junting Chen, Qing-Long Zhang, Shoufa Chen,
Qiaojun Yu, GE Chongjian, Runjian Chen, Zhix-
uan Liang, Mengkang Hu, Chaofan Tao, et al. 2024.
Robocodex: Multimodal code generation for robotic
behavior synthesis. In Forty-first International
Conference on Machine Learning.

Kunato Nishina and Yusuke Matsui. 2024. Svgedit-
bench: A benchmark dataset for quantitative assess-
ment of llm’s svg editing capabilities. arXiv preprint
arXiv:2404.13710.

OpenAl. 2023a.
com.

Chatgpt. https://chat.openai.

OpenAlL 2023b.
abs/2303.08774.

Gpt-4 technical report. ArXiv,

OpenAl. 2023c. GPT-4V(ision) system card.

Juan A Rodriguez, Shubham Agarwal, Issam H Laradji,
Pau Rodriguez, David Vazquez, Christopher Pal,
and Marco Pedersoli. 2023. Starvector: Generating
scalable vector graphics code from images. arXiv
preprint arXiv:2312.11556.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo
Liu, and Diyi Yang. 2024. Design2code: How far are
we from automating front-end engineering? arXiv
preprint arXiv:2403.03163.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023b. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi
Chen, Lifan Yuan, Hao Peng, and Heng Ji. 2023c.
Mint: Evaluating llms in multi-turn interaction
with tools and language feedback. arXiv preprint
arXiv:2309.10691.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022a. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao
Wang, Ye Feng, Ping Luo, and Ying Shan. 2024.
Llama pro: Progressive llama with block expansion.
arXiv preprint arXiv:2401.02415.

3015

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2403.05525
https://arxiv.org/abs/2403.05525
https://chat.openai.com
https://chat.openai.com
https://openai.com/research/gpt-4v-system-card

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2024. Intercode: Standardizing and
benchmarking interactive coding with execution feed-
back. Advances in Neural Information Processing

Systems, 36.

Kaining Ying, Fanqing Meng, Jin Wang, Zhiqgian Li,
Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang, Yuqi
Lin, Shuo Liu, et al. 2024. Mmt-bench: A compre-
hensive multimodal benchmark for evaluating large
vision-language models towards multitask agi. arXiv
preprint arXiv:2404.16006.

Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. 2024. Yi:
Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,
Weiming Ren, Yuxuan Sun, et al. 2023. Mmmu:
A massive multi-discipline multimodal understand-
ing and reasoning benchmark for expert agi. arXiv
preprint arXiv:2311.16502.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging 1lm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing

Systems, 36.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, et al. 2024. Lima: Less is more for align-
ment. Advances in Neural Information Processing

Systems, 36.

Deyao Zhu, Jun Chen, Xiaoqgian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

3016

A Prompt Template

In this section, we introduce the prompt template used for the experiment.

A.1 Prompt for Code Generation

We use the following for the direct asking setting.

You are a helpful assistant that can generate Python code using matplotlib. Generate the matplotlib
code to create a plot that looks like the given image, as similar as possible. The generated code
should be surrounded by ™ “python and ~ " °

<image_token><image_token><image_token>...

For the conditional asking setting, we add the instruction of the reference plot at the front of the direct
asking prompt.

<instruction>

You are a helpful assistant that can generate Python code using matplotlib. Generate the matplotlib
code to create a plot that looks like the given image, as similar as possible. The generated code

N

should be surrounded by " * " python and " " *

<image_token><image_token><image_token>...

A.2 Prompt for Instruction Generation

Here is the prompt for generating each plot’s corresponding instruction. We requite the GPT-4 to examine
the code for each plot and summarize the key information in it without any implementation details.

Please review the Python code provided below, which uses matplotlib.pyplot to generate figures.
Your job is to identify key details, like type, texts, etc., required to recreate a figure from the given
code: <code>

Remember, your response should not include any code and avoid implementation details. Do not
describe any detailed variables or functions in the code. Instead, use everyday language to describe
the necessary information. If the code uses random seed, you should extract it for reproduction.
Reveal the data used in the figure for recreation. Strictly follow the rule that do not expose any
variables or functions used in the code. Summarize the crucial information as follows:

A.3 Prompt for Evaluation

We use the following prompt for GPT-4V overall rating. We will provide both the ground truth image and
the test image generated by the MLLM assistant for GPT-4V to rate the similarity.

3017

You are a helpful assistant. Please evaluate the similarity between a reference image created using
matplotlib and an image generated by code provided by an Al assistant. Consider factors such as
the overall appearance, colors, shapes, positions, and other visual elements of the images. Begin
your evaluation by providing a short explanation. Be as objective as possible. After providing
your explanation, you must rate the response on a scale of 1 to 10 by strictly following this format:
"[[rating]]", for example: "Rating: [[5]]",

<gt_image_token><gt_image_token><gt_image_token>...

<test_image_token><test_image_token><test_image_token>...

In the pair evaluation, we utilize the following prompt to determine which generated image, either from
Assistant A or Assistant B, is more similar to the ground truth image.

7

You are a helpful assistant. Please act as an impartial judge and evaluate the quality of the generated
images provided by two Al assistants given the ground truth image displayed below. You should
choose the assistant that generate the more similar image. Your evaluation should consider factors
such as the overall appearance, colors, shapes, positions, and other visual elements of the images.
Here is the ground truth image.

<gt_image_token><gt_image_token><gt_image_token>...

Here is the image generated by the assistant A.
<test_image_A_token><test_image_A_token><test_image_A_token>...

Here is the image generated by the assistant B.
<test_image_B_token><test_image_B_token><test_image_B_token>...

Begin your evaluation by comparing the two responses and provide a short explanation. Avoid any

biases and ensure that the order in which the responses were presented does not influence your
decision.

\.

A.4 Prompt Strategy

Additionally, we experiment with alternative prompt strategies that promote more reasoning by MLLM
assistants, such as Chain-of-Thought (CoT) (Wei et al., 2022a) and Plan-and-Solve (PS) (Wang et al.,
2023a).

The Chain-of-Thought (CoT) prompt is demonstrated below, wherein a specific sentence is added at
the commencement of the assistant’s response.

r

<USER>
You are a helpful assistant that can generate Python code using matplotlib ...

<Assistant>

Let us think step by step. ...

3018

Kendall’s Tau Pearson Spearman

Coefficient p-value Coefficient p-value Coefficient p-value

0.437 8.68 x 107%° 0.479 6.89 x 107%* 0.469 1.57 x 10751

Table 5: Correlation coefficient comparison between GPT-4V evaluations and human evaluations.

We modify Plan-and-Solve (PS) strategy to make it compatible with our visual coding task and call it
as PS+ in Table 3. It first encourage MLLM assistants to make a detailed plan.

7

<USER>

You are a helpful assistant that can generate Python code using matplotlib ...

<Assistant>

Let us first describe the plot and make a detailed plan step by step ...

If the assistant outputs the code during the first step, the strategy will terminate. Otherwise, the second
step will be employed, prompting the assistant to produce the final answer based on the plan described in
the first stage.

Previous messages...

<Assistant>

Based on the above description, now we are prepared to generate the code. The generated code
is surrounded by """ python and to make it easier to be extracted by regular expressions.
Therefore, the code is:

ENENIEN

Correlation between Human and Al Scores Variance of Average Rating

Average Pearson Correlation
o
G
3

Variance of Average Rating

20 40 60 80 100 20 40 60 80 100
Sample Size Sample Size

(a) (b)

Figure 8: (a) Relationship between sample size and the average Pearson correlation coefficient between human
evaluations and Al evaluations of image similarity. (b) Variance of the average rating as a function of sample size.

B Case Study

In this section, we present several examples using GPT-4V as the model under evaluation. We showcase
cases from the direct asking setting (Figure 10), the conditional asking setting (Figure 11), and the
pair-evaluation setting compared to Gemini-Pro (Figure 12), respectively. All the samples are drawn with
the default prompt strategy.

3019

Evaluating GPT-4V samples Evaluating Claude samples Evaluating Gemini samples

0.47

--0.25 --0.25

- -0.50

I—0.75
- -1.00

- -0.50

I-o.75
y L -1.00 y
Scores_Claude Scores_Gemini Scores_GPT_4v Scores_Claude Scores_Gemini Scores_GPT_4v Scores_Claude Scores_Gemini Scores_GPT_dv

(a) (b) (©)

0.46 0.52

Scores_GPT_4v Scores_Gemini Scores_Claude
Scores_GPT_4v Scores_Gemini Scores_Claude
Scores_GPT_4v Scores_Gemini Scores_Claude

Figure 9: Correlation analysis between Al tools (Claude, Gemini, GPT-4V) when evaluating images generated by
different Al tools. The results show the consistency of ratings among the different Al tools. (a), (b), and (c) present
the evaluated results from GPT-4V, Claude, and Gemini’s generated images, with Cronbach’s Alpha 0.77, 0.84, and
0.82 respectively.

C Correlation Analysis

In this section, we discuss the details of the correlation analysis.

C.1 Pair-wise Correlation Analysis

We select 20 pair evaluation samples with GPT-4V as the baseline in the conditional asking setting (10
compared to Gemini-Pro, 10 compared to Claude-3-Opus). Subsequently, we use these 20 samples to
create an online questionnaire and invite colleagues from the lab, who hold at least a bachelor’s degree,
to participate. Each question in the questionnaire presents the ground truth image, the generated image
from Assistant A, and the generated image from Assistant B. Participants are asked to choose one of the
following three options:

 Assistant A’s generated image is more similar to the ground truth image
* Assistant B’s generated image is more similar to the ground truth image
* the level of similarity is close

In the end, we receive 46 completed questionnaires, resulting in 46 x 20 = 920 samples for conducting the
correlation analysis.

C.2 Absolute Rating Correlation Analysis

We conduct a human rating to assess 100 GPT-4V generated samples with 100 people. The results are
shown in Figure 8. The x-axis represents the sample size, ranging from 10 to 100, and the y-axis represents
the variance of the average rating obtained from multiple iterations (5 iterations for each sample size). As
the sample size increases, the correlation between human and Al scores generally rises, suggesting that
larger sample sizes lead to more robust and consistent correlation estimates. The plot demonstrates that
the correlation stabilizes around a value of approximately 0.62 as the sample size reaches 60 and beyond.

C.3 Correlation Analysis between AI Rating

In this section, we present a correlation analysis of Al tool ratings on images generated by various Al
systems, focusing on the consistency among evaluations given by Claude, Gemini, and GPT-4V. To
quantify this consistency, we utilize Cronbach’s Alpha, a statistic commonly used to measure the internal
consistency or reliability of a set of ratings.

Cronbach’s Alpha is defined as:

v+ (N—-1)-¢
3020

where N is the number of items (in this case, Al tools), ¢ is the average of all covariances between tool
ratings, and v is the average variance of each individual tool rating.

The analysis of GPT-4V ratings (Figure 9a) resulted in a Cronbach’s Alpha of 0.77, indicating a
substantial level of agreement and confirming moderate reliability among the Al tool ratings when
assessing images generated by GPT-4V. Similarly, the Cronbach’s Alpha for the ratings provided by
Claude (Figure 9b) was 0.84, suggesting strong reliability and showcasing a high degree of agreement
among the tool ratings for images generated by Claude. In the case of images generated by Gemini (Figure
9c¢), the evaluation resulted in a Cronbach’s Alpha of 0.82, indicating strong consistency among the tool
ratings, comparable to those observed in Claude’s analysis.

Overall, across all evaluations, the Cronbach’s Alpha values exceed the threshold of 0.7, indicating
good internal consistency and validating the reliability of the ratings among different Al tools. These
results affirm that the Al tools consistently rate images, reinforcing the reliability of evaluations within
our proposed benchmark.

D Evaluation Metric Details

Algorithm 1 Text-Match Ratio Calculation

Input: Reference and Generated Plots
Output: Text Match Score
Extract text elements and positions using OCR
Calculate size ratio: s, < 71/
for each position po in generated text do
Adjust positions p ,q; < p2 X Sy
end for
for each pair (¢1, t2) in (ref, gen) do
Compute distance d < [p1 — p2,qd;]
ds < exp(—d/100)
if {1 == t9 and d; > 0.8 then
Mark as matched
else
Mark as unmatched
end if
: end for
: Calculate pairs:
total < matched 4+ unmatched
: mg < matched/total
return mg

R e A A S o

DD — m m e s e s e e
N AN AN

3021

E Datasheets

E.1 Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific
gap that needed to be filled? Please provide a description.

Plot2Code is a comprehensive and novel benchmark tailored for the specific multi-modal code tasks,
enabling the assessment of advancements in multi-modal understanding and reasoning. We carefully
collect 132 manually selected high-quality matplotlib plots across six plot types from publicly available
matplotlib galleries. For each plot, we carefully offer its source code, and an descriptive instruction sum-
marized by GPT-4. This approach enables Plot2Code to extensively evaluate MLLMs’ code capabilities
across various input modalities. We anticipate that Plot2Code will stimulate the research community to
further explore and advance the realm of MLLMs, propelling us towards the realization of truly intelligent
multi-modal systems.

E.2 Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people, coun-
tries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and interactions
between them; nodes and edges)? Please provide a description. How many instances are there in
total (of each type, if appropriate)?

This benchmark comprises a carefully curated dataset comprising 132 matplotlib plots across 6 plot
types, incorporating a total of 293 subplots sourced from matplotlib galleries, as shown in Table 1. And
each plot is paired with its corresponding code and a detailed description generated by GPT-4, as shown in
Figure 2. In addition to the matlotlib, we also provide other plotting library data: 150 plots from Python’s
plotly and 86 plots R’s plotly with the corresponding code and GPT-4 summarized descriptions.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
in- stances from a larger set? If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (e.g., geographic coverage)? If so, please describe how
this representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were withheld
or unavailable).

The dataset contains a small, representative sample of chart data from various plotting libraries, rather
than being derived from any single larger dataset. To some extent, it can represent plots generated
by programming languages (Python, R), as it comes from examples in these classic plotting libraries.
However, it cannot represent all types of plots generated by programming languages.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or
features? In either case, please provide a description.

Every instance contains the following components: 1. Images: Plots from from various plotting libraries
examples. 2. Codes: Corresponding codes of the plots. 3. Instructions: GPT-4 summarized descriptions
of the plots.

Is there a label or target associated with each instance? If so, please provide a description.

The task is for the MLLM to write the code that generates the corresponding plot based on the given
instruction and plot.

Is any information missing from individual instances? If so, please provide a description, ex-
plaining why this information is missing (e.g., because it was unavailable). This does not include
intentionally removed information, but might include, e.g., redacted text.

All instances contain the complete information (plot, code and instruction).

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these relationships are made explicit.

Yes, the instances are explicitly grouped by the base type they were sampled from. The grouping is
reflected in the directory structure.

Are there recommended data splits (e.g., training, development/validation, testing)? If so, please
provide a description of these splits, explaining the rationale behind them.

3022

We split the dataset according to different libraries (matplotlib, Python’s plotly, and R’s plotly). Each
chart corresponds to code and its instruction. All data is used for evaluating the MLLM, not for training.
This split is designed to assess the MLLM'’s capabilities across different libraries. However, dataset users
can freely design other splits according to their task requirements.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description.

There are no errors, sources of noise, or redundancies in the dataset.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? If it links to or re- lies on external resources, a) are there
guarantees that they will exist, and remain constant, over time; b) are there official archival versions
of the complete dataset (i.e., including the external resources as they existed at the time the dataset
was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external
resources that might apply to a future user? Please provide descriptions of all external resources
and any restrictions associated with them, as well as links or other access points, as appropriate.

The dataset is self-contained. In this study, we crawled every website link listed in the Matplotlib
gallery and Plotly documentation to collect data for our analysis. Both Matplotlib and Plotly libraries
are distributed under permissive open-source licenses. We have taken the following steps to ensure
compliance with the respective license terms:

* Acknowledgment of Licenses: We acknowledge that the Matplotlib library and its gallery are
distributed under the BSD 3-Clause License, and the Plotly library and its documentation are
distributed under the MIT License.

* Retention of Copyright Notices: We have retained all copyright notices and license information
from the original Matplotlib gallery content and Plotly documentation, as required by their respective
licenses.

» Usage and Distribution: Our use of the Matplotlib gallery and Plotly documentation content is
solely for academic and research purposes. We have not modified the original content from the
Matplotlib gallery or Plotly documentation, and any distribution of our work will include proper
attribution to the Matplotlib and Plotly projects.

By adhering to these guidelines, we ensure that our use of the Matplotlib and Plotly content is fully
compliant with their respective licenses.

Does the dataset contain data that might be considered confidential (e.g., data that is protected
by legal privilege or by doctor-patient confidentiality, data that includes the content of individuals
non-public communications)? If so, please provide a description.

The dataset does not contain data that might be considered confidential.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why.

The dataset does not contain data that, if viewed directly, might be offensive, insulting, threatening, or
might otherwise cause anxiety.

Does the dataset relate to people? If not, you may skip the remaining questions in this section.

The dataset does not relate to any people.

E.3 Collection Process

How was the data associated with each instance acquired? Was the data directly observable (e.g.,
raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived
from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If data was
reported by subjects or indirectly inferred/derived from other data, was the data validated/verified?
If so, please describe how.

The instruction data for the plots was generated by GPT-4. The authors reviewed all the instructions
to ensure their accuracy. The plots and codes were crawled from the corresponding plotting package
webpages, and they are all validated by the authors.

3023

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?

The dataset does not come from a larger dataset.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were crowdworkers paid)?

The data collection process was automatic crawled and generated for the most part. All the programs
for collecting and generating data are written by the authors.

Over what timeframe was the data collected? Does this timeframe match the creation timeframe
of the data associated with the instances (e.g., recent crawl of old news articles)? If not, please
describe the timeframe in which the data associated with the instances was created.

The bulk of the data was collected and generated in March, 2024-May 2024. We crawled plots and
codes from the latest plot package website.

Were any ethical review processes conducted (e.g., by an institutional review board)? If so, please
provide a description of these review processes, including the outcomes, as well as a link or other
access point to any supporting documentation.

No, there was no need for ethical review as the dataset is fully from open public code package.

E.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokeniza-
tion, part-of-speech tagging, SIFT feature ex- traction, removal of instances, processing of missing
values)? If so, please provide a description. If not, you may skip the remainder of the questions in
this section.

Our data process for acquiring high-quality plot-code pairs to evaluate MLLM code generation capabili-
ties involved three main steps: 1. Generation Filtering: Code was extracted from HTML files containing a
single code block, resulting in 529 plot-code pairs. 2.Type Filtering: Only simple, static matplotlib figures
were kept, excluding animations and interactive plots. 3.Manual Curation: Examples were manually
selected based on criteria such as lack of external dependencies, diversity in plot characteristics, and
varied difficulty levels.

E.5 Uses

Has the dataset been used for any tasks already? If so, please provide a description.

No.

Is there a repository that links to any or all papers or systems that use the dataset? If so, please
provide a link or other access point.

No.

What (other) tasks could the dataset be used for?

You can use this data for the ChartQA benchmark, as it includes plots and corresponding code. You can
construct QA data based on the data in the code.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? For example, is there anything that a future
user might need to know to avoid uses that could result in unfair treatment of individuals or groups
(e.g., stereo- typing, quality of service issues) or other undesirable harms (e.g., financial harms, legal
risks) If so, please provide a description. Is there anything a future user could do to mitigate these
undesirable harms?

No.

Are there tasks for which the dataset should not be used? If so, please provide a description.

No.

E.6 Distribution

Will the dataset be distributed to third parties out- side of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? If so, please provide a description.
Yes, the dataset is available publicly for anyone interested to use.

3024

How will the dataset will be distributed (e.g., tar- ball on website, API, GitHub) Does the dataset
have a digital object identifier (DOI)?

The dataset is distributed through Hugging Face, which will ensure the long term data availability, in
https://huggingface.co/datasets/TencentARC/Plot2Code.

When will the dataset be distributed?

The dataset has been released now.

Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or
under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and provide a
link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU, as well as
any fees associated with these restrictions.

This dataset is open-sourced under the Apache-2.0.

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? If so, please describe these restrictions, and provide a link or other access point to,
or otherwise re- produce, any relevant licensing terms, as well as any fees associated with these
restrictions.

This dataset is open-sourced under the Apache-2.0. These evaluation code and datasets are fully open
for academic research and can be used for commercial purposes with official written permission.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to, or
otherwise reproduce, any supporting documentation.

No.

E.7 Maintenance

Who will be supporting/hosting/maintaining the dataset?

Support and management will be provided by the dataset authors.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

Main contact: Chengyue Wu (hillwu@connect.hku.hk)

Additional contact: Yixiao Ge (yixiaoge@tencent.com)

Is there an erratum? If so, please provide a link or other access point.

No.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
If so, please describe how often, by whom, and how updates will be communicated to users (e.g.,
mailing list, GitHub)?

Yes, the development of the dataset is planned to continue, and contributions from users are also
welcomed.

If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were individuals in question told that their data would be retained for a
fixed period of time and then deleted)? If so, please describe these limits and explain how they will
be enforced.

The dataset does not relate to people.

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how. If not, please describe how its obsolescence will be communicated to users.

Yes, we plan to support versioning of the dataset so that all the versions are available to potential users.
Hugging Face platform will maintain the history of version.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? If so, please provide a description. Will these contributions be validated/verified? If
so, please describe how. If not, why not? Is there a process for communicating/distributing these
contributions to other users? If so, please provide a description.

Everyone can contribute through the Hugging Face platform. We will carefully review the contributions
to assess their value before merging them into our dataset.

3025

https://huggingface.co/datasets/TencentARC/Plot2Code
hillwu@connect.hku.hk
yixiaoge@tencent.com

Direct Asking

<USER>
Direct Asking Prompt (illustrated in Appendix A.1)

between (x1, 0) between (x1,1) between (x1, x2)

2.00 4

000 ‘]

|
-
oA
-

|
-
oA
=

|
-
o
-

<GPT-4V>
import matplotlib.pyplot as plt
import numpy as np
Data for plotting
x = np.linspace(0, 2 * np.pi, 500)
y1 = np.sin(x)
y2 =np.sin(3 * x)
fig, axs = plt.subplots(1, 3, figsize=(9, 6), sharey=True)
Plot with fill between y1 and 0
axs[0].fill_between(x, y1, 0, color="blue')
axs[0].set_title('between (x1, 0)')
Plot with fill between y1 and 1
axs[1].fill_between(x, y1, 1, color="blue')
axs[1].set_title('between (x1, 1))
Plot with fill between y1 and y2
axs[2].fill_between(x, y1, y2, color="blue')
axs[2].set_title('between (x1, x2)")
Set the x label only on the last subplot
for ax in axs:
ax.label_outer()
ax.set_xlim([0, 2*np.pi])
ax.set_xticks([]) # Remove x-axis labels
plt.tight layout()
plt.show()

between (x1, 0) between (x1, 1) between (x1, x2)

-0.25

-0.50

-075

-1.00

<Evaluation>
To evaluate the similarity between the reference image and the generated image, we will
consider several factors:

1. Overall Appearance: The layout of both images includes three separate plots aligned
horizontally. However, the reference image has a square aspect ratio for each plot, while the
generated image has a rectangular aspect ratio, making the plots wider.

2. Colors: Both images use a similar shade of blue for the filled areas within the plots.

3. Shapes: The shapes within the plots are significantly different. The reference image
contains smooth, wave-like shapes that are filled between certain bounds. The generated
image also has wave-like shapes, but they are more sinusoidal and regular, with sharper
peaks and troughs.

4. Positions: The positioning of the plots relative to each other is consistent in both images,
with each plot directly adjacent to the next.

5. Visual Elements: The axes, labels, and titles are present in both images, but the font size
and the exact positioning may vary slightly due to the different aspect ratios of the plots.

Considering these factors, the images share some similarities in layout and color but differ
significantly in the shapes and aspect ratios of the plots. The overall concept seems to be

similar, but the execution and the details of the plots are quite different.
Rating: [[3]]

Figure 10: A case of Direct Asking, showcasing the generated code, plot, and evaluation result.

3026

Conditional Asking

<USER>

The figure created by this code consists of three subplots arranged horizontally, all sharing
the same y-axis. The figure size is 6 by 6. The first subplot is a filled area plot between the y-
axis and a curve defined by the sine of 2 times pi times y. The title of this subplot is 'between
(x1, 0)’. The second subplot is a filled area plot between a vertical line at x=1 and the same
sine curve as in the first subplot. The title of this subplot is 'between (x1, 1)', and it also has
an x-axis label 'x’. The third subplot is a filled area plot between the sine curve and another
curve defined by 1.2 times the sine of 4 times pi times y. The title of this subplot is 'between
(x1, x2)". The y values range from 0 to 2 with a step of 0.01. The x values for the first curve
are the sine of 2 times pi times y, and for the second curve are 1.2 times the sine of 4 times pi
times y.

Direct Asking Prompt (illustrated in Appendix A.1)

between (x1,0) between (x1,1) between (x1, x2)

MM

0.50
0.25
000 ‘
-1) 1 -1] 1 -1 [1
x
<GPTAV>

import matplotlib.pyplot as plt

import numpy as np

Define the y values

y = np.arange(0, 2, 0.01)

Define the x values for the curves

x1 =np.sin(2 * np.pi * y)

x2=1.2 * np.sin(4 * np.pi * y)

Create the figure and subplots

fig, axs = plt.subplots(1, 3, figsize=(6, 6), sharey=True)
First subplot

axs[0].fill_betweenx(y, x1, 0, color="blue')
axs[0].set_title('between (x1, 0)')

Second subplot

axs[1].fill_betweenx(y, x1, 1, color="blue')
axs[1].set_title('between (x1, 1))
axs[1].set_xlabel('x")

Third subplot

axs[2].fill_betweenx(y, x1, x2, color="blue")
axs[2].set_title('between (x1, x2)")

Display the plot

plt.tight_layout()

plt.show()

between (x1, 0) between (x1, 1) between (x1, x2)

<Evaluation>

To evaluate the similarity between the reference image and the Al-generated image, we will
compare the following elements:

1. Overall Appearance: We will look at the layout and composition of the images.

2. Colors: We will compare the color schemes used in both images.

3. Shapes: We will assess the shapes present in the images and their accuracy.

4. Positions: We will examine the positioning of the elements within the images.

5. Other Visual Elements: We will consider any additional visual elements that contribute to
the likeness or differences between the images.

Upon comparing the two images:

- The overall appearance of both images is quite similar, with three panels displaying what
appears to be filled curves.

- The colors used in both images are shades of blue, although the reference image has a
lighter shade compared to the Al-generated image's deeper blue.

- The shapes of the filled curves are very similar, with slight variations in the curvature that
could be attributed to the randomness in the data generation or rendering process.

- The positions of the curves within the panels are consistent, with each panel showing a
progression of the shape's complexity or the interaction between two variables.

- Other visual elements such as the axes, labels, and titles appear to be consistent across both
images.

Considering these factors, the images are quite similar, with only minor differences in the
shade of blue and slight variations in the shapes' curvature.
Rating: [[9]]

Figure 11: A case of Conditional Asking, showcasing the generated code, plot, and evaluation result.

3027

Assistant A

Rectangular box plot

Observed values

Pair Evaluation

Ground Truth Image

Rectangular box plot

Notched box plot

?

o

Observed values
!

Three separate samples

Notched box plot

{00

7

o

Observed values
|

6 °

3
o

o
o
o

P
Three separate samples

2
Three separate samples

“{oof

Three separate samples

Assistant B

Rectangular box plot

Notched box plot

RE,

°

Observed values

6 >

S
o

Observed values

o

o

2
Three separate samples

2
‘Three separate samples

GPT-4V Judgment (when A is placed in the first position).

Upon comparing the two responses to the ground truth image, it is clear that the image generated by
Assistant A is more similar to the ground truth image than the image generated by Assistant B.

Assistant A's image closely matches the ground truth in terms of overall appearance, colors, shapes,
and positions. The colors of the box plots (red, blue, green) are identical to the ground truth, and the
layout of the plots, including the titles and axis labels, are accurately reproduced.

Assistant B's image, while maintaining the correct structure of a box plot, does not replicate the
colors of the box plots accurately. All the boxes are blue, which differs from the ground truth image
that has distinct colors for each box plot. Additionally, the titles and axis labels are missing, which
are present in the ground truth.

Therefore, based on the evaluation criteria of overall appearance, colors, shapes, positions, and other
visual elements, Assistant A has generated an image that is more similar to the ground truth image.

GPT-4V Judgment (when B is placed in the first position):

Upon comparing the images generated by Assistant A and Assistant B with the ground truth image, it
is clear that Assistant B has produced an image that is more similar to the ground truth.

Assistant A's image differs significantly in color, using a uniform blue for all box plots, whereas the
ground truth image uses distinct colors for each box plot (red, blue, green). Additionally, Assistant
A's image does not replicate the notched feature in the right-hand side box plots, which is a key
characteristic of the ground truth image.

Assistant B's image, on the other hand, closely matches the ground truth in terms of color, with each
box plot accurately reflecting the colors in the ground truth (red, blue, green). Furthermore, Assistant
B has successfully replicated the notched feature in the box plots on the right-hand side, just as in the
ground truth image.

Therefore, based on the evaluation criteria of overall appearance, colors, shapes, and positions,
Assistant B's image is more similar to the ground truth image.

Figure 12: A case of pair evaluation. We interchange the order of responses from the two assistants and conduct the
evaluation twice. Both results are presented here.

3028

