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Abstract

Large Language Models (LLMs) are pretrained
on extensive multilingual corpora to acquire
both language-specific cultural knowledge and
general knowledge. Ideally, while LLMs
should provide consistent responses to culture-
independent questions across languages, we
observe significant performance disparities. To
address this, we explore the Cross-Lingual Self-
Aligning ability of Language Models (CALM)
to align knowledge across languages. Specifi-
cally, for a given question, we sample multiple
responses across different languages, and se-
lect the most self-consistent response as the
target, leaving the remaining responses as neg-
ative examples. We then employ direct prefer-
ence optimization (DPO) to align the model’s
knowledge across different languages. Evalu-
ations on the MEDQA and X-CSQA datasets
demonstrate CALM’s effectiveness in enhanc-
ing cross-lingual knowledge question answer-
ing, both in zero-shot and retrieval-augmented
settings. We also found that increasing the num-
ber of languages involved in CALM training
leads to higher accuracy and consistency. We
offer a qualitative analysis of how cross-lingual
consistency can enhance knowledge alignment
and explore the method’s generalizability'.

1 Introduction

LLMs have been pre-trained on various knowledge
domains in multiple languages, capturing extensive
world knowledge (Yu et al., 2024). This knowledge
can be either sociocultural-dependent (Sun et al.,
2023; Liu et al., 2025) or sociocultural-independent
(Tang et al., 2024; Huang et al., 2024a). Ide-
ally, LLMs should deliver consistent responses to
the sociocultural-independent questions. However,
due to the imbalance of the pretraining data, such
knowledge is not well-aligned (Qi et al., 2023; Xu
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Figure 1: Knowledge is not well-aligned across lan-
guages. (1) represents knowledge encoded in English
that is difficult to retrieve from other languages. (2) is
the knowledge that is already well-aligned across lan-
guages. (3) is the knowledge encoded in other languages
that is difficult to retrieve in English. Ideally, we want
all the culture-independent knowledge to fall into (2).

et al., 2024; Wu et al., 2025a). Research indicates
that LLMs exhibit varying proficiency when ad-
dressing the same task across different languages
(Xu et al., 2024; Huang et al., 2024b). This variabil-
ity stems from the difficulty of accessing knowl-
edge encoded in one language while using others.

To bridge the gap, recent papers introduced
cross-lingual consistency (Qi et al., 2023), which
pertains to the capacity to provide consistent re-
sponses across different languages when presented
with the same query. The ultimate goal is to achieve
language-agnostic question-answering proficiency
in LLMs, enabling them to generalize effectively
in multilingual environments. Gao et al. (2024)
highlighted the positive impact of multilingual pre-
training and instruction tuning on enhancing cross-
lingual consistency. However, it also pointed out
that current LLLMs still face challenges in scaling
up to improve cross-lingual knowledge retrieval ca-
pabilities. Chen et al. (2023) utilized translation to
develop a multilingual math reasoning instruction
dataset. However, the challenge lies in the labor-
intensive nature of obtaining high-quality transla-
tions and annotating data. She et al. (2024) lever-
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Stage 1: Sample from retrieval augmented
generation and direct generation

Stage 2: Perform majority voting from
sampling results from different languages

DPO tuned model

Stage 3: Construct preference pair and
adopt Direct Preference Optimization

Base model

Figure 2: An example of the three stages in our proposed method assuming a question input originally in English.

aged translation consistency as a reward model to
align the reasoning processes in other languages
with the dominant language. Nevertheless, this ap-
proach may diminish the diversity of knowledge
or reasoning introduced by different languages.
Huang et al. (2024b) enhanced the multilingual cul-
ture commonsense reasoning by implementing a
multi-agent framework to aggregate the knowledge
from diverse languages. In this work, we focus on
leveraging multilingual knowledge aggregation by
adopting preference optimization for model tuning.

To address the challenges of (1) establish-
ing a scalable framework for aligning culture-
independent knowledge across different languages
and (2) lacking high-quality annotated data for
training, we propose CALM, a method that en-
courages consistent answers to the same questions
in different languages, motivated by the observa-
tion (Figure 1) that non-English languages often
contain complementary knowledge missing in En-
glish outputs. In Figure 3, majority-voted answers
consistently outperform English-only responses,
making them viable alignment targets despite oc-
casional factual inaccuracies. Exclusively align-
ing all other languages to English fails to leverage
the LLM’s full multilingual knowledge potential,
whereas CALM’s language-agnostic voting mecha-
nism synthesizes cross-lingual insights.

Our approach leverages direct preference opti-
mization (DPO) (Rafailov et al., 2024) to facilitate
cross-lingual alignment. The approach involves
three steps. First, we sample a variety of multi-

lingual Chain-of-Thought (CoT) outputs from the
models. Next, we conduct majority voting on the
sampled outputs in different languages, selecting
the answer with the highest vote as positive. Finally,
we pair the positive sample with all other answers
that are inconsistent with it, utilizing these pairs
for DPO training. Moreover, we expand this frame-
work to integrate external knowledge by combining
Self-supervised Retrieval-Augmented Generation
(Self-RAG) (Asai et al., 2023) with DPO.

We conduct experiments on the challenging
MEDQA (Jin et al., 2020) and the multilingual X-
CSQA (Lin et al., 2021) datasets, each represent-
ing general knowledge and commonsense knowl-
edge. On average, CALM boosts the accuracy on
MEDQA and X-CSQA by +3.76% and +5.55% re-
spectively. Our key contributions are summarized:

* We propose CALM, a label-free approach to ef-
fectively align the culture-independent knowl-
edge by encouraging cross-lingual consistency,
enabling the model to enhance its knowledge ac-
curacy and consistency (Huang et al., 2023).

* We conduct experiments in both zero-shot Chain-
of-Thought and retrieval augmented settings, uti-
lizing Llama3-8B-Instruct (Dubey et al., 2024),
Self-RAG (Asai et al., 2023), and Mistral-7B-
Instruct-v0.2 (Jiang et al., 2023). The outcomes
highlight the efficacy of our approach in aligning
internal and external knowledge.

* We further evaluate the cross-language and cross-
dataset generalizability of CALM, showcasing
its robustness and scalability.
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Model MEDQA (%) X-CSQA (%)

EN ZH ACCqavg EN ZH FR IT DE JA ACCq4ugConsis  AC3
Llama 60.1 56.2 58.2 73.1 52.1 60.8 59.8 57.5 49.2 62.0 5773 5824
+ SFT 62.4 57.1 59.8 73.8 532 62.3 60.0 59.8 51.0 63.1 59.67 60.82
+ CALM 63.5 59.5 61.5 74.1 57.6 65.0 64.7 60.9 53.6 648 61.13 61.70
Self-RAG  62.6 57.1 59.9 - - - - - - - - -
+ SFT 63.8 60.3 62.1 - - - - - - - - -
+ CALM 64.7 63.7 64.2 - - - - - - - - -
Mistral 49.8 36.4 43.1 60.1 48.3 51.6 50.7 49.4 43.0 533 5051 50.51
+ SFT 50.3 37.9 441 67.7 48.8 53.7 56.6 55.6 441 56.7 5327 53.83
+ CALM 529 38.5 45.7 68.1 56.8 56.8 57.7 58.6 50.5 60.6 57.27 57.67

Table 1: Model accuracy percentage score on the test set of MEDQA and X-CSQA in different languages. “ACCy,,4”
denotes the average traditional accuracy of all languages, which represents the overall level of domain knowledge of
the model. The bold text represents the best result in the given model. Note that there are no X-CSQA results for
Self-RAG because there are no documents available for retrieval. The full result of MEDQA can be found in Table 9.

2 Method

To encourage cross-lingual consistency, CALM
samples a variety of Chain-of-Thought (CoT) (Wei
et al., 2024; Kojima et al., 2024) responses from
different languages, and leverages response con-
sistency (Wang et al., 2023; Wu et al., 2025b) as
the learning signal. By selecting the most voted
response as the positive sample, we construct the
preference pairs and adopt DPO to optimize the
preference. As the winning response may be any
language, we preserve the diverse knowledge from
languages other than English. We verified our ap-
proach in a retrieval-augmented setting, showing
that our approach boosts the multilingual transfer-
ability of both internal and external knowledge.
The proposed framework is shown in Figure 2.
Our method comprises multilingual response sam-
pling, self-consistency-based preference pair con-
struction, and multilingual knowledge alignment.

2.1 Multilingual response sampling

Translation For monolingual dataset, where a se-
ries of multiple choice questions are provided in
its primary language (e.g., English), denoted as
Qen = {qt,} Y, we first translate them into two
additional languages, say Chinese ((Qcn2cn) and
French (Qcpnayr). For multilingual datasets, this
translation step is omitted, and the parallel ques-
tions in different languages are utilized directly.

CoT answer generation We apply multiple path
decoding with temperature 7 = [ on each variant of
the question ¢’ foralli = 1, ..., N and * be any lan-
guage in {en, en2fr, en2cn} to generate m pairs
of CoT explanations and answers { (7,3 )},
where y denotes one of the predicted choice (A, B,

C,...). The model is instructed to output an “Expla-
nation” followed by an “Answer” to conform with
the CoT format (Wei et al., 2024).

2.2 Self-consistency based preference pair
construction

Self-consistency CALM assumes that the answer
with the most votes reflects the highest model con-
fidence (Xiong et al., 2024; Kabra et al., 2023),
making it more likely to be correct (Wang et al.,
2023). use majority voting to identify the most
popular option g; from all multilingual answers,
though g; may not necessarily match the ground
truth answer. We designate the most self-consistent
answer as the positive sample.

Preference pair After obtaining a set S =
{(r%, y"*)} of the most voted explanation-answer
pair that satisfies Vy'* € {(r?* y*)1p, v = ¢,
we pair each of the positive samples with negative
samples. Note that the positive samples are not
necessarily in English. Hence, we aggregate the in-
ternal knowledge of both English and non-English
languages. Negative samples are inconsistent with
the positive ones, i.€., Ynegative 7 y*. For each
positive-negative sample pair, the positive sample
is translated into the language of the negative sam-
ple. The final preference pairs of the i-th question

are p' = {pi, : (P 0nss 001+ (P, Y )neg }-

2.3 Multilingual knowledge alignment

We adopt DPO as the alignment approach using the
preference pairs (py,, p;) obtained from 2.2, where
Py is preferred over p;. Given an input question g,
we optimize the following objective:
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Figure 3: Visualization of mono-lingual (EN, ZH-CN, FR) percentage accuracy against the multilingual majority
voting accuracy. The multilingual majority-voting result always has the highest accuracy. The proportion of each

language in the CALM training data is in Table 7.

Lppo (705 Tref) = E(q, pw, 1) ~

mo(Pwla) 7o(pi]q) )]
b |:10g 7 <ﬂ log ﬂref(pw |Q) ﬁ log 7Tref(pl |Q)

3 Experiment and Results

3.1 Datasets and Metrics

We perform experiments on the following datasets:

* MEDQA: Zero-shot question answering, and
Self-RAG’s noisy evidence retrieval (Jin et al.,
2020) over multiple evidence on medical multi-
choice questions.

* X-CSQA: General multilingual commonsense
question answering, including parallel questions
from English, Chinese, French, Italian, German,
and Japanese.

We adopt the multilingual consistency metrics in-
troduced by (Wang et al., 2024; Lin et al., 2024),
which includes traditional accuracy, consistency
and AC3. Traditional accuracy refers to the ac-
curacy of the multiple-choice questions. Consis-
tency is intended to measure if the model delivers
consistent responses to the same question in differ-
ent languages. A higher consistency score implies
that multilingual LL.Ms can provide consistent re-
sponses across languages, which is irrelevant to the
accuracy. For datasets like X-CSQA that contains a
set of questions Q = {¢'} Y, across six languages,
the consistency metric is defined as:

N ! l ls
Y Uy =y’ = .. =y}
N

My, =

in which yﬁs denotes the answer to the i-th multiple
choice question given by language [;. The final
multilingual consistency is given by:

Z{ll,lz,...,ls GC(a,qi)} M{llyl27~~~7ls}

Consistencys =

&

AC3 is a metric combining accuracy and cross-
lingual consistency, which is more robust for this
multilingual task. The formulation is given by:

AC3, = 2 Accuracy x Consistencys

Accuracy + Consistencys

By considering both accuracy and multilingual con-
sistency, we can measure the knowledge gain and
the cross-lingual consistency.

3.2 Baselines

Base models Our experiments utilize three base
models, including Llama3-8B-Instruct (Dubey
et al., 2024), Mistral-7B-Instruct-v0.2 (Jiang et al.,
2023), and Self-RAG (Asai et al., 2023). The
testing results from the first two models demon-
strate the efficacy of our approach in aligning in-
ternal knowledge, while the result from the last
model highlights its proficiency in aligning exter-
nal knowledge. The primary baseline is the direct
inference results from all base models.

Supervised finetuning on preferred samples To
prove the necessity of DPO in training, we adopt
supervised fine-tuning (SFT) (Luong and Manning,
2015) on preferred samples, namely using the most
voted answers as SFT labels.

3.3 Results

In Table 1, CALM has encouraged the model to
produce more accurate and consistent answers in
all settings, outperforming the base model and the
supervised fine-tuned model under all settings. No-
tably, the performance gain in X-CSQA surpasses
that of MEDQA, which is likely due to the involve-
ment of more languages participating, thereby ac-
tivating more internal knowledge. Therefore, we
can conclude that our approach has successfully
facilitated the cross-lingual self-alignment.
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4 Discussion

4.1 Accuracy of the positive samples

In Figure 3, we observe that the most self-
consistent answer does not always align with
the factually correct answer. Although the self-
consistent answer’s accuracy slightly surpasses
monolingual accuracy, the improvement remains
modest. This raises an important question regard-
ing the effectiveness of noisy labels in CALM’s
training process. To better understand this phe-
nomenon, we examine examples of the preference
data generated by CALM in Table 4 in the Ap-
pendix. The example shows that, although the
preferred data may be factually incorrect, it often
demonstrates better context awareness, which can
lead the model to generate more accurate answers.

MEDQA X-CSQA
EN ZH EN ZH FR

Llama3-SFT w/ GT 62.5 588 735 538 638
Llama3-DPO w/ GT 625 593 740 543 64.1
Self-RAG-SFT w/ GT  63.6 623 - - -
Self-RAG-DPO w/ GT  64.5 63.8 - - -
Mistral-SFT w/ GT 509 369 73.0 51.6 60.1
Mistral-DPO w/ GT 524 38.1 732 51.8 55.0

Model

Table 2: Two additional baselines: DPO and SFT with
ground truth. In this setting, we only keep the portion
of DPO and SFT data that are factually correct.

4.2 SFT and DPO with ground truth

Using ground truth from X-CSQA and MEDQA,
we evaluate supervised SFT and DPO, retaining
only preference pairs and SFT data where positive
samples match ground truth. In Table 2, supervised
methods do not significantly outperform CALM,
suggesting that guiding the model toward more
confident and self-consistent answers can achieve
comparable correctness even without ground truth.

Model MEDQA X-CSQA

EN FR ZHCN EN ZHCN
Llama3-8B 734 627 538 609 579
Mistral- 7B 70.8 55.1  55.6 529 372

Table 3: We investigate the cross-dataset generalizabil-
ity. The table shows the result of training on MEDQA
and testing on X-CSQA, or training on X-CSQA and
testing on MEDQA. Both settings surpass the baseline.

4.3 Generalizability

Cross-dataset generalizability To evaluate the
generalizability, we conduct cross-dataset experi-
ments by training models on X-CSQA and testing
them on MEDQA, and vice versa. Table 3 reveals
that while the out-of-domain accuracy falls below
the in-domain accuracy, it consistently exceeds the
in-domain performance of the SFT baseline. This
underscores the capability of CALM-trained mod-
els to provide multilingually consistent answers,
even when faced with unseen tasks or domains.
These findings suggest that CALM enhances in-
domain performance and fosters robustness across
different types of domains.

Cross-lingual generalizability We implement
CALM training sequentially, beginning with En-
glish and incrementally adding French and Chinese,
progressing from high-resource to low-resource
languages. At each step, we evaluate test accuracy
across all languages. To assess CALM’s effective-
ness in untrained languages, we include Japanese,
Italian, and German in the test set, none of which
were included during training. In Table 10 in the
Appendix, CALM demonstrates greater effective-
ness as more languages participate in majority vot-
ing. Notably, even untrained languages exhibit
accuracy improvements, suggesting that CALM’s
alignment mechanism fosters a unified understand-
ing of knowledge across languages, thereby enhanc-
ing overall comprehension. This aligns with She
et al. (2024), which similarly observe cross-lingual
generalizability in multilingual reasoning tasks.

5 Conclusion

We introduce CALM, a novel framework to facil-
itate the alignment of LLM’s knowledge across
different languages. We observe that CALM is
more effective when more languages are involved
in the training, due to internal knowledge aggre-
gation. Additionally, CALM outperforms ground
truth DPO and SFT. It shows that although some
of the positive samples are factually incorrect, they
also contribute to the accuracy gain in CALM, pos-
sibly because more consistent answers often have
better task understanding and can lead the model
towards more correct answers. Through compre-
hensive experiments, we demonstrate the effective-
ness of CALM in achieving robust cross-lingual
knowledge alignment.
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Limitations

One of the main limitations of our study is that
due to the constraints of computational resources,
we are unable to perform experiments on larger
models. For the same reason, we are also not able
to perform full-parameter fine-tuning and can only
use LoRA DPO fine-tuning as an alternative. The
translations in the experiment are done by Google
Translate API, which may not be accurate some-
times because the dataset contains a many chal-
lenging medical terminology, hindering our final
performance. For the DPO training data construc-
tion, since the accuracy after majority-voting is still
low, the final alignment performance may be con-
strained by the noisy labels in the positive samples.
Training one language after another can result in
performance degradation in other languages. Fu-
ture work can further investigate continual learning
in multilingual knowledge alignment.

Ethics Statements

In this paper, we present a method to align knowl-
edge across multiple languages, ensuring equitable
access to LLMs for users from diverse linguistic
backgrounds. Our approach utilizes the model’s
own outputs to perform cross-lingual alignment
without the need for human annotations. By reduc-
ing dependence on manual labeling, this method
enhances fairness, scalability, and inclusivity in
multilingual Al furthering the democratization of
LLMs across global communities.
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A Training and inference configuration

We set m = 3 when sampling responses for each
of the base models. We finally obtained 17244
and 2168 preference pairs from MEDQA and X-
CSQA datasets, respectively. We used LoRA (Hu
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Question
at store D. hen E. tuna [Ground truth: B. cow]

The farmer could raise a good chicken, but he wasn’t ready to move up to a what? A. rooster B. cow C. bought

Chosen

Explanation: The phrase “move up" is an idiomatic expression that means to progress or advance to the next

level or stage. In this context, it implies that the farmer has some experience with raising a chicken (a good one
at that), but is not yet ready to take on more complex or challenging tasks. Answer: A. rooster [Incorrect, but
the reasoning is more plausible since it realized the answer should be a task more challenging than raising a

chicken.]

Rejected

Explanation: This question tests the development stage of a farmer. The farmer is now able to raise chickens,

which shows that he has achieved certain experience and achievements. Well, if he’s not ready to upgrade to
something, only one of these options makes sense. Answer: D. Hen [Incorrect, and it does not show the same

level of task understanding as the Chosen one |

Table 4: Qualitative example of CALM generated preference pair, where the chosen answer is not factually correct.
The blue text shows the analysis. Although the chosen and rejected samples are both incorrect, the former pays
better attention to the key part of the context “move up" by mentioning that the farmer will be likely to face a more
challenging task. This reasoning shows better context awareness and is more likely to lead to the correct answer.

et al., 2021) Fine-tuning method for DPO and SFT
training. The training parameters are listed in Table
5. The inference parameters are shown in Table
6. All the experiments are performed on NVIDIA
A100-SXM-80GB GPUs. We utilize the Llama3-
8B-Instruct and Mistral-7B-Instruct model from
LlamaFactory (Zheng et al., 2024) framework for
training and testing.

Parameter DPO SFT
Learning Rate Se-6 Se-5
num_train_epochs 3.0 3.0
Ir_scheduler_type cosine consine
per_device_train_batch_size 1 1
warmup_ratio 0.1 0
val_size 0.06 0.06
pref_beta 0.1 -
pref_loss sigmoid -
per_device_eval_size 2 2
LoRA_rank 8 8
LoRA_alpha 16 16
LoRA_trainable QprojsVproj  Qproj»Voproj
Optimizer Adam Adam

Table 5: DPO, SFT training parameter

Parameter Value
Temperature 1
top_p 0.9
max_new_tokens 512

per_device_eval_batch_size 4

Table 6: Model inference parameters

B Detailed use of the training dataset

B.1 Data source

This section shows the details of the preliminary
dataset selection in Section 3.1. 11.6k and 10k
multiple choice questions were sampled from the

MEDQA(%) X-CSQA(%)
EN CN FR EN CN FR

Llama3-8B 582 17.1 24.8 529 215 256
Mistral-7B 472 18.1 347 493 21.7 29.0

Model

Table 7: The percentages of positive samples for each
language across task settings. English tasks up the
largest portion of the positive samples, but there are
also considerable amounts of Chinese and French sam-
ples.

EN CN FR
MEDQA 214 473 313
Mistral  20.5 40.0 395

Table 8: Percentage of Chinese, French and English
language in final CALM training data.

MEDQA-ZH-CN and MEDQA-US question bank
(Jin et al., 2020). We also used all the Chinese
and English textbooks provided by MEDQA to con-
struct a vector database, which is necessary for the
retrieval augmented generation. For X-CSQA (Lin
et al., 2021), we sampled 3k Chinese, English, and
French questions.

B.2 Statistics of the training datasets

Table 7 and Table 8 shows the percentages of posi-
tive samples for each language across task settings.
English indeed tasks up the largest portion of the
positive samples, but there are still considerable
amounts of Chinese and French samples.

B.3 Full result of MEDQA dataset

For MEDQA, we first translate the native Chinese
and English questions into other languages, form-
ing a parallel training set in Chinese, English and
French. The full testing result of the MEDQA is
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MEDQA US MEDQA CN-ZH

Model

Native EN  EN2CN EN2FR AVG Native CN  CN2EN CN2FR AVG
Llama3-8B-Instruct 60.1 33.3 449 46.1 56.2 59.5 447 53.5
+ SFT 624123 36.1128 458109 478117 571109 599104 464117 545110
+ CALM 635134 398165 463114 499138 595133 608113 474127 559124
Self-RAG 62.6 36.8 46.9 48.8 57.1 59.8 49.1 553
+ SFT 63.811.2 403135 474105 505107 603132 61.011.2 51.2137 575122
+ CALM 64.7 2.1 42.6158 494125 523135 63.7166° 643145 528137 603150
Mistral-7B-Instruct 49.8 29.1 38.8 39.2 36.4 473 424 42.0
+ SFT 503105 31.6125 407119 409117 379115 493120 446122 439119
+CALM 529131 327136 419131 425133 385121 51.8145 456132 453133

Table 9: Full result on the translated MEDQA dataset.

Model EN FR ZH-CN IT DE JA
Llama CALM w/ EN 734 60.8 52.5 61.6 565 425
Llama CALM w/ EN+FR 73.6 62.0 524 620 562 436

Llama CALM w/ EN+FR+CN  74.1  65.0 54.5 623 57.0 440

Table 10: We investigate the cross-lingual generalizability by incrementally adding the training languages in CALM
and observe the testing result on both trained and untrained languages. Here, in-domain languages (e.g. languages
that appeared in the training data) are highlighted in bold font.

illustrated in Table 9. The accuracy is improved
across all the languages after CALM tuning, and
the native language has the largest performance
gain. The performance of non-native languages is
possibly constrained by the translation quality.
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