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PREMISE: Matching-based Prediction for Accurate Review
Recommendation

Abstract

We present PREMISE (PREdict with MatchIng
ScorEs), a new architecture for the matching-
based learning in the multimodal fields for
the Multimodal Review Helpfulness Predic-
tion (MRHP) task. Distinct to previous fusion-
based methods which obtains multimodal repre-
sentations via cross-modal attention for down-
stream tasks, PREMISE computes the multi-
scale and multi-field representations, filters du-
plicated semantics, and then obtained a set
of matching scores as feature vectors for the
downstream recommendation task. This new
architecture significantly boosts the perfor-
mance for such multimodal tasks whose con-
text matching content are highly correlated to
the targets of that task, compared to the state-
of-the-art fusion-based methods. Experimen-
tal results on two publicly available datasets
show that PREMISE achieves promising per-
formance with less computational cost.

1 Introduction

The e-commerce industry has experienced an un-
precedented boom in the past decade. Powered
by an instant trading system, online shopping plat-
forms successfully endow buyers who seek their
favorite goods and sellers who advertise their prod-
ucts with convenience for transaction (Boysen et al.,
2019; Vulkan, 2020; Alfonso et al., 2021). How-
ever, when wandering through these shops, cus-
tomers easily fall into the dilemma of deciding
whether to buy a product displayed on the screen.
At that time, the comments left by past customers
are often considered as the most valuable reference.
Therefore, how to automatically evaluate review’s
quality and accurately recommend these reviews
becomes a challenge yet an opportunity for online
shopping platforms to attract and hold customers.
Formally, researchers formulate this problem as the
Review Helpfulness Prediction (RHP) task (Tang
et al., 2013; Ngo-Ye and Sinha, 2014), which aims
to quantify the value of each review to potential

Product Name: Gourmia GK250 (1.8 Qt/1.7 L) Cordless
Stainless Steel Kettle Supreme - Speed Boil - Auto Shutoff
Boil Detect - Concealed Element - 360 Swivel Base - 1500
Watts

Product description: Forget fumbling with all of those mi-
crowaves...Heat up to 1.7 liters of piping hot water in a flash!
... and auto shut off to ensure completely safe kettle usage...

Review 1 (Helpfulness Score: 4): I’ve had my eye on an
eighty dollar stainless steel electric kettle for a while, but I
didn’t care to make that investment just yet. ... Kettle auto-
matically turned off within seconds of reaching a full boil.
When filled halfway (to 1 liter), it takes about 4 and a half
minutes to boil. This kettle doesn’t take up much counter
space either, it’s easy to tuck in to the corner by my stove
when I need it out of the way. Overall I’m pretty happy with
this, and thankful for a kettle that turns itself off so I don’t
have to worry about forgetting it while it’s boiling.

Review 2 (Helpfulness Score: 1): The handle for the kettle
which love or I thought I did is falling off. What do I do? Was
this product meant to only last for a few months? I need help
here! So disappointing. I did not want to report it here, but I
see nowhere else to do so.

Table 1: A pair of reviews with high and low helpfulness
scores from Amazon-MRHP dataset. We highlight the
text that provides customers helpful information. Due
to space limitation we only preserve key sentences in
the product description.

customers. By sorting these reviews according
to the predicted helpfulness scores in descending
order, the platform can post the most valuable re-
views at the conspicuous location in the shop page.
In recent years, RHP task has been extended to

the multimodal scenario by incorporating the text-
attached images as an auxiliary source to help the
model make more accurate predictions (Liu et al.,
2021), termed Multimodal RHP (MRHP).
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Previous achievements to address this problem
usually employ fusion modules to learn expressive
multimodal representations for prediction (Arevalo
et al., 2017; Chen et al., 2018; Liu et al., 2021;
Han et al., 2022; Nguyen et al., 2022). Despite
the gained satisfying results, there are still several
drawbacks in those models that limit the system’s
performance. First, explicit multi-scale modeling
is missing. Extant works usually take into account
single or combinations of segments in a fixed scale,
such as tokens, phrases and image patches. Nev-
ertheless, multi-scale modeling is necessary espe-
cially when confronted with long textual inputs
like reviews, since it has been pointed out that task-
related information is commonly distributed un-
evenly among all the sentences (Chen et al., 2019).
Take a randomly picked product and attached re-
view in Table 1 as an example, even a review of
high helpfulness score (Review 1), there are many
dispensable sentences (unbold text) that stray from
the product it comments on (off-the-topic). Sec-
ond, though fusion-based models have been demon-
strated effective in a family of multimodal tasks,
they often result in bulk structures and hence are
time-consuming in the training process (Nagrani
et al., 2021). Previous research reveals that seman-
tic matching, i.e., the similarity between semantic
elements (image regions, text tokens and their n-
grams) can be regarded as a crucial factor that guide
models to make the final decision (Ma et al., 2015;
Huang et al., 2017; Liu et al., 2017). Based on
the discovery, we postulate that quantified match-
ing scores could be fully exploited in regression.
Specifically, in MRHP task, the matching extent
between the review and product description, and in-
side a review itself (i.e., whether the text and image
of a review express a similar meaning) impact how
customers rate that review—one could probably not
contribute kudos unless he finds product-related
contents in that review—such contents subsume
the confirmation to the seller’s claims, complemen-
tary illustration of the product’s characteristics, and
precautions for the usage, etc.

Based on these two observations and inspired by
the idea from relation-based learning (Snell et al.,
2017; Sung et al., 2018), we devise a simple yet ef-
fective model, PREMISE (PREdict with MatchIng
ScorEs) for MRHP tasks. PREMISE gets rid of
classic fusion-based architecture and use the match-
ing scores between different modalities and fields
in various scales as the feature vectors for regres-

sion. Meanwhile, we harness the theory of con-
trastive learning (Oord et al., 2018; He et al., 2020;
Chen et al., 2020a) to further boost the model’s
performance as it has similar mathematical inter-
pretations of relation-based learning. To our best
knowledge, this is the first work that dedicates to
utilizing semantic matching scores as logits for
classification. The contributions of our work are
summarized as follows:

• We propose PREMISE, a model purely based
on semantic matching scores of multi-scale
features for the multimodal review helpfulness
prediction task. PREMISE can produce multi-
modal multi-field and multi-scale matching
scores as expressive features for MRHP tasks.

• We design a new functional architecture
named aggregation layer, which receives fea-
tures from a smaller scale and outputs combi-
nations of features in the same scale, plus the
counterparts in a larger scale.

• We conduct comprehensive experiments on
several benchmarks. The results compared
with several strong baselines show the great
advantage and efficiency of exploiting seman-
tic matching scores for the MRHP task.

2 Related Work

Multimodal Representation Learning The fun-
damental solutions of current multimodal tasks fo-
cus on multimodal representation learning, which
dedicates to extracting and integrating task-related
information from the input signals of many modal-
ities (Atrey et al., 2010; Ngiam et al., 2011). Re-
cently, multimodal fusion technique becomes the
predominant method for expressive representation
learning, which coalesces a set of multimodal in-
puts by mathematical operations (e.g., attention
and Cartesian product) (Liu et al., 2018; Tsai et al.,
2019; Mohla et al., 2020; Hazarika et al., 2020; Han
et al., 2021b). Though showing exceptional perfor-
mance on those tasks, stacked attention architec-
ture also consumes huge computational power and
slows down the training and inference speed. To
alleviate this issue, we devise a fusion-free model
for the MRHP task, which escapes from the con-
ventional fusion-based routine.

Relation-based Learning The idea of relation-
based learning was firstly applied in the few-
shot image classification task (Vanschoren, 2018;
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Hospedales et al., 2020). Vinyals et al. (2016) em-
ploys quantified similarity values between the un-
seen test images and seen trained images to perform
classification. Prototypical networks (Snell et al.,
2017) and Relation Network Sung et al. (2018) fur-
ther treats the correlation matrices between images
and pre-computed prototypical feature vectors as
logits and optimize them to improve the model’s
performance. Lifchitz et al. (2019) substitutes
the comparison target with implanting weights for
better generalization ability. Later achievements
stemming from this theory encompass building up
network structures for interactions between sam-
ples (Garcia and Bruna, 2017; Kim et al., 2019), in-
corporating small-scale computation units like im-
age pixels (Chang and Chen, 2018; Si et al., 2018;
Hou et al., 2019; Min et al., 2021) and adding corre-
lation matrices as regularization terms (Wertheimer
et al., 2021). In the multimodal scenario, seman-
tic matching has also been chosen as the core task
to pretrain large multimodal models (Chen et al.,
2020b; Kim et al., 2021; Radford et al., 2021).
We inherit this idea to develop a matching-based
approach for the MRHP task. In our network,
sorted matching scores between vectors of differ-
ent scales and modalities are shaped into regression
features. We will show this canonical formulation
beats many fusion-based strong baselines.

3 Method

In this section, we first illustrate the problem defi-
nition of Multimodal Review Helpfulness Predic-
tion (MRHP). Then we elaborate on the model
architecture and training process.

3.1 Problem Definition

Given N product descriptions P =
{P1, P2, ..., PN} and their associated review
sets R = {R1, R2, ..., RN}, where the re-
view set Ri contains mi pieces of review
Ri = {ri,1, ri,2, ..., ri,mi}. Both the product
descriptions and review pieces are presented in
the modality of text Tpi/ri,k and image Ipi/ri,k .
MRHP aims to predict the helpfulness scores
of reviews {yi,k}mi

k=1 and rank these reviews
according to the scores in descending order so
that favorable reviews can be promoted to the
top. For the simplicity of the statement, we call
the product description and review field, denoted
by the superscripts f ∈ {p, r}. Similarly the
superscripts m ∈ {t, v} refer to the modality of

text and image (vision).

3.2 Overview

We depict the overall architecture of our model
in Figure 1. At the bottom layer, the modality-
specific encoders are pretrained models or word
vectors that map the raw inputs into continuous em-
beddings. The initially embedded representations
are viewed as the minimal scale to be aggregated
by PREMISE. For example, they are word vectors
if the encoder is Glove (Pennington et al., 2014),
contextualized word representations if applying
BERT (Devlin et al., 2018) or other pretrained lan-
guage models, and detected hot regions in an image
when adopting FastRCNN (Girshick, 2015). These
representations are then passed through N stacked
aggregation layers where representations from a
smaller scale are collated into larger-scale coun-
terparts. Finally, PREMISE computes the match-
ing scores between these multi-scale feature vec-
tors and performs regression with the sorted top-K
scores.

3.3 Input Feature

Textual Representation We initialize the token
representations of text in the product and review
fields with word vectors or pretrained models as
E′

t = {e′t1 , e
′t
2 , ..., e

′t
l }, where l is the length of a

review sentence. For word vector embeddings, we
additionally exploit a Gated Recurrent Unit (GRU)
(Cho et al., 2014) layer on each sentence to obtain
the context-aware token-level representations Et =
{et1, et2, ..., etl}, where θt denotes the parameters of
the GRU.

Visual Representation We embed images with
pretrained Faster R-CNN (Ren et al., 2015), which
utilizes ResNet-101 as its backbone, yieding the
visual feature input Ev = {ev1, ev2, ..., evnh

}. where
θv denotes the parameters in FastRCNN and nh

is the number of hot regions detected in the given
image.

3.4 Multi-Scale Matching Network (MSMN)

The inspiration beneath MSMN is from the pyra-
mid and network-in-network architectures (Lazeb-
nik et al., 2006; Han et al., 2021a) and relation-
based learning (Snell et al., 2017; Sung et al.,
2018).

Multi-scale Feature Generation MSMN con-
sists of several structurally-identical aggregation
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Figure 1: The overall architecture of PREMISE. We hide the data frame reorganization process betwixt two
aggregation layers that merge the produced larger-scale representations into a new sequence and only show the
outputs from a single block of data with the subscript i omitted for simplicity.

layers that upscale the input sample hierarchi-
cally. An aggregation layer can be further di-
vided into many aggregation blocks, as pictured
in Figure 2, each of which receives the outputs
produced from the last layer to generate both the
combined representations at the k-th scale h1:nk

=
{h1, h2, . . . , hnk

} of length nk (for better readabli-
tiy we omit the superscript flags of modality and
field) and an aggregated representation at the k+1-
th (next larger) scale HK+1:

Vk,i = {Hk,1, . . . ,Hk,nk
} (1)

Hk+1,i,h1:nk,i = Aggri(Vk,i; θi) (2)

where Vk,i is the collection of the aggregated rep-
resentations from the k-th layer and the subscript
i indexes the aggregation block that processes the
sequence i of an input instance in the k-th layer.
The output representations are all collected to cal-
culate matching scores later, and the upscaled rep-
resentations are meanwhile gathered as the input
sequences for the next layer. Following Han et al.
(2021a), we enforce these internal blocks to share
parameters, i.e., θ1 = θ2 = . . . = θnk

. In our
formulation, we set N = 2 to endow these scales
with realistic meanings (from k = 0 to k = 2)—
“word → sentence → the entire review/description”
for text and “hot region→ image → the entire re-
view/description” for images.

We adopt Transformer (Vaswani et al., 2017) as
the basic architecture for aggregation layers. For
each layer, We feed the sequential representations
from the last layer (after adding the [CLS] token to

their heads) into the current layer and extract the
heads of the output as the next-scale representations
that serve as the input to the next layer:

[Hk+1,i, h1:nk,i] = Transformer(Vk,i;Θ) (3)

where Θ denotes the transformer parameters.
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Figure 2: The inner structure of an aggregation layer.

Semantics Refinement In the lower layer where
the feature scale is small and dense, there are closed
semantic units, which result in many duplicated
matching scores and impair the ability of predic-
tion network (as we show in the next section) To
address this problem, we aim to filter the extremely
long sequences of output features, only to maintain
the dominant components. The algorithm is based
on a faster k-means algorithm, which can produce a
set of representations by clustering adjacent points
so that redundant semantics are eliminated. To re-
duce extra overhead, we implement an approximate
but faster algorithm (Hamerly, 2010) only when
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the feature number exceeds a threshold. To pre-
vent each clustered set from being too small (i.e.,
only 1 or 2 points) and ensure efficiency, we ran-
dom sample C points as centers. The algorithm is
formally depicted in Algorithm 1, where we omit
the specific steps of fast k-means and readers can
refer to the paper (Hamerly, 2010) for the details.
It should be emphasized that k-means is a non-
parametric clustering algorithm and only incurs
negligible overhead in the forward pass.

Algorithm 1: Semantics Refinement
Input: Semantic elements set S = {s1, s2, ..., sN},

expected cluster size r, number of centers C,
Output: Refined set S′ = {s′1, s′2, ..., s′C}

1 if N ≤ C × r then
2 return RandomSample (S,C)
3 else
4 return k-Means(RandomInit(C), S)
5 end

In the algorithm, C bounds the lowest number
of centers required for the later computation and
a typical value could be C = ⌈

√
K⌉ where K is

the hyperparameter in the last layer’s feature selec-
tor (as stated below) implicitly and roughly. The
heuristics in using squareroot comes from the fact
that similarity scores are computed in pair. Here
r is another important hyperparameter that con-
trols the expected (or average) cluster size to avoid
overmuch small clusters.

Prediction After obtaining the representations
from both fields and modalities in all scales
(Hk, h1:nk

), we concatenate them into four ma-
trices Rt,p,Rt,r,Rv,p,Rv,r whose rows are these
representation vectors. Concretely, we extract the
n-gram token, sentence, and n-gram sentence rep-
resentations for text, and n-gram RoI and image
representations for the image. We hypothesize that
the review quality depends on the semantic coher-
ence existing within 1) The image-text pair in the
review to guarantee the coherence of the review
itself. Low-quality reviews are usually not self-
contained (Rt,r,Rv,r). We exclude the scores of
image-text pairs from product introduction because
they do not have any impact to the helpfulness of a
review. 2) The same modality from different fields
(Rt,p,Rt,r and Rv,p,Rv,r). This is important be-
cause user-preferred comments should directly re-
sponse to the selling points in the introduction.

The matching scores are calculated as the cosine

similarities between row vectors of two matrices:

S(A,B) = cosine(A,B) =
ABT

∥A∥ · ∥B∥T (4)

where ∥ · ∥ is the row-wise L2 normalization. Sup-
pose there are n1, n2, n3, n4 rows (the number of
feature vectors) in the four matrices, then we have
n1n2 + n2n4 + n3n4 matching scores. We then
picked the highest K scores to form the last fea-
tures. It should be emphasized that the top-K opera-
tion reorganizes the tensors during its computation.

h = TopK(FlattenAll(S′)) (5)

Therefore the gradient back-propagation path is
not constant given different input samples. The
predictions for training and inference are calculated
from the feature:

fi,j = σ(Linear(hi,j)) (6)

where σ is the Sigmoid function.

3.5 Training
We follow Nguyen et al. (2023) to apply the listwise
loss for training.

L = −
|P |∑

i=1

|Ri|∑

j=1

y′i,j log(f
′
i,j) (7)

where |P| is the number of productions in the batch
and |Ri| is the number of reviews corresponding to
Pi. The normalized labels y′ and predictions f ′ are
given by

f ′
i,j = softmax(fi)j , y

′
i,j = softmax(yi)j (8)

Note that the final predictions are ranged within
(0, 1), which diverges from the true label distri-
bution y ∈ [0, 4]. However, the ultimate target
(same as the evaluation metrics) of the task con-
centrates on ranking (relative value) rather than
absolute value. This kind of learning can still bene-
fit the performance.

4 Experiments

4.1 Datasets and Metrics
We evaluate our model on two MRHP datasets (Liu
et al., 2021), each of which subsumes same three
categories: Clothing, Shoes & Jewelry, Home &
Kitchen and Electronics. We train and test both
datasets on a single NVIDIA RTX A6000 GPU.
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Model #Params Statistical
Learning Fusion

Matching
Score

as Logits
SSE-Cross — ✗ ✓ ✗
D&R Net — ✓ ✓ ✗

MCR 2.33M ✗ ✓ ✗
SANCL 2.38M ✓ ✓ ✗
CMCR 2.41M ✗ ✓ ✗
GBDT 21.8M ✗ ✓ ✗

PREMISE 2.28M ✗ ✗ ✓

Table 2: Comparison between baseline models and ours.

The gradients are calculated and backpropagated
for each batch in a single forward pass, without
batch division and gradient accumulation. We
compare our model with several baseline mod-
els on three common metrics for ranking tasks:
the mean average precision (MAP), the N-term
(N = 3, 5 in our experiment in accord with pre-
vious works) Normalized Discounted Cumulative
Gain (NDCG@N) (Järvelin and Kekäläinen, 2017;
Diaz and Ng, 2018). The helpfulness scores are
labeled as the logarithm of approval votes to the
corresponding reviews and are clipped into integers
within [0, 4]. The statistics of datasets and more
training details are provided in appendix.

4.2 Baselines

We compare our model with the following base-
lines: Stochastic Shared Embeddings enhanced
cross-modal network (SSE-Cross) (Abavisani
et al., 2020), Decomposition and Relation Net-
work (D&R Net) (Xu et al., 2020). The Multi-
modal Coherence Reasoning network (MCR) (Liu
et al., 2021) designs several reasoning modules
based on fused representations for prediction.
SANCL (Han et al., 2022) and contrastive-MCR
(CMCR) (Nguyen et al., 2022) minimize aux-
iliary contrastive loss to refine the multimodal
representations. Gradient-boosted decision tree
(GBDT) (Nguyen et al., 2023) design a random
walk policy and aggregate the helpfulness scores
through from tree leaves—the endpoints of the ran-
dom walk.

To provide a holistic view on the distinctions
between the learning paradigms of these models,
we list and compare three key characteristics be-
tween PREMISE and baselines in Table 2. From
the table we observe that all baseline models con-
tain fusion modules inside the entire structures.
Moreover, D&R Net and SANCL also incorpo-
rate extra statistical correlations (Adjective-Noun
Pairs and selective-attention mask creation) that

inject external knowledge to bridge the semantic
gap between textual and visual modality or cast
more focus on contents that perceived important
by human beings. Our model escapes from both
complicated manually crafted features and conven-
tional model architecture by directly computing the
matching scores and automatically picking the K
highest ones as features for regression.

4.3 Results
We run our models three times and report the aver-
age performance in Table 3 and 4. It can be clearly
seen that our model outperforms all these baselines
on two datasets. Particularly, compared with the
strongest baseline—GBDT (Nguyen et al., 2023),
PREMISE gains over 5 points improvement on
MAP and NDCG@5 and 10 points improvement
on NDCG@3 on Amazon-MRHP dataset, and
6.8∼17.5 improvement on all metrics on Lazada-
MRHP datasets. When using BERT to initialize
embeddings, we note a slight performance degra-
dation compared to the implementations that use
GloVe as embeddings in both PREMISEand other
baselines. Such outcome demonstrates the superi-
ority of our fusion-free model and, at least in the
MRHP task, multimodal fusion is not a necessity
and may hinder the model from better performance.

Besides, we highlight the size of the feature vec-
tors in the last layer. Fusion-based baselines usu-
ally concatenate representations from both fields
and modalities to perform final regression, which
requires at least 512 (128×4) dimensions of fea-
ture vectors. The vector is even longer in MCR
and SANCL (over 1000) since there are many ex-
tra features taken into account. Nevertheless, the
feature vector lengths for the best performance
in PREMISE are apparently smaller. As shown
in Figure 3, the optimal choices of K range from
64 to 128. This fact manifests that there could be
many redundant elements in the vectors generated
by fusion-based models, and PREMISE success-
fully enhance the efficiency of unit-length features
through a simple representation learning policy.

4.4 Ablation Study
We run our models several ablative settings under
feature selection. These settings are all correspond-
ing to excluding some features from different scales
when computing the multi-scale matching scores;
During implementation, we substitute these repre-
sentations with zero vectors in equal sizes, which
amounts to masking them out.
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Model Cloth. & Jew. Electronics Home & Kitchen
MAP N@3 N@5 MAP N@3 N@5 MAP N@3 N@5

SSE-Cross 65.0 56.0 59.1 53.7 43.8 47.2 60.8 51.0 54.0
D&R Net 65.2 56.1 59.2 53.9 44.2 47.5 61.2 51.8 54.6
MCR 66.4 57.3 60.2 54.4 45.0 48.1 62.6 53.5 56.6
SANCL 67.3 58.6 61.5 56.2 47.0 49.9 63.4 54.3 57.4
CMCR 67.4 58.6 61.6 56.5 47.6 50.8 63.5 54.6 57.8
GBDT 82.6 80.3 79.3 74.2 68.0 69.8 81.7 76.5 78.8
PREMISE (Ours) 92.3 90.4 91.5 81.4 78.6 75.6 88.6 88.3 88.4
MCR+BERT 65.8 55.9 58.8 55.9 46.8 49.4 62.4 52.9 56.1
GBDT+BERT 80.3 78.7 77.1 73.8 68.3 69.5 81.4 76.9 79.4
PREMISE +BERT (Ours) 91.5 89.7 90.1 79.3 77.7 78.6 87.7 85.9 86.2

Table 3: Results on the Amazon-MRHP (English) dataset. All reported metrics are the average of five runs. Baseline
results are from Nguyen et al. (2023). PREMISE outperform the strongest baseline with p-value<0.05 based on the
paired t-test.

Model Cloth. & Jew Electronics Home & Kitchen
MAP N@3 N@5 MAP N@3 N@5 MAP N@3 N@5

SSE-Cross 66.1 59.7 64.8 76.0 68.9 73.8 72.2 66.0 71.0
D&R Net 66.6 61.3 65.8 76.5 69.5 74.3 72.7 66.7 71.8
MCR 68.8 62.3 67.0 76.8 70.7 75.0 73.8 67.0 72.2
SANCL 70.2 64.6 68.8 77.8 71.5 76.1 75.1 68.4 73.3
CMCR 70.3 64.7 69.0 78.2 72.4 79.6 75.2 68.8 73.7
GBDT 78.5 77.1 79.0 87.9 86.7 88.1 85.6 78.8 83.1
PREMISE (Ours) 95.3 94.6 95.0 96.9 96.1 96.8 93.9 91.5 92.8

Table 4: Results on the Lazada-MRHP (Indonesian) dataset.

The results are summarized in Table 5, from
which we have the following discoveries. First, dis-
carding representations of any scale causes degra-
dation in the model’s performance, indicating that
all these chosen features contribute to the accu-
rate prediction. Besides, the performance plum-
mets more severely when removing features of
smaller scales (or in bottom layers), including sin-
gle scale (e.g., “n-gram token repr" v.s. “n-gram
sent repr", “n-gram RoI repr" v.s. “n-gram image
repr") or the combinations (e.g., “n-gram token
& n-gram RoI repr" v.s. “n-gram sent repr & im-
age repr“). This outcome reveals that lower-level
feature is more fundamental to the model’s perfor-
mance than higher ones, since a large portion of
matching scores are computed from them.

5 Analysis

5.1 The Impact of Selected Feature Numbers
A unique hyperparameter in PREMISE could be
K for the selection of last features which deter-
mines how many highest scores to be included to

form the final feature vectors. To explore how K
affects the model’s performance, we run our model
with various values of K and plot how the perfor-
mance changes in Figure 3. It can be found that to
achieve ideal performance in both datasets, an ap-
propriate choice of K (from 64 to 128) is necessary.
When setting K too high or too low, i.e., dispersing
the model’s concentration on too many scores or
forcing the model to focus on only a few highest
scores, the model fails to reach the optimum. This
phenomenon reveals that a promising filter should
provide comprehensive coverage of the matching
scores for the prediction layer.

5.2 The Impact of Lower Layer Filter

Apart from the last-layer feature selector, we also
insert many filters into the lower layers. To verify
the efficacy of this design, we performed additional
experiments by varying rmin in algorithm 1 while
fixing K = 96 and C = ⌈

√
K⌉ = 10. The results

on the two datasets are shown in Figure 4, from
which we notice that in all categories, a proper
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Description MAP N@3 N@5

PREMISE (Amazon) 87.4 85.8 86.5

-w/o n-gram token repr 84.8 82.1 83.3
-w/o sent repr 86.2 84.3 85.0
-w/o n-gram sent repr 85.7 83.9 84.6
-w/o n-gram RoI repr 83.9 81.8 82.6
-w/o image repr 86.5 84.1 85.3
-w/o n-gram token & n-gram RoI repr 75.3 69.8 72.2
-w/o n-gram sent repr & image repr 84.1 82.5 83.0

PREMISE (Lazada) 95.4 94.0 94.9

-w/o n-gram token repr 91.0 88.9 89.5
-w/o sent repr 93.5 91.6 92.2
-w/o n-gram sent repr 94.3 92.9 93.8
-w/o n-gram RoI repr 92.7 90.1 91.7
-w/o image repr 94.8 94.2 94.6
-w/o n-gram token & n-gram RoI repr 80.1 78.6 79.5
-w/o n-gram sent repr & image repr 92.3 89.6 90.1

Table 5: Ablation experiments of PREMISE on two
datasets. The values are averaged over all three cate-
gories.

Figure 3: The relative MAP drop (the absolute value of
∆MAP) from the optim to different K. Performance
when K > 160 or K < 32 is far lower than the opti-
mum so we do not include in the figure.

choice of r value (k = 4 in our experiments)
can further enhance the performance by removing
duplicated semantics in lower aggregation layers.
This suggests that the semantics redundancy re-
moval procedure the combination of k-means and
random sampling can serve as a primary filter for
the feature selection.

5.3 Why Does BERT Fail?
As mentioned above, it is weird that after replac-
ing the word vectors (GloVe and FastText) with
the pretrained language model in the embedding
layer, both the fusion-based and fusion-free models
fail to produce a significant increase as in other
multimodal tasks. We surmise that this is mainly
due to informal text input. Upon manual inspec-
tion, we find many pieces of low-quality reviews—
especially those of low helpfulness scores. Take re-

Figure 4: The performance (MAP) under different r on
two datasets.

view 2 in Table 1 as an example, the review passage
is readable by sentence except for some grammati-
cal errors, but the logic is messy and out of the topic.
The results of previous work on tasks related to spo-
ken language (informal text) have shown that BERT
may not lead to a performance improvement (Gu
and Yu, 2020). To further verify our hypothesis,
we carry out a group of blank control experiments
on Amazon-MRHP dataset. Specifically, we run
regression directly on: A) representations encoded
by a single layer GRU with Glove 300d as word
embeddings in both fields; B) the representations
at the position of [CLS] token using BERT-base-
uncased as the pretrained encoder. The results are
shown in Table 6. From the table we find the perfor-
mance between word vectors and BERT pretrained
models are very close. This outcome looks consis-
tent with the results in Gu and Yu (2020) and may
substantiate our aforementioned hypothesis.

Category Setting MAP N@3 N@5

Clothing
A 64.83 55.62 58.95
B 64.75 55.51 59.03

Electronics
A 53.63 43.77 47.31
B 53.90 43.85 47.02

Home
A 61.08 51.17 54.26
B 61.03 51.09 54.14

Table 6: A group of blank control experiments on
Amazon-MRHP dataset.

6 Conclusion

In this work, we propose a novel matching-based
learning model, PREMISE, for the task of mul-
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timodal review helpfulness prediction (MRHP).
PREMISE calculates matching scores between re-
fined semantics across modalities and data fields
for fast and accurate regression and ranking. Exper-
iments and analysis demonstrate that our model ex-
ceeds many strong fusion-based approaches, which
provides a possible idea for such kind of tasks.

Limitations

The major limitation of PREMISE is its applicable
scenarios or restricted adaptation ability to other
multimodal tasks. Ideally, we expect PREMISE to
behave as a generic model that can also work on
many other multimodal tasks, but now we have
only empirically demonstrated its efficacy in the
MRHP task. Intuitively, we believe that at least in
the tasks where the extent of semantic matching
matters, our method should produce satisfying re-
sults, e.g., multimodal (image/text) retrieval and
sarcasm detection where low correlation usually
implies that sarcasm exists. But currently we only
yield fair results that fall behind the current SOTA
significantly on the aforementioned tasks (see ap-
pendix for details).

Another limitation is the efficiency. We actually
adopt a brute-force computing strategy, which can
be further improved through more careful module
design. We hold this as our future potential direc-
tion to work on.
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Indonesian so that we do not conduct BERT related
experiments on it.

Amazon-MRHP (Products/Reviews)
Cat. Cloth. & Jew. Elec. Home & Kitch.

Train 12,074/277,308 10,564/240,505 14,570/369,518
Dev 3,019/122,148 2,641/84,402 3,616/92,707
Test 3,966/87,492 3,327/79,750 4,529/111,593

Table 7: Statistics of the Amazon-MRHP dataset.

Lazada-MRHP (Products/Reviews)
Cat. Cloth. & Jew. Elec. Home & Kitch.

Train 6,596/10,4093 3,848/41,828 2,939/36,991
Dev 1,649/26,139 963/10,565 736/9,611
Test 2,062/32,274 1,204/12,661 920/12,551

Table 8: Statistics of the Lazada-MRHP dataset.

B Training Details

B.1 Initialization of Embeddings

To stay consistent with previous works, we em-
bed the text input of Amazon-MRHP with GloVe-
300d (Pennington et al., 2014) and Lazada-MRHP
with Fasttext (Joulin et al., 2016), respectively. In
BERT-related experiments we employ the Hugging-
face toolkit for pretrained models1.

B.2 Hyperparameter Search space

The optimal hyperparameter settings are listed in
Table 9, 10 and 11. The search space of these hyper-
parameters are: learning rate in {1e−4, 5e−4}, text
embedding dropout fixed at {0.2}, shared space
hidden dimension in {128, 256}.

Amazon-MRHP Glove Hyperparameters
Cloth. & Jew. Elec. Home & Kitch.

learning rate 1e−4 5e−4 5e−4

text embedding dim 300 300 300
text embedding dropout 0.2 0.2 0.2
image embedding dim 256 256 256
text embedding dim 128 128 128
shared space hidden 128 128 128
r 4 4 4
K 96 128 64
batch size 32 32 32

Table 9: Hyperparameters for Amazon-MRHP using
glove-300d embeddings.

1https://huggingface.co/docs/transformers/index

Lazada-MRHP fastText Hyperparameters
Cloth. & Jew. Elec. Home & Kitch.

learning rate 1e−4 5e−4 1e−4

text embedding dropout 0.2 0.2 0.2
image embedding dim 256 256 256
text embedding dim 128 128 128
shared space hidden 128 128 128
r 4 4 4
K 96 96 128
batch size 32 32 32

Table 10: Hyperparameters for Lazada-MRHP using
fasttext embeddings.

Amazon-MRHP BERT Hyperparameters
Cloth. & Jew. Elec. Home & Kitch.

learning rate 1e−5 1e−5 1e−5

bert learning rate 1e−5 1e−5 1e−5

text embedding dropout 0.2 0.2 0.2
image embedding dim 512 512 512
text embedding dim 256 256 256
shared space hidden 256 256 256
r 4 4 4
K 128 128 128
batch size 16 16 8

Table 11: Hyperparameters for all categories using
BERT as encoder

B.3 Sampling of Production
Description-Review Pairs in Training

We mentioned in §3.5 that the training pairs are
sampled from the training set. Now we describe
how do we sample these training pairs. First, we
sample B products from the training set where
B is the batch size. Next, for each product, we
randomly sample one of its positive review (rating
is greater than 2 and N−

r negative reviews (rating
is less than or equal to 2 from the corresponding
review set. The dataset has been filtered during
manufacture time so that there is always at least
one positive/negative review under each product.
To put it in a nutshell, a sampled batch contains B
product descriptions, B positive reviews and N−

r B
negative reviews.

C The Differentiability of top-K
Operation in PyTorch

Given a vector S = {s1, s2, ..., sL} ∈ RL where L
is the length of that vector, when passing through
the top-K operation, most fundamentally its largest
K values are selected and sorted in descending or-
der to form a new vector T = {t1, t2, ..., tK} ∈
RK . Suppose the indices of T ’s elements in S are
I = {i1, i2, ..., iK} ⊂ {1, 2, ..., L}, then the pro-
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cess equals to that concurrently there is a mask
M ∈ {0, 1}L automatically created and “multi-
plies” on S. Each value mj in M is

m =

{
1, if j ∈ I

0, if j /∈ I

With this mask, the forward and backward propa-
gation can proceed as in conventional routines.

D Training Speed

D.1 Theoretical Analysis

For simplicity, we consider the case of a pair of
modality sequence. Let X1 ∈ Rl1×d, X2 ∈ Rl2×d

be a pair of input modality sequences. Here we
assume they have been both projected to the same
dimension as a common practice that both the
fusion–prediction routines and our matching ap-
proach exercise. The multihead attention operation
in fusion-based models can be written as:

X12 = Att(X1, X2) (9)

Note that attention is a directional operation, i.e.
Att(M1,M2) ̸= Att(M2,M1). Due to this, a
fusion-based learning model M always adopts a
pair of conjugate attention. Therefore, for a model
of N layers, the total computational complexity Cf

is:
Cf = (2l1l2 + l21 + l22)Nd (10)

Now consider matching-based models. We only
have self-attention for each modality per layer. The
whole computational complexity consists of the
self-attention (att) and multi-scale matching score
(mm).

Cm = Catt + Cmm (11)

Since the number of scales decreases as the aggre-
gation proceeds, we denote the decreasing ratio
at layer i for modality j as ki,j . Hence, the total
computational complexity is:

Catt = 2
∑

p

l2pd

(
1 +

1

k2p,1
+

1

k21,pk
2
2,p

+ ...

)

(12)
In our settings, kp,1 is large (typically greater than
10), therefore 1

k2p,j
< 0.01 and can be ignored:

Catt = 2(l21 + l22)d (13)

As for the second term, we have:

Cmm = l1

(
1

k1,1
+ ...

)
l2

(
1

k2,1
+ ...

)
d

<
l1l2d

k1,1k2,1(1− k−1
1 )(1− k−1

2 )

(14)

In the MRHP dataset, l1 ≈ l2 = l. For the typical
value N = 2, k1 = k2 = 10, we have Cf = 8l2d
and Cm < (4 + 1

81)l
2d = 4.01l2d, or

Cm

Cf
≈ 0.5 (15)

which is closed to the measured acceleration in 5.
In fact, let Cm = Cf and N = 2, we have l1 ≈
2.42l2, which seldom happens in the whole dataset.
We observe that the number of hot regions is greater
than the text length.

D.2 Numerical Results

We measure the average training time per batch of
MCR, SANCL (the state-of-the-art baseline) and
PREMISE, as shown in Figure 5. The average
values are calculated by counting the total time of
iterations over 100 batches for 5 random intervals
during the whole training process.

Mathematically, denote the counted time of the
ith interval as ti, the speed is calculated as follows

speed =

∑5
i=1 ti

100× 5
(16)

It can be seen that the training time has been
greatly shortened by 42% and 65% compared to
SANCL (the fastest baseline, athough they have
closed number of parameters as shown in Table 2)
and GBDT (the strongest baseline), which approxi-
mately matches the conclusion given by mathemat-
ical deduction.

E Experiment on Multimodal Retrieval

We test PREMISE on multimodal retrieval (bidirec-
tional) task, the results of both image-to-text and
text-to-image retrieval on the MSCOCO test set are
shown in Table 12. It can be seen that although
our formulation process is completely based on
“learning-from-relation" in MRHP task, the con-
structed model still has some generalizability to
other tasks that our hypothesis stands.
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Model
Image-to-Text Text-to-Image
PRMP R@1 PRMP R@1

VCRN (Li et al., 2019) 29.70 53.00 29.90 40.50
PCME (Chun et al., 2021) 34.10 41.70 34.40 31.20
MSRM (Wang et al., 2023) 35.62 44.32 35.81 33.40

PREMISE 34.23 42.06 33.92 31.50

Table 12: Results on MSCOCO-5K test set. The highest values in each metric are in bold, while the second-highest
are indicated with an underline.

Figure 5: The relative training time of different models.
The fastest baseline (SANCL) is highlighted in orange,
while our model is highlighted in green. Others are in
blue.

F Case Study

F.1 How matching scores affect the
prediction?

To further understand the model’s functional mech-
anism, we randomly pick an example from the
Amazon–electronics and visualize some matching
scores during the test time in Figure 6. There
are several valuable points to underline. First,
when the model achieves the best performance,
its matching scores can reflect the correlation be-
tween some semantic matching feature pairs. For
instance, the RoI-RoI matching score of -0.17 is
produced by the two RoIs that enclose different
objects in their respective images, and thus the cor-
relation between them is very weak, and a near 0
score is obtained, while the two boxes that con-
tain the port hub achieve a relatively high matching
score. Second, text-text matching may act as word
matching. It is hard to attribute the 0.89 match-
ing score of those two sentences to the high se-
mantic similarity between those two text snippets
since their semantic meanings are different, only

to share some common words. These two discov-
eries reveal that PREMISE attends to more than
semantic matching, and just a certain number of
correct matching scores could make up the last fea-
tures for its accurate prediction, in accord with the
conclusion about K values.

F.2 Direct comparison with GBDT
We further randomly draw two examples which
PREMISE gives accurate predictions but GBDT,
the state-of-the-art baseline, fails. The original
review context (including text and attached image)
together with the predictions from GBDT and our
model towards these two examples are displayed
in Table 13 to Table 16.

We find that PREMISE ranks these reviews in
correct order (it has the same ranking sequence
1 → 2 → 3 and 1 → 2 → 3 → 4 as the ground
truth’s in the two examples respectively) even
trained and tested with normalized score whose
values range from 0 to 1 (different from the an-
notated scores s ∈ [0, 4]). In the given examples,
GBDT flips the order of ’B005NGQWL2-9’ and
’B005NGQWL2-65’ in example 1 and the order of
’B00H4O1L9Y-111’ and ’B00H4O1L9Y-122’ in
example 2. This could imply that matching-based
modeling can make more accurate predictions than
fusion-based modeling.
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Anker [Upgraded Version] USB 3.0 SuperSpeed 
10-Port Hub Including a BC 1.2 Charging 
Port with 60W (12V / 5A) Power Adapter [VIA 
VL812-B2 Chipset and updated Firmware 9081] 
AH231.
Expand and accelerate your data transfer 
and charging. The more the merrier. With 
transfer rates of up to 5Gbps, set aside 
less time for syncing and more time for 
work. 

Pros: Has a nice look. Seems to work OK at full 
USB3 speeds. That's great since not all hubs do 
that. 
Cons: Output is only 0.5A on the 10th data port as 
measured by an inline USB power meter while 
attempting to charge one of my Samsung tablets. I 
plugged that same tablet, cable and meter into a 
USB charger that DOES output the right current and 
the meter read 1.65A. I am going to notify the 
seller about this and see what they have to say.
Maybe I got one that has a problem? Who knows. 
UPDATE: Received a replacement from the 
manufacturer. It has THE SAME PROBLEM: Port #10 
does NOT deliver 1.5a of charge current, even on 
the replacement they sent me. I even checked it 
against one of their other products, a 4 port 
charger which actually works correctly. See 
pictures. The first picture shows a USB power meter 
("Eversame USB Digital Power Meter Tester 
Multimeter Current and Voltage Monitor") plugged 
into this hub into port #10. It shows it charging 
my tablet at 0.42a. The second picture shows that 
same meter and same tablet plugged into the "Anker 
36W 4-Port USB Wall Charger Travel Adapter with 
PowerIQ Technology" and charging at a normal 1.57a. 
Something is wrong here! I am contacting customer 
support line tomorrow to see what they want to do.

score=0.65

score=-0.17

score=0.89

score=-0.10

score=0.51

Truth: 3.00
Pred: 3.31

Figure 6: A case study from Amazon-MRHP dataset. The upper and lower part of the figure is the product and
review post respectively. Green and purple are instance pairs that produce high and low scores that are selected/not
selected into the final feature vector. For the matching of n-gram words, we display the largest matching scores
between individual words in that scope and the other elements.
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Product ID Introduction

B005NGQWL2 Expand and accelerate your data transfer and charging. <br><br><b>The
more the merrier.</b><br>With transfer rates of up to 5Gbps, set aside less
time for syncing and more time for work. With 10 data terminals to choose
from, forget about ever having to switch or unplug again.<br><br><b>Fast
charging.</b><br>10th-port dual functionality enables fast charges of up
to 1.5 amps with BC 1.2 charging-compliant devices, while simultaneously
transferring data. Charge via a power adapter for higher 2 amp speeds with
all USB-enabled devices when hub is disconnected from an active USB
port, or your computer is off or in sleep mode. Dual functions, duly facili-
tated.<br><br><b>A mainstay for the future.</b><br>Featuring a high-
grade chipset and a powerful 60W adapter, this hub ensures a stable power
supply while you work. Get steady operation for years to come. Whether
at home or in the office, add another can’t-do-without fixture to your
desk.<br><br><b>BC 1.2 Charging-Compliant Devices:</b><br>Apple:
iPhone 5 / 5s, iPad Air, iPad mini / mini 2<br>Samsung: Galaxy
S3 / S4, Galaxy Note 1 / 2, Galaxy Mega, Galaxy Mini, Exhilarate,
Galaxy Tab 2 10.1<br>Google: Nexus 4 / 5 / 7 / 10<br>Sony: Xperia
TX <br>Nokia: Lumia 920, Lumia 1020 <br><br><b>System Require-
ments</b><br>Windows (32/64 bit) 10 / 8.1 / 8 / 7 / Vista / XP, Mac
OS X 10.6-10.9, Linux 2.6.14 or later.<br>Mac OS X Lion 10.7.4 users
should upgrade to Mountain Lion 10.8.2 or later to avoid unstable connec-
tions.<br><br><b>Compatibility</b><br>2.4GHz wireless devices, MIDI
devices and some USB 3.0 devices may not be supported. Try using the
host port or a USB 2.0 connection.<br><br><b>Power Usage</b><br>For
a stable connection, don’t use this hub with high power-consumption de-
vices, such as external hard drives. The hub will sync but not charge
tablets and other devices which require a higher power input.

Table 13: (Example 1 of 2) Product introduction of an example from Amazon Electronics dataset. Some special
characters have been removed for better readability.
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Review ID Content GT GBDT Ours

B005NGQWL2-14 Pros:
Has a nice look. Seems to work OK at full USB3 speeds. That’s great
since not all hubs do that.
Cons:
Output is only 0.5A on the 10th data port as measured by an inline USB
power meter while attempting to charge one of my Samsung tablets. I
plugged that same tablet, cable and meter into a USB charger that DOES
output the right current and the meter read 1.65A.
I am going to notify the seller about this and see what they have to say.
Maybe I got one that has a problem? Who knows.
UPDATE: Received a replacement from the manufacturer. It has THE
SAME PROBLEM: Port #10 does NOT deliver 1.5A of charge current,
even on the replacement they sent me. I even checked it against one of
their other products, a 4 port charger which actually works correctly. See
pictures. The first picture shows a USB power meter (“Eversame USB
Digital Power Meter Tester Multimeter Current and Voltage Monitor")
plugged into this hub into port #10. It shows it charging my tablet at 0.42a.
The second picture shows that same meter and same tablet plugged into
the "Anker 36W 4-Port USB Wall Charger Travel Adapter with PowerIQ
Technology" and charging at a normal 1.57a. Something is wrong here! I
am contacting customer support line tomorrow to see what they want to
do.

3.00 0.86 0.89

B005NGQWL2-9 I rarely write a negative review, in fact almost never. This AnkerDirect
10-Port USB Data hub lasted only about 2 months. Now none of the USB
ports work. For the first couple of weeks all the ports seemed fine. Then
one by one they stopped working. Power gets to the unit and the USB
ports on my MAC work fine. I’ve been waiting for a replacement from the
company ever since April 20th 2017, after sending their support group my
address as requested, but it had not arrived.
I wish to amend this review by saying that the Anker customer service
folks were very helpful in rectifying this situation. After some checks on
the original item at their direction, the Anker folks came to the conclusion
that I had a defective product and quickly replaced it with a new model.
I’ve had a couple of days to test it out and it appears to be working just
fine. I have always felt that a product or service can go bad but it is the
company’s response to that problem, should it arise, that gains my respect
and future business.

2.00 0.64 0.52

B005NGQWL2-65 Works very great, powers all of my USB connections, I have a Asus
Gaming Laptop which only has 4 USB ports and I needed to have a blue
yeti mic, a Logitech Webcam c920, razer keyboard chroma, 2tb hard drive,
and a Xbox one controller wireless adapter connected to it.
So far nothing has disconnected or malfunctioned. I would definitely
recommend this to my friends and familiy.

1.00 0.75 0.31

Table 14: (Example 1 of 2) Comparison between our model and GBDT on an example from Amazon electronics
dataset. The ground truth (GT) scores are annotated ones, while the scores below GBDT and ours are normalized
ones.
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Product ID Introduction

B00H4O1L9Y Cook food to perfection with the T-fal OptiGrill GC702D53 electric indoor
grill. This indoor grill offers versatility and convenience for any grilled
meals. Choose from six pre-set programs: Burger, Poultry, Sandwich,
Sausage, Red Meat, and Fish. The grills precision grilling technology
with sensors measures the thickness of food for auto cooking based on
the program selected. When the flashing light turns solid purple, the grill
has properly preheatedplace food on the grill, lower the lid, and it takes
care of the rest. A cooking-level indicator light changes from yellow to
orange to red signifying the cooking progress with audible beeps that alert
when food gets to each stage: rare, medium, and well-done. Take food
off the grill once its reached your preferred level of doneness. Along
with the six pre-set programs, the electric grill provides two additional
cooking options: Frozen mode for defrosting and fully cooking frozen
food and Manual mode for cooking vegetables or personal recipes. (Note:
when preheating for a pre-set program, keep the lid closed or the grill will
automatically switch to Manual mode.) The OptiGrill features a powerful
1800-watt heating element, user-friendly controls ergonomically located
on the handle, and die-cast aluminum plates with a nonstick coating for
effortless food release. The slightly angled cooking plates allow fat to
run away from food and into the drip tray for healthier results, and the
drip tray and cooking plates are removable and dishwasher-safe for quick
cleanup. Housed in brushed stainless steel, the OptiGrill electric indoor
grill makes an attractive addition to any counter.

Table 15: (Example 2 of 2) Product introduction of an example from Amazon Home dataset.
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Review ID Content GT GBDT Ours

B00H4O1L9Y-111 I want to preface this by saying that I always prefer food grilled on our
big outdoor propane grill. It’s just a superior method of cooking. That
being said, if you don’t have an outdoor grill, or even if you do and are
sometimes unable to cook with it due to lack of time, running out of
propane, inclement weather, laziness... then this is a FABULOUS option
to still get the grilled food you loved SUPER FAST and SUPER EASY!!
We got 5 (yes FIVE) George Foreman grills for our wedding. I re-gifted 4
of them and kept one and have used it off and on for a long time, but every
time I have to clean it afterward I swear I’m never going to use it again
because it’s such a pain and it never quite gets clean, especially in the area
where the hinges are. That problem is no more....

4.00 0.58 0.71

B00H4O1L9Y-122 My mom got this on her account. I thought she was crazy to spend so
much on what looked like a glorified George Foreman grill but I was
wrong, this thing is the bomb. Here is what I like about it;-Heats up super
quick. I remember my old George Forman grill took a lot longer.-The
presets for the type of food you are cooking must be working because
nothing turns out overcooked.
The nonstick removable plates. So far, I haven’t had any food stick to
the plates and I don’t use spray or oil. Being able to take them off and
wash them in the sink or dishwasher is by far the best part, I used to hate
wasting a million paper towels and burning my hands on my old foreman
grill and still didn’t feel like it was clean.
Doesn’t create a lot of smoke. When I used to use my old foreman grill I
was always setting off the smoke alarm, this grill doesn’t do that.

3.00 0.65 0.62

B00H4O1L9Y-148 I have used this grill 4 times now and everything I’ve cooked has turned out
amazing! I am so impressed with this grill. It is real quick to preheat and
has cooked everything perfectly so far from burgers to chicken sausages
to kabobs. We haven’t tried anything from the cookbook included but we
definitely want to. One of the best things is that the plates are detachable
and dishwasher safe! Super easy cleanup.

2.00 0.49 0.42

B00H4O1L9Y-59 One of the best tools for preparing clean food (if that’s what you choose).
Cooks in minutes and cleans just as fast. Gives that grill experience within
a compact structure. Definitely saves time, I use this thing at least ounce a
day, on prep days 3-5 times. If you want to loose wait; it starts in YOUR
kitchen by preparing your meals.

1.00 0.35 0.27

Table 16: (Example 2 of 2) Comparison between our model and GBDT on the example from Amazon Home dataset.
The ground truth (GT) scores are annotated ones, while the scores below GBDT and ours are normalized ones.
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