
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 268–282

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Enhancing Visual-Language Modality Alignment in Large Vision Language
Models via Self-Improvement

Xiyao Wang1,3†*, Jiuhai Chen1, Zhaoyang Wang2, Yuhang Zhou1, Yiyang Zhou2

Huaxiu Yao2, Tianyi Zhou1, Tom Goldstein1, Parminder Bhatia3, Taha Kass-Hout3
Furong Huang1‡, Cao Xiao3‡

1University of Maryland 2UNC-Chapel Hill 3GE Healthcare
†xywang@umd.edu ‡ Equal advising

Abstract

Large vision-language models (LVLMs) have
achieved impressive results in visual question-
answering and reasoning tasks through vision
instruction tuning on specific datasets. How-
ever, there remains significant room for im-
provement in aligning visual and language
modalities. Existing methods often depend on
external models or data, leading to uncontrol-
lable and unstable alignment results. In this
paper, we propose SIMA, a self-improvement
framework that enhances visual and language
modality alignment without external dependen-
cies. SIMA leverages existing vision instruc-
tion tuning datasets to self-generate responses,
incorporating an in-context self-critic mecha-
nism that constructs preference pairs for tun-
ing. Crucially, our approach allows LVLMs
to act as critics by designing effective critic
prompts, eliminating the need for additional
fine-tuning with external instruction data. We
introduce three novel visual metrics within the
self-critic process to guide judgement, signif-
icantly improving the accuracy of self-critic.
Through extensive experiments across 14 hal-
lucination and comprehensive benchmarks, we
demonstrate that SIMA significantly improves
LVLM’s performance and outperforms previ-
ous approaches, achieving superior modality
alignment.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2023; Touvron et al., 2023)
have significantly advanced the development of
Large Vision Language Models (LVLMs) through
pre-training on image-text pairs (Alayrac et al.,
2022; Xiao et al., 2023) or fine-tuning on special-
ized vision instruction datasets (Liu et al., 2023a,
2024; Zhu et al., 2023). Despite these advance-

*The work is partially done during Xiyao Wang’s intern-
ship at GE Healthcare.

Figure 1: Performance comparison between our propose
framework SIMA and LLaVA-1.5-7B on 14 hallucina-
tion and comprehensive benchmarks. After applying
SIMA, LLaVA’s performance is improved significantly
across all benchmarks, with an average performance
increase of 7.5%.

Figure 2: Normalized average performance across
14 hallucination and comprehensive benchmarks of
three different LVLMs before and after using SIMA.
SIMA demonstrates significant improvement on all
three LVLMs.

ments, effectively aligning visual and language
modalities remains a critical challenge in LVLMs.

Recent works (Sun et al., 2023; Zhao et al., 2023;
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Response 1: The image depicts a woman 
and a brown horse in a grassy field. The 
woman appears to be giving the horse a ride 
or interacting with it. There are other people 
in the background, watching the scene or 
engaging in their own activities ...... 

Response 2: The image features a woman 
standing next to a brown horse in a grassy 
field. The woman appears to be engaged in a 
conversation with the horse, possibly 
discussing its training or care ...... 

Stage 2: In-Context Self-Critic

You are provided with a question about the image, a ground truth and two AI 
generated responses based on the image. Please review two AI generated responses 
carefully and compare the AI generated responses with the ground truth. You should 
consider the following factors:
1. Accuracy in Object Description: ......
2. Accuracy in Depicting Relationships: ...... 
3. Accuracy in Describing Attributes: ......
Image: <Image>
Question: <Question>
Ground truth: <Ground truth answer>

Critic Prompt

LVLM LVLM

Response 2: The image features a woman 
standing next to a brown horse in a grassy 
field. The woman appears to be engaged in a 
conversaFon with the horse, possibly 
discussing its training or care ...... 

Response 1: The image depicts a woman and 
a brown horse in a grassy field. The woman 
appears to be giving the horse a ride or 
interacting with it. There are other people in 
the background, watching the scene or 
engaging in their own activities ...... 

Positive Response Negative Response

Positive Response Negative Response

Stage 3: Preference Tuning

Finetuning LVLM using DPO with 
self rewarded response pairs

from Stage 2

Figure 3: Flowchart of the SIMA framework. SIMA consists of three parts: Response Self-Generation, In-Context
Self-Critic, and Preference Tuning.

Zhou et al., 2024) have attempted to enhance this
alignment through preference tuning methods such
as reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022) and Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2024).
However, these methods often rely on external mod-
els or human-labeled data, introducing issues of un-
controllable and unstable alignment results. Specif-
ically, they face two major challenges: (1) Distri-
bution Shifts: Utilizing external LVLMs to gen-
erate preference pairs can introduce hallucinations
from external models that are not representative of
the current model’s inference behavior (Li et al.,
2023c; Zhao et al., 2023; Zhou et al., 2024). This
discrepancy can lead to instability in the optimiza-
tion process and potentially degrade performance.
(2) High Costs: Dependence on human-labeled
datasets or feedback from third-party AI models
incurs significant annotation or API costs, making
it difficult to scale high-quality preference datasets
in resource-constrained environments (Sun et al.,
2023; Yu et al., 2024a,b; Xiyao et al., 2024).

To address these challenges, we propose the
Self-Improvement Modality Alignment (SIMA)
framework, designed to enhance the alignment
between visual and language modalities within
LVLMs through a self-improvement mechanism.
SIMA eliminates the need for external data or mod-
els by leveraging the intrinsic capabilities of the
model itself to generate diverse responses. More-
over, it utilizes the model’s own judgment for evalu-
ating response quality, thus avoiding the high costs
associated with external feedback and scaling up
preference datasets efficiently.

SIMA consists of three stages: response self-

generation, in-context self-critic, and preference
tuning. In the response self-generation stage, we
sample prompts from the current LVLM’s visual
instruction tuning dataset to generate diverse re-
sponses without introducing external data or mod-
els. During the in-context self-critic stage, a care-
fully designed critic prompt allows the LVLM to
evaluate all self-generated responses and form pref-
erence pairs. Finally, preference tuning is applied
to update the LVLM based on these pairs.

The core innovation of SIMA lies in the in-
context self-critic process, which offers several
key advantages: (1) Self-Critic without Fine-
Tuning: Unlike previous self-rewarding methods
in LLMs that require additional instruction tun-
ing before the critic step (Yuan et al., 2024; Pang
et al., 2024; Wu et al., 2024), our approach shows
that by properly configuring the critic prompt, the
LVLM can accurately evaluate responses without
fine-tuning. (2) Visual Critic Metrics: To ensure
accurate evaluation of self-generated responses,
we introduce three visual critic metrics within the
prompt—Accuracy in Object Description, Accu-
racy in Depicting Relationships, and Accuracy in
Describing Attributes—each contributing to a more
precise evaluation of visual content.

We apply SIMA to LLaVA-1.5 (Liu et al., 2023a)
and VILA (Lin et al., 2024), evaluating it across 14
hallucination and comprehensive benchmarks. The
experimental results show that SIMA not only miti-
gates hallucinations but also significantly enhances
comprehension capabilities in LVLMs. As illus-
trated in Figure 1, the performance of LLaVA-1.5-
7B, LLaVA-1.5-13B, and VILA-7B improved by
7.5%, 4.5%, and 5.3%, respectively. Additionally,
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our method outperforms other preference-tuning
approaches that rely on external models and data.

The contribution of this paper can be sum-
marized as follows: (1) We introduce Self-
Improvement Modality Alignment SIMA, a novel
framework designed to enhance alignment between
visual and language modalities in LVLMs. To
the best of our knowledge, SIMA is the first to
achieve self-improvement in LVLMs without ex-
ternal data or third-party AI models. (2) We pro-
pose the in-context self-critic method, enabling
LVLMs to accurately evaluate responses without
instruction tuning, significantly improving judg-
ment accuracy through three visual critic metrics.
(3) SIMA demonstrates significant performance
improvements in LLaVA-1.5-7B, LLaVA-1.5-13B
and VILA-7B on 14 hallucination and comprehen-
sive benchmarks, validating the effectiveness of
our approach.

2 Self-Improvement Modality Alignment

In this section, we introduce the proposed Self-
Improvement Modality Alignment (SIMA) frame-
work. SIMA is consisted of three stages: response
self-generation, in-context self-critic, and prefer-
ence tuning. We will first explain how to obtain
self-generated response candidates in Sec 2.1, then
discuss how to use model itself πθ to critique the
response candidates in Sec 2.2. Finally, we will
introduce how to use self-rewarded responses to up-
date the πθ in Sec 2.3. The pseudo-code of SIMA
is provided in Algorithm 1.

Algorithm 1 SIMA

Require: Prompt Dataset {xi, Ii}i∈[N ], Prefer-
ence dataset Dp = {} , Current optimized
LVLM πθ, Reference model πref ,

1: for i = 1, . . . , N do
2: // Stage 1: Response self-generation
3: Generate one response using greedy decod-

ing with πθ,
4: Generate one response using temperature

sampling with πθ,
5: // Stage 2: In-context self-critic
6: Criticizing two generated responses with πθ,

7: Add preference pair {yw, yl} into Dp,
8: // Stage 3: Preference tuning
9: Update πθ using Eq 1 with πref

2.1 Response self-generation
Previous works often require the introduction of ex-
ternal models to generate preference dataset to im-
prove current LVLM (Sun et al., 2023; Zhou et al.,
2024). However, due to the significant distribution
shift between the external models and the currently
optimized LVLM, the generated dataset by these
approaches may not be helpful to the LVLM. For
example, a common method to obtain negative re-
sponses is to use external models to deliberately
modify the ground truth and inject object hallucina-
tions (Zhou et al., 2024), while the hallucinations
generated by external models do not necessarily
indicate that the currently optimized model would
produce. In this case, using such data for learning
can not enhance LVLM.

Based on our goal to identify and correct the po-
tential misunderstandings the current LVLM may
have about images and improve the modality align-
ment, we propose using the currently optimized
LVLM to self-generate responses. This approach
avoids the potential distribution shift introduced
by external models. As shown in Stage 1 of Fig-
ure 3, given an image and its corresponding prompt,
we use the currently optimized model to generate
two different response candidates for subsequent
ranking and preference tuning. Specifically, the
two responses are generated using greedy decod-
ing and temperature sampling to ensure diversity
between the responses.

2.2 In-context self-critic
The core part of SIMA is criticizing the self-
generated responses without introducing an ad-
ditional reward model. As shown in Stage 2 of
Figure 3, we directly input the self-generated re-
sponses and the critic prompt into the currently
optimized LVLM. The LVLM then selects the bet-
ter response as the positive response and the other
one as the negative response. The most critical
part of this stage is designing an appropriate critic
prompt, since the quality of the critic directly de-
termines the performance of the LVLM optimized
using the response pairs. If the worse response is
selected as the positive response, it will harm the
training of the LVLM.

Our critic prompt consists of the following parts:

• Image, Question, and Ground Truth Re-
sponse: Unlike LLMs, which primarily fo-
cus on aspects such as the format, helpful-
ness, and harmlessness of the textual response,
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Figure 4: Critic prompt structure used for in-context self-critic.

LVLMs primarily focus on the accuracy of the
response’s understanding of the image content.
This means there is a quantifiable accuracy
metric to measure the quality of the response.
Therefore, during in-context self-critic, we
must provide the ground truth response as a
reference to choose the positive response. It
is worth noting that since the prompts used to
generate responses are sampled from the train-
ing data of the visual instruction tuning stage,
the corresponding ground truth responses have
all been used for visual instruction tuning.
Hence, using the ground truth in the in-context
self-critic stage is reasonable.

• Three critic metrics: Although we provide
the ground truth response as a reference, with-
out proper guidance, the LVLM might still
choose a response that aligns more with the
ground truth in terms of output format or
harmlessness rather than focusing on the accu-
racy of visual comprehension. Therefore, we
propose three metrics to guide LVLM ranking,
ensuring it select the positive response from
the visual comprehension perspective. The
three critic metrics are: Accuracy in Object
Description, Accuracy in Depicting Rela-
tionships, and Accuracy in Describing At-
tributes.

Accuracy in Object Description aims to guide
current LVLM in evaluating the accuracy of
the descriptions concerning the objects men-
tioned in the ground truth answer. The re-
sponses should minimize the mention of ob-
jects not present in the ground truth answer
and inaccuracies in the description of existing
objects. Accuracy in Depicting Relationships

considers how accurately the relationships be-
tween objects are described compared to the
ground truth answer and aims to let LVLM
rank higher the responses that least misrep-
resent these relationships. Accuracy in De-
scribing Attributes assesses the accuracy in
depicting objects’ attributes compared to the
ground truth answer. The responses should
avoid inaccuracies in describing the character-
istics of the objects present.

• Demonstrations: To ensure the correct for-
mat of the ranking output, we also leverage
in-context learning by providing two rank-
ing demonstrations in the designed ranking
prompt for the LVLM to imitate.

In Figure 4, we provide the structure of the critic
prompt. For the detailed critic prompt, please refer
to the Appendix A.

2.3 Preference tuning

After obtaining the preference pairs through self-
ranking, we use these preference pairs to perform
preference tuning on the current LVLM. We choose
direct preference optimization (DPO) (Rafailov
et al., 2024) as the preference tuning method.
The preference dataset is denoted as Dp =
{(I, x, yw, yl)}, where I is the image, x is the cor-
responding question, yw is the positive response
and yl is the negative response, the DPO objective
is defined as below:

LDPO(πθ;πref) = −E(x,yu,yl)∼D[log σ(β log
πθ(yw|x, I)
πref(yw|x, I)

− β log
πθ(yl|x, I)
πref(yl|x, I)

)],

(1)
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where πθ is the current optimized LVLM and πref
is the base reference model, both models are ini-
tialized with visual instruction tuning weights. σ is
the logistic function.

3 Experiment

In this section, we conduct experiments and aim to
answer the following questions: 1. How much does
SIMA improve baseline performance? 2. How sig-
nificant are the three ranking metrics in the ranking
prompt?

3.1 Benchmark evaluation

Implementation details Since LLaVA (Liu et al.,
2024) is the most widely used open-source LVLM
and following recent LVLM preference tuning stud-
ies (Sun et al., 2023; Zhou et al., 2024; Yu et al.,
2023a; Xiao et al., 2024), we select LLaVA-1.5-
7B (Liu et al., 2023a) and LLaVA-1.5-13B (Liu
et al., 2023a) as the backbone models and ap-
ply SIMA on them. The prompts used to gener-
ate preference data are randomly sampled from
two categories, ‘complex_reasoning_77k’ and ‘de-
tail_23k’, in LLaVA’s visual instruction tuning
dataset, LLaVA-Instruct-150K, thus avoiding in-
troducing additional data. We sample a total of 17k
prompts. To demonstrate the generalizability of
SIMA, we also choose VILA-7B (Lin et al., 2024),
a recent LVLM, as the base model for our experi-
ments. Similar to the LLAVA experimental setting,
we randomly sample 17k prompts from the VILA
visual instruction tuning dataset to generate pref-
erence pairs for training. After obtaining the pref-
erence pairs, we finetune LLaVA and VILA with
SIMA on this data using LoRA (Hu et al., 2021)
for three epochs on LLaVA-1.5-7B, one epoch on
LLaVA-1.5-13B, and one epoch on VILA-7B since
we find that LLaVA-1.5-13B and VILA-7B is prone
to overfitting on the sampled dataset. All exper-
iments are conducted on one A100 80GB GPU
with 15 gpu hours for three epochs training on
LLaVA-1.5-7B, 7 gpu hours for one epoch training
on LLaVA-1.5-13B, and 6 gpu hours for one epoch
training on VILA-7B.

Baselines For the baselines, we compare with
three previous methods that use preference opti-
mization to improve LVLM performance: LLaVA-
RLHF (Sun et al., 2023), HA-DPO (Zhao et al.,
2023), and POVID (Zhou et al., 2024). LLaVA-
RLHF trains a reward model by incorporating ad-
ditional human-annotated preference data and then

finetunes LLaVA using PPO. HA-DPO uses GPT
to rewrite AI-generated responses for hallucination
mitigation and data augmentation and then apply
DPO to fine-tune the LVLM. POVID introduces
GPT to inject hallucinations into the ground truth
answers and add noise to images to induce hallu-
cinations in the LVLM to obtain negative samples
and also uses DPO to finetune the LVLM. These
three methods are all based on LLaVA-1.5-7B. Be-
sides, we compare the method of using the ground
truth answer as the positive sample and the LVLM-
generated response as the negative sample for DPO
finetuning, which we refer to as GT-DPO. We also
report comparison with other popular open-source
LVLMs as a reference to demonstrate the superior-
ity of our experimental results in Appendix B.3.

Benchmarks We select 14 hallucination and
comprehensive benchmarks for evaluation. For
the hallucination benchmark, we randomly sam-
ple 5000 images from the COCO (Lin et al., 2014)
validation set and randomly pair them with 5 ques-
tions, resulting in 5000 <image, question> pairs.
We then evaluate the object hallucination rate on
these 5000 pairs using the CHAIR (Rohrbach et al.,
2018) metric , calculated as follows:

CHAIRI =
|{hallucinated objects}|
|{all mentioned objects}| ,

CHAIRS =
|{captions with hallucinated objects}|

|{all captions}| .

(2)
We also use MM-Hal (Sun et al., 2023) and Me-
mentos (Wang et al., 2024b) as benchmarks for
evaluating hallucination. In Mementos, we use
F1 score as the metric to assess the LVLM’s ob-
ject hallucination and behavior hallucination when
understanding multi-image inputs. For the com-
prehensive benchmark, we select nine commonly
used comprehensive benchmarks and general VQA
tasks: LLaVA in the Wild (Liu et al., 2024), Sci-
enceQA (Lu et al., 2022), TextVQA (Singh et al.,
2019), MME Perception (Fu et al., 2024), MME
Cognition (Fu et al., 2024), MMBench (Liu et al.,
2023b), MM-Vet (Yu et al., 2023b), SeedBench (Li
et al., 2023a), and VisWiz (Gurari et al., 2018). For
details on these benchmarks, please refer to the
Appendix E.

Experiment results (a) SIMA can significantly
reduce hallucinations of LVLMs. As shown
in Table 1, SIMA significantly improves the per-
formance of all three LVLMs on five hallucina-
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Table 1: Performance comparison between SIMA and other baselines on hallucination benchmarks

LVLMs CHAIRs ↓ CHAIRi ↓ MM-Hal ↑ MementosO ↑ MementosB ↑
LLaVA-1.5-7B 50.8 11.7 2.04 39.29% 23.02%
+ RLHF 45.3 11.1 2.11 40.53% 22.71%
+ GT-DPO 47.3 11.2 2.00 43.67% 24.35%
+ HA-DPO 46.5 10.7 1.97 41.07% 23.58%
+ POVID 48.4 11.3 2.28 42.95% 23.84%
+ SIMA (ours) 40.9 10.4 2.30 46.08% 26.03%

LLaVA-1.5-13B 48.6 10.8 2.19 40.37% 24.65%
+ GT-DPO 47.2 10.8 2.27 42.59% 25.84%
+ SIMA (ours) 45.8 10.6 2.41 45.84% 27.17%

VILA-7B 34.7 9.2 2.53 41.96% 25.88%
+ GT-DPO 32.4 8.9 2.61 44.25% 26.91%
+ SIMA (ours) 28.4 8.4 2.66 48.15% 27.04%

Table 2: Performance comparison between SIMA and other baselines on comprehensive benchmarks

LVLMs LLaVAW ↑ SQAI ↑ VQAT ↑ MMEP ↑ MMEC ↑ MMB ↑ MM-Vet ↑ SEED ↑ VisWiz ↑
LLaVA-1.5-7B 63.4 66.8 58.2 1506.4 355.7 64.3 30.5 58.6 50.0
+ RLHF 63.7 65.8 58.3 1508.2 360.2 60.4 31.1 60.0 52.2
+ GT-DPO 64.7 67.4 58.1 1510.8 365.0 64.6 31.2 60.4 53.8
+ HA-DPO 64.2 68.1 58.0 1507.2 362.3 63.9 30.9 60.2 53.9
+ POVID 65.3 69.2 58.1 1493.5 363.5 64.1 31.3 60.3 54.0
+ SIMA (ours) 66.1 69.1 58.5 1507.7 379.3 64.9 31.6 60.6 54.4

LLaVA-1.5-13B 66.5 71.6 61.3 1531.1 296.1 67.7 36.1 61.6 53.6
+ GT-DPO 66.9 72.3 61.2 1532.6 296.7 68.0 36.3 62.2 54.4
+ SIMA (ours) 67.4 72.5 61.2 1538.1 298.6 68.4 38.3 63.0 55.5

VILA-7B 69.7 68.2 64.4 1533.0 316.4 68.9 34.9 61.1 57.8
+ GT-DPO 71.4 70.6 65.9 1547.8 325.7 69.0 37.1 61.9 60.3
+ SIMA (ours) 73.5 72.2 66.1 1559.6 326.8 69.2 38.4 62.5 62.1

tion benchmarks. On the CHAIRs, CHAIRi, and
Mementos-Object benchmarks, which test object
hallucination, SIMA improves he performance of
LLaVA-1.5-7B, LLaVA-1.5-13B, and VILA-7B
by an average of 16.1%, 7.1%, and 8.4%, respec-
tively. On the MM-Hal benchmark, which uses
GPT as an evaluator for a more comprehensive as-
sessment of hallucinations, SIMA achieves 12.7%,
10.1%, and 5.1% performance improvement com-
pared with LLaVA-1.5-7B, LLaVA-1.5-13B, and
VILA-7B. Notably, despite our three critic metrics
focusing primarily on object hallucination, SIMA
also achieves the greatest improvement of 13.1%
on the Mementos-Behavior benchmark based on
LLaVA-1.5-7B model, which tests behavior hal-
lucination arising from understanding sequential
image inputs. This improvement is significant be-
cause there is a correlation between object hallu-
cination and behavior hallucination in sequential
image understanding (Wang et al., 2024b); reduc-
ing object hallucination increases the likelihood of
correctly inferring the corresponding behavior. (b)

SIMA also enhances the comprehension capabil-
ities of LVLMs. As shown in Table 2, on the nine
comprehensive and VQA benchmarks, although
the improvements are not as pronounced as on the
hallucination benchmarks, SIMA still achieves an
average improvement of 3.5%, 2.1%, and 4.4%
compared to LLaVA-1.5-7B, LLaVA-1.5-13B, and
VILA-7B. This is superior to other preference tun-
ing methods.

3.2 Importance of our critic metric

In this section, our main objective is to demonstrate
the importance of the three critic metrics in the in-
context self-critic stage through experiments and
case studies. We use LLaVA-1.5-7B as base model
to conduct experiments. As in the experimental
setup described in Section 3.1, the prompts used
to generate response candidates are sampled from
LLaVA’s visual instruction tuning dataset. After
self-generating the response candidates, we keep
these candidates unchanged and use LLaVA to eval-
uate them with both metric-inclusive and metric-

273



Table 3: The performance comparison between training LLaVA with preference pairs obtained using metric-inclusive
and metric-free critic prompts in the in-context self-critic process.

Hallucination Benchmark Comprehensive Benchmark

CHAIRs CHAIRi MM-Hal MemO MemB LLaVAW SQAI VQAT MMEP MMEC MMB MM-Vet SEED VisWiz

LLaVA-1.5-7B 50.8 11.7 2.04 39.29% 23.02% 63.4 66.8 58.2 1506.4 355.7 64.3 30.5 58.6 50.0
+ SIMA w/o metrics 41.5 10.8 2.12 41.55% 23.92% 63.3 68.9 58.3 1504.6 371.7 64.0 31.5 60.4 53.7
+ SIMA (ours) 40.9 10.4 2.30 46.08% 26.03% 66.1 69.1 58.5 1507.7 379.3 64.9 31.6 60.6 54.4

free critic prompts, resulting in preference pairs
that are then used to update the LLaVA. We test the
performance of both methods on 14 benchmarks,
with the results shown in Table 3. Upon compari-
son, we find that removing the critic metrics still
improved performance compared to the original
LLaVA, but there remained a significant gap com-
pared to SIMA with metrics. This disparity is par-
ticularly notable in more challenging tasks like
MM-Hal and Mementos, where the improvement
from SIMA without critic metrics is quite limited.
This demonstrates that with the correct design of
critic prompts, LVLMs can gain critic capabilities
and improve model performance without requiring
instruction fine-tuning. Moreover, the three visual
critic metrics are crucial for further enhancing per-
formance.
Table 4: Comparison of response critic results with
human judgment.

Select 1 Select 2 Align w. human

Human 183 317 -
GPT-4v 198 302 95.6%
SIMA 215 285 89.8%

SIMA w/o metrics 246 254 78.2%

Figure 5: Comparison of
critic results with and with-
out critic metrics in SIMA.

We compare the
evaluation results
distribution of
response candidates
with and without
using metrics, as
shown in Figure 5.
It can be seen that
approximately 20%
of the response
candidates have
inconsistent evalua-
tions between the two methods. Additionally, we
randomly sample 500 response candidates and
evaluate them both manually by the authors of this
paper and with GPT-4v. For human evaluation, we
provide 500 response pairs and asked individuals
to directly select the better one. For GPT-4v, we
use the same critic prompt with metrics as SIMA

for the evaluation. Comparing these evaluations
with SIMA’s results in Table 4, we find that
without the critic metrics, SIMA’s evaluations
are only 78% consistent with human evaluations.
After incorporating metrics, this consistency
improved by 11.2% to 89.8%, which is very close
to the evaluation results of GPT-4v and human.
In Appendix D.2, we also present an example
of evaluation results with and without metrics to
further illustrate the magic of these three visual
metrics.

3.3 Ablation studies

(a) Average performance of LLaVA-1.5-13B with
SIMA at different iterations.

(b) Average performance of SIMA on LLaVA-1.5-
7B with different decoding temperature.

Figure 6: Ablation studies of SIMA.

In this section, we conduct ablation studies on
SIMA from two aspects: the performance varia-
tion of SIMA under multi-iteration finetuning and
the impact of different decoding temperatures on
performance when generating response candidates.
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Performance of multi-iteration finetuning Fig-
ure 6(a) shows the average performance of the
model on benchmarks across different training it-
erations on LLaVA-1.5-13B. For detailed perfor-
mance on each benchmark, please refer to Table 8
in the Appendix B. In each iteration, we randomly
resample 17k prompts from LLaVA’s visual in-
struction tuning dataset for self-generation. We
observe that the performance improvement is most
noticeable in the first iteration compared to the base
model. In the second iteration, there is an improve-
ment, but it is not as pronounced. Although the
average performance saturates in the third itera-
tion, performance in some benchmarks continues
to improve, as seen in Table 8.

Different decoding temperatures We also con-
duct an ablation study on the temperature used
in temperature decoding during the response self-
generation phase. The experimental results are
shown in Figure 6(b). We find that as the tem-
perature increases, the performance of SIMA also
improves. We believe this is because, as the temper-
ature increases, the responses generated by LVLM
become more diverse and are more likely to exhibit
hallucination. This increases the distribution shift
between the responses generated by greedy decod-
ing and those generated with higher temperature,
leading to better performance improvements for
LVLM during the preference tuning phase.

4 Related Work

Vision-Language Models Vision-Language
Models (VLMs) (Li et al., 2019, 2020; Wang
et al., 2021; Radford et al., 2021; Li et al., 2022)
have emerged as critical tools in bridging visual
and textual modalities, enabling advancements in
multimodal understanding and reasoning tasks.
Recent developments have been driven by the
integration of large language models (LLMs) (Tou-
vron et al., 2023; Jiang et al., 2023; Chiang et al.,
2023) and sophisticated image encoders, leading to
more robust and versatile Large Vision-Language
Models (LVLMs) (Bai et al., 2023; Zhu et al.,
2023; Chen et al., 2023; Dai et al., 2024; Lin
et al., 2024; Yao et al., 2024; Liu et al., 2024). For
instance, models like LLaVA (Liu et al., 2024) and
InstructBLIP (Dai et al., 2024) combine advanced
vision encoders with LLMs, enhancing their ability
to follow vision-language instructions. In this
work, we focus on further enhancing LVLM’s
visual understanding and reasoning abilities based

on LVLM’s visual instruction tuning data through
self-improvement.

Modality Alignment Vision-language modality
misalignment is a key challenge in LVLMs, where
the generated textual outputs may not fully corre-
spond to the input visual data. Preference learn-
ing (Rafailov et al., 2024; Azar et al., 2024; Etha-
yarajh et al., 2024) is generaly used to improve
modality alignment in LVLMs. Some methods,
such as using human annotation (Sun et al., 2023;
Yu et al., 2024a) and third-party AI model feed-
back (Li et al., 2023c; Zhao et al., 2023; Zhou et al.,
2024; Yu et al., 2024b; Jing and Du, 2024; Xiong
et al., 2024) for preference learning, have been
proposed. However, these methods are resource-
intensive and may introduce additional external
hallucinations, leading to LVLM performance that
is uncontrollable and unstable after optimization.
In this paper, we addresses both issues through a
self-improvement approach, significantly enhanc-
ing modality alignment without introducing any
external models or data.

Self-Improvement in Large Language Models
Self-improvement is proposed in LLM to improve
LLM itself with self-generated data. Several papers
have explored self-improvement in LLM (Yuan
et al., 2024; Pang et al., 2024; Wu et al., 2024; Li
et al., 2024; Wang et al., 2024a). To the best of our
knowledge, this paper is the first to explore self-
improvement in LVLMs. Different from previous
self-improvement methods in LLM which need
to finetune the LLM with additional instruction
tuning data before critic, our method demonstrate
that LVLM can acquire the ability to act as a critic
by properly configuring critic prompt without fine-
tuning.

5 Conclusion

In this paper, we introduce SIMA framework in en-
hancing the alignment between visual and language
modalities in LVLMs through self-improvement.
This is achieved through self-generated responses,
evaluating them via in-context self-critic, and em-
ploying preference tuning. SIMA bypasses the
need for the third-party AI model for data genera-
tion and response evaluation, making it more scal-
able and cost-effective. This approach not only im-
proves the modality alignment but also significantly
enhances the model’s comprehension abilities and
reduces hallucinations across various benchmarks.
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Limitations

One limitation of this paper is that the reliance on
self-generated responses and self-critic inherently
ties the SIMA’s performance to the current capa-
bilities of LVLM and does not address the inherent
potential biases caused by the vision instruction
tuning dataset. This can result in SIMA provid-
ing less significant improvements for LVLMs on
certain benchmarks, such as LLaVA-1.5-7B and
LLaVA-1.5-13B on TextVQA. In future work, we
will further explore this issue.

Broader Impacts

To the best of our knowledge, we are the first to
apply self-rewarding in LVLMs. This approach
avoids the introduction of external models and data,
enhancing the alignment between visual and lan-
guage modalities through the model itself. This
significantly reduces hallucinations and improves
reasoning capabilities, greatly increasing the relia-
bility of LVLMs.

From a societal impact perspective, while SIMA
has made substantial progress, it has not entirely
eliminated potential risks within LVLMs. For ex-
ample, reliance on self-generated and self-critic
data may unintentionally reinforce biases caused
by distribution shifts in the training data. Therefore,
despite SIMA’s significant advancements, it is cru-
cial to implement ethical guidelines and safeguards
to mitigate these risks and ensure responsible use
of this technology.
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A Detailed critic prompt

In this section, we provide detailed critic prompt
used during the in-context self-critic phase, as
shown in Figure 7.

B Detailed ablation studies

B.1 LLaVA-1.5-7B

In this section, we provide the performance of
LLaVA-1.5-7B-7B across all benchmarks at dif-
ferent training epochs, as shown in Table 5. Addi-
tionally, in Table 6, we present the performance of
SIMA across all benchmarks when using different
temperature coefficients for temperature decoding.

B.2 LLaVA-1.5-13B

In this section, we present the detailed performance
of LLaVA-1.5-13B across all benchmarks at dif-
ferent epochs and iterations in Tables 7 and Ta-
bles 8, respectively. It can be observed that the
best results for LLaVA-1.5-13B are achieved after
just one epoch. During multiple iteration training,
performance on some benchmarks continues to im-
prove in the third iteration while some declines due
to overfitting.

B.3 Comparison with other open-source
LVLMs

In this section, we report the performance of five
other popular open-source LVLMs (BLIP-2 (Li
et al., 2023b), InstructBLIP (Dai et al., 2024),
IDEFICS (Laurençon et al., 2024), Qwen-VL-
Chat (Bai et al., 2023), and mPLUG-Owl2 (Ye
et al., 2023)) as a reference to demonstrate the su-
periority of our experimental results in Table 9.
Compared to other open-source LVLMs, SIMA
also significantly outperforms all except for Qwen-
VL-Chat on MM-Vet.

C Hyperparameters

In this section, we provide the hyperparameters
used during training, as well as the GPT version
utilized during evaluation, as shown in Table 10.

D Case Study

D.1 SIMA case study

In Figure 8, we compare the detailed captions gen-
erated from LLaVA and our method SIMA. For
instance, in the above demonstration in Figure 8,

LLaVA inaccurately describes the scene ‘with a
chair close to the bench and another chair further
away’, details that are not present in the provided
image, while SIMA accurately captures the details
in images. Both demonstrations in Figure 8 in-
dicate that SIMA is capable of generating more
accurate descriptions with fewer hallucinations.

D.2 Critic prompt case study

In Figure 9, we present an example of evaluation re-
sults with and without metrics. The example shows
that after using the critic metrics, the SIMA’s eval-
uation is guided to focus more on the details of the
visual content, leading to correct judgments. There-
fore, based on the analysis and results above, it is
evident that critic metrics are crucial for improv-
ing the accuracy of response evaluations during
in-context self-critic.

E Benchmark details

LLaVAW is an extensive benchmark for assess-
ing visual reasoning models. It includes 24 varied
images accompanied by a total of 60 questions,
encompassing scenarios from indoor and outdoor
settings to abstract art.

ScienceQA is a multi-modal benchmark de-
signed to evaluate and diagnose the multi-hop rea-
soning capabilities and interpretability of artificial
intelligence systems in science. It provides an ex-
tensive data set of approximately 21,000 multiple-
choice questions covering a wide range of scientific
topics, supported by detailed answer notes, relevant
lectures and explanations.

TextVQA is a dataset that benchmarks visual
reasoning based on text in images. TextVQA re-
quires models to read and reason about text in im-
ages to answer questions about them. Specifically,
the model needs to incorporate a new form of text
into the image and reason about it to answer the
TextVQA question.

MME serves as a comprehensive benchmark for
evaluating the capabilities of LVLMs in multimodal
tasks. It evaluates models systematically across two
main dimensions: perception and cognition, using
14 carefully designed subtasks that test the models’
interpretative and analytical abilities.

MMBench introduces a two-pronged approach:
a carefully curated dataset that significantly ex-
pands the scope and diversity of evaluation ques-
tions, and a groundbreaking CircularEval strategy
that leverages ChatGPT to transform free-form pre-
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Figure 7: Critic prompt used for in-context self-critic.

Table 5: Performance of different epochs on LLaVA-1.5-7B.

Hallucination Benchmark Comprehensive Benchmark

CHAIRs CHAIRi MM-Hal MemO MemB LLaVAW SQAI VQAT MMEP MMEC MMB MM-Vet SEED VisWiz

LLaVA-1.5-7B 50.8 11.7 2.04 39.29% 23.02% 63.4 66.8 58.2 1506.4 355.7 64.3 30.5 58.6 50.0
+ SIMA Epoch 1 43.9 10.8 2.17 42.39% 23.88% 65.3 68.9 58.2 1511.9 369.6 64.9 30.5 60.1 53.7
+ SIMA Epoch 2 41.6 10.4 2.28 45.71% 24.93% 66.1 69.2 58.2 1514.8 371.8 65.0 31.5 60.4 54.0
+ SIMA Epoch 3 40.9 10.4 2.30 46.08% 26.03% 66.1 69.1 58.5 1507.7 379.3 64.9 31.6 60.6 54.4

Table 6: Performance of different decoding temperature.

Hallucination Benchmark Comprehensive Benchmark

CHAIRs CHAIRi MM-Hal MemO MemB LLaVAW SQAI VQAT MMEP MMEC MMB MM-Vet SEED VisWiz

T=0.2 40.2 10.1 2.11 45.42% 24.99% 65.2 68.5 58.3 1505.0 371.8 64.7 31.1 60.1 53.7
T=0.4 40.7 10.2 2.19 45.93% 25.37% 64.9 68.9 58.3 1506.4 355.7 65.0 31.1 60.3 53.8
T=0.6 40.9 10.3 2.23 45.71% 25.61% 65.7 69.2 58.2 1504.8 371.8 64.9 31.3 60.3 54.1
T=0.8 40.9 10.4 2.30 46.08% 26.03% 66.1 69.1 58.5 1507.7 379.3 64.9 31.6 60.6 54.4

Table 7: Performance of different epochs on LLaVA-1.5-13B.

Hallucination Benchmark Comprehensive Benchmark

CHAIRs CHAIRi MM-Hal MemO MemB LLaVAW SQAI VQAT MMEP MMEC MMB MM-Vet SEED VisWiz

LLaVA-1.5-13B 48.6 10.8 2.19 40.37% 24.65% 66.5 71.6 61.3 1531.1 296.1 67.7 36.1 61.6 53.6
+ SIMA Epoch 1 45.8 10.6 2.41 45.84% 27.17% 67.4 72.5 61.2 1538.1 298.6 68.4 38.3 63.0 55.5
+ SIMA Epoch 2 46.1 10.6 2.26 45.53% 26.99% 67.2 72.4 61.2 1537.5 291.1 68.5 37.6 63.0 55.0
+ SIMA Epoch 3 45.9 10.6 2.21 45.61% 26.74% 66.0 72.4 61.1 1529.2 291.4 68.3 35.9 63.0 54.9

dictions for structured choices.

MM-Vet is an evaluation benchmark specially

designed to evaluate the multi-faceted capabilities
of LVLM. It systematically builds complex mul-
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Table 8: Performance of different iterations on LLaVA-1.5-13B.

Hallucination Benchmark Comprehensive Benchmark

CHAIRs CHAIRi MM-Hal MemO MemB LLaVAW SQAI VQAT MMEP MMEC MMB MM-Vet SEED VisWiz

LLaVA-1.5-13B 48.6 10.8 2.19 40.37% 24.65% 66.5 71.6 61.3 1531.1 296.1 67.7 36.1 61.6 53.6
+ SIMA Iter 1 45.8 10.6 2.41 45.84% 27.17% 67.4 72.5 61.2 1538.1 298.6 68.4 38.3 63.0 55.5
+ SIMA Iter 2 45.3 10.6 2.46 46.02% 27.58% 67.5 72.7 61.2 1528.9 298.6 68.5 38.3 62.9 55.9
+ SIMA Iter 3 45.4 10.6 2.42 46.91% 27.63% 67.3 72.6 61.1 1529.8 298.6 68.6 37.9 63.0 56.0

Table 9: Performance comparison between SIMA and other open-source LVLMs on comprehensive benchmarks

LVLMs LLaVAW ↑ SQAI ↑ VQAT ↑ MMEP ↑ MMEC ↑ MMB ↑ MM-Vet ↑ SEED ↑ VisWiz ↑
BLIP-2 38.1 61.0 42.5 1293.8 290.0 - 22.4 46.4 19.6
InstructBLIP 60.9 60.5 50.1 1212.8 291.8 36.0 26.2 53.4 34.5
IDEFICS 45.0 - 25.9 1177.3 - 30.0 30.0 45.0 35.5
Qwen-VL-Chat 67.7 68.2 61.5 1487.6 360.7 60.6 47.3 58.2 38.9
mPLUG-Owl2 59.9 68.7 58.2 1450.2 313.2 64.5 36.2 57.8 54.5

LLaVA-1.5-7B 63.4 66.8 58.2 1506.4 355.7 64.3 30.5 58.6 50.0
+ SIMA (ours) 66.1 69.1 58.5 1507.7 379.3 64.9 31.6 60.6 54.4

VILA-7B 69.7 68.2 64.4 1533.0 316.4 68.9 34.9 61.1 57.8
+ SIMA (ours) 73.5 72.2 66.1 1559.6 326.8 69.2 38.4 62.5 62.1

Prompt: Write a detailed description for the given image

SIMA: The image features a cat sitting on a wooden bench in a park. The bench is 
located near a dining table, which is surrounded by several chairs. The cat appears to be 
looking at the ground, possibly exploring the area or observing something of interest. 
The scene captures a peaceful and relaxing moment in the park.

LLaVA: The image features a white and black cat sitting on a wooden bench in a park. 
The bench is located near a dining table, which is surrounded by several chairs. The cat 
appears to be looking at the table, possibly intrigued by something on it. The scene is set 
in a garden, with a chair placed close to the bench and another chair further away. The 
overall atmosphere is calm and serene, with the cat enjoying its time outdoors.

Prompt: Describe the given image in detail

SIMA: The image features a large brown cow lying down on the ground, 
taking up a significant portion of the scene. The cow appears to be relaxed 
and comfortable in its position. In the background, there are two motorcycles 
parked nearby. One motorcycle is located on the left side of the cow, while 
the other is on the right side. The presence of the motorcycles suggests that 
the location might be a public space or a place where people gather.

LLaVA: The image features a large brown cow lying down on the ground, 
taking up a significant portion of the scene. The cow appears to be resting or 
relaxing in the outdoor area. In the background, there are two motorcycles 
parked, one on the left side and the other on the right side of the cow. 
Additionally, there is a scooter parked further back on the right side of the 
scene. The presence of these vehicles suggests that the location might be a 
busy street or a parking area.

Figure 8: Examples to illustrate the effect of SIMA on LVLM. SIMA is presented to be less hallucinated compared
with LLaVA.

timodal tasks into 16 different ensembles derived
from combinations of 6 core visual language fea-
tures, providing granular analysis of model perfor-
mance across different question types and answer
styles.

SEEDBench is intended to rigorously assess the
generative comprehension capabilities of LVLMs.
It includes a comprehensive dataset of 19K
multiple-choice questions with accurate human an-
notations, spanning 12 distinct evaluation dimen-
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Prompt: Can you describe the main features of this image for me?

Greedy decode: The image depicts a lively outdoor market scene with a variety of fresh fruits and vegetables on display. 
There are numerous bananas, apples, and oranges spread across the market, attracting the attention of shoppers. Several 
people are present in the scene, browsing and shopping for the fresh produce. Some are standing close to the fruit stands, 
while others are scattered throughout the market area. A backpack can be seen in the background, likely belonging to one 
of the shoppers. The market appears to be a popular destination for people looking to purchase fresh, healthy food options.

Temperature decoding: The image depicts a lively market scene with several people shopping for various fruits and 
vegetables. There are at least four people visible in the scene, engaged in different activities related to the market. Among 
the produce, there are numerous apples and oranges, with several apples scattered throughout the scene. Oranges can also 
be seen, placed in different locations within the market. In addition to the fresh fruits, there is a backpack on the right side 
of the image, possibly belonging to one of the shoppers. A cell phone is also visible, likely being used by someone in the 
market.

SIMA with metrics : The reason: AI generated response 1 includes additional details about a cell phone and a backpack, which are not present in the 
ground truth. AI generated response 2 is more accurate in describing the market as lively and bustling with people, as well as the variety of fruits and 
vegetables available. It also provides more specific details about the produce, such as the presence of bananas, apples, and oranges. AI generated 
response 1 focuses more on the presence of a backpack and a cell phone, which are not relevant to the main features of the image. The better AI 
generated response: [[2]].

SIMA without metrics: The reason: AI generated response 1 includes additional details about a cell phone and a backpack, which are not present in the 
ground truth. AI generated response 2 is more accurate in describing the market as lively and filled with fresh produce, but it does not provide specific 
details about the people or the backpack. AI generated response 1 is more aligned with the ground truth, as it describes the market as lively and filled 
with people shopping for fruits and vegetables, and it provides specific details about the produce and the people present in the scene. The better AI 
generated response: [[1]].

Ground truth: The image captures a lively outdoor market, bustling with people browsing through the fruits and 
vegetables on display. Various individuals are present in the scene, with a man standing in front of a fruit stand close to the 
center, while another man wearing a backpack is nearby. Additional people can be seen in the background, possibly 
exploring the market or conversing with one another. The fruit stand is mainly filled with bananas, which come in different 
shapes and sizes, indicating a vast selection for shoppers. There are also apples available, located towards the bottom of 
the scene. The market provides a vibrant atmosphere, with its inviting array of fresh produce and the interactions of 
customers and vendors.

Self-Generation

Self-Critic

Figure 9: An example of the critic results with and without using critic metrics in the in-context self-critic stage.
The results show that after using metrics, the LVLM’s evaluation is more focused on the details of the visual content,
leading to a correct judgment.

Table 10: Hyperparameters of SIMA during training
and evaluation.

Parameter Value

lora r 128
lora alpha 256
mm projector lr 2e-5
learning rate 1e-7
model max length 2048
batch size 1
decoding temperature 0.8
GPT api version (Eval) gpt-4-turbo

sions that test both spatial and temporal understand-
ing across image and video modalities.

VizWiz is a dataset in the field of visual ques-
tion answering (VQA) derived from a naturalistic
setting containing over 31,000 visual questions. It
features a goal-oriented approach, featuring images
taken by blind people, accompanied by their verbal
queries, and crowdsourced answers.

F Status of Exemption from Institutional
Review Board

Before starting any segments of the study involving
human evaluation, the research team completed and
submitted a “Human Subjects Research Determina-
tion" form to the appropriate Institutional Review
Board (IRB). We obtained a determination letter
from the IRB before any human study activities
commenced, indicating that our project proposal
had been granted ‘Exempt’ status. This classifica-
tion implies that the proposed research was deemed
‘Not Human Subjects Research’.

282


