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Abstract

Scientific innovation relies on detailed work-
flows, which include critical steps such as con-
textualizing literature, generating ideas, vali-
dating ideas, interpreting results, and planning
new research. Scientific publications that doc-
ument these workflows are extensive and un-
structured, making it difficult to effectively nav-
igate and explore the space of scientific inno-
vation. To meet this challenge, we introduce
MASSW, a comprehensive dataset of Multi-
Aspect Summarization of Scientific Workflows.
MASSW includes more than 152,000 peer-
reviewed publications from 17 leading com-
puter science conferences spanning the past 50
years. Using Large Language Models (LLMs),
we automatically extract five core aspects from
these publications – context, key idea, method,
outcome, and projected impact – which corre-
spond to five key steps in a research workflow.
We show that these LLM-extract summaries
have a comparable quality to human annota-
tions, and they facilitate a variety of down-
stream tasks, corresponding to different types
of predictions and recommendations along the
scientific workflow. Overall, MASSW demon-
strates decent utility as a pre-computed and
trustful resource for the AI4Science commu-
nity to create and benchmark a wide-range of
new AI methods for optimizing scientific work-
flows and fostering scientific innovation. Our
dataset is available at https://huggingface.
co/datasets/jimmyzxj/massw.

1 Introduction

Can AI be a capable copilot for scientific research?
Scientific innovation is driven by complex and de-
tailed workflows, also referred to as scientific meth-
ods at a coarse level (Ayala, 2009; Voit, 2019).
These workflows typically involve critical steps
such as analyzing existing literature, generating

*Equal contribution

research ideas, validating these ideas through anal-
yses and experiments, interpreting the results, and
ultimately inspiring new research inquiries. To nav-
igate and explore the space of innovations, both
the pilot and the copilot have to understand, plan,
and optimize the scientific workflows (Wang et al.,
2023). These workflows are widely documented
in scientific publications, serving as a key source
for scientists to understand, reproduce, and plan
research. However, these publications are typically
unstructured and complex, making it difficult to
trace scientific workflows or extend them to new re-
search. To support researchers, or even AI copilots,
in better navigating and exploring the scientific in-
novation landscape, it is crucial to develop new
datasets that document scientific workflows in a
more structured and “ready-to-analyze” manner,
along with new tools that enable reasoning and
evolution of these workflows.

Curating scientific workflow datasets from sci-
entific publications is challenging. While human
experts are skilled at deciphering complex scien-
tific publications, their highly personalized inter-
pretations, if not sufficiently aligned, often result
in inconsistent and heterogeneous annotations and
predictions (Beck et al., 2020). Furthermore, an-
notations by highly specialized researchers are in-
herently expensive, limiting the feasibility of build-
ing large datasets at the scale and scope of a sci-
entific field (Takeshita et al., 2024; Fisas et al.,
2015; Cachola et al., 2020a; Mei and Zhai, 2008).
These challenges highlight the need for an auto-
mated, scalable, and consistent solution to annotate
structured scientific workflows, a task well-suited
for an AI. Indeed, recent large language models
(LLMs) have demonstrated promising performance
in reasoning through natural language (Wei et al.,
2024), positioning them as a viable candidate for
automating the annotation of scientific workflows,
even though it remains to be seen whether they can
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match the accuracy of human experts.

To address these challenges, we present
MASSW, a novel and large-scale dataset that pro-
vides a comprehensive and structured Multi-Aspect
Summarization of Scientific Workflows. The key
features of MASSW include

• Structured scientific workflows. MASSW
defines five core aspects of a scientific work-
flow – context, key idea, method, outcome, and
projected impact. These aspects correspond
to the typical stages of general scientific work-
flows found in the literature. Utilizing LLMs,
we are able to consistently extract and struc-
ture these five aspects from each publication.

• Large scale. MASSW contains the structured
scientific workflows and meta-information
from over 152,000 peer-reviewed publica-
tions, across 17 leading computer science con-
ferences, and spanning the past 50 years.

• Accuracy. The coverage and accuracy of
MASSW have been validated through com-
prehensive inspections and comparisons with
expert annotations and alternative approaches.

MASSW provides a resource to build a wide
range of applications in AI-assisted scientific dis-
covery, offering a structured, large-scale, and pre-
computed data source. It can be used to bench-
mark various AI-driven scientific research chal-
lenges such as generating new scientific ideas, de-
signing experiments, hypothesis validation, and
forecasting the impact of research. For scientists,
MASSW can be used to facilitate their exploratory
analysis of the scientific space, possibly through
visualizations of the literature and workflows. One
can utilize it to quantify the novelty of ideas within
a historical context (Wang et al., 2023). For AI
researchers, this unique data source can also be
used to develop search engines and recommender
systems to retrieve similar ideas, suggest methods,
and support fine-grained examination of scientific
workflows (Hope et al., 2018). While this paper
does not demonstrate all potential applications of
MASSW, we benchmark several downstream tasks
that can be evaluated without specific human judg-
ments, in order to showcase MASSW’s versatility
and ability to open new opportunities for new AI ap-
plications and methods. Ultimately, we anticipate
datasets like MASSW could foster more effective
scientific workflows and accelerate innovation.

2 Dataset Overview

MASSW is a structured, large-scale, and pre-
computed dataset designed to enhance the explo-
ration and analysis of scientific workflows. In Sec-
tion 2.1, we first discuss how a scientific publica-
tion can be structured into five core aspects, cor-
responding to five key steps in a general scientific
research workflow. In Section 2.2, we describe
the curation of scientific publication data and an
automated procedure that summarizes these core
aspects with LLMs. Lastly, we present basic statis-
tics about the constructed MASSW dataset and a
multi-view visualization of these aspects in Section
2.3.

2.1 Core Aspects of Scientific Workflows

A typical scientific research workflow generally
follows a series of steps: posing a research ques-
tion, reviewing existing literature, formulating a
hypothesis or research idea, validating the hypoth-
esis, interpreting results, drawing conclusions, re-
porting findings, and planning future research (Ay-
ala, 2009; Voit, 2019). In a scientific publication,
these steps are often described through specific
narrative elements. For instance, authors typically
situate their study within the context of existing
work, present the key idea driving their research,
describe the method used to test the idea, discuss
the outcome of their validation, and highlight the
potential impact of their findings. In Table 1, we
formally define these core aspects of a scientific
workflow. While various studies have proposed
their own definitions of related components, their
focus has largely been on testing NLP models’ abil-
ity to extract and summarize information from sci-
entific publications (Fisas et al., 2015; Takeshita
et al., 2024; Fok et al., 2023; Cohan et al., 2019;
Dernoncourt and Lee, 2017), rather than establish-
ing a large-scale dataset that documents essential
aspects of scientific workflows. Inspired particu-
larly by Fisas et al. (2015), whose categorization
framework is theoretically grounded in the field of
computer science, we adopt the following five core
aspects of scientific workflows:

Context The context of a study summarizes the
status quo of the research field or the broader reality
before the study is published. This aspect is often
related to analyzing relevant literature, identifying
the gap and unresolved challenges, and motivating
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Aspect Definition Example

Context
Ask questions,
review literature
(prior to study)

The status quo of related literature or reality
which motivated this study. This could nor-
mally be a problem, a research question, or
a research gap that has not been successfully
addressed by previous work.

Making language models bigger does not
inherently make them better at following a
user’s intent, as large models can generate
outputs that are untruthful, toxic, or not help-
ful.

Key Idea
Construct
hypothesis
(proposed in this
study)

The main intellectual merit of this paper,
often in comparison to the context. This
could normally be a novel idea or solution
proposed in this paper that distincts it from
what’s already done in literature.

The authors propose InstructGPT, a method
to align language models with user intent
by fine-tuning GPT-3 using a combination
of supervised learning with labeler demon-
strations and reinforcement learning from
human feedback.

Method
Test hypothesis
(after hypothesis
construction)

The specific research method that inves-
tigates and validates the key idea. This
could be an experimental setup, a theoreti-
cal framework, or other necessary validation
methodology to implement and/or evaluate
the key idea.

The authors evaluate the performance of In-
structGPT by humans on a given prompt dis-
tribution and compare it with a much larger
model GPT-3.

Outcome
Interpret results,
draw conclusion
(after testing
hypothesis)

The factual statement about the study output.
This could be the experiment results and any
other measurable outcome that has occurred.
It marks whether the key hypothesis is testi-
fied or not.

InstructGPT, even with 100x fewer parame-
ters, is preferred over GPT-3 in human eval-
uations. It shows improvements in truthful-
ness and reductions in toxic outputs with
minimal performance regressions on public
NLP datasets.

Projected
Impact
Future work
(anticipated but not
yet done)

The author-anticipated impact of the work
on the field, and potential further research
identified by the author that may improve or
extend this study.

Fine-tuning with human feedback is a
promising direction for aligning language
models with human intent.

Table 1: Core aspects in the MASSW dataset that correspond to key steps (in italic) in a general scientific
workflow. The example is based on the paper “Training Language Models to Follow Instructions with Human
Feedback.” (Ouyang et al., 2022) More examples of MASSW are provided in Appendix B.

new research ideas to fill the gap. In particular
publications, this key aspect is often described as
background, challenges, or literature review, as
adopted by previous work of text summarization.

Key Idea The key idea represents the central hy-
pothesis or novel contribution proposed in the study.
This is the key aspect that distinguishes the current
work from the context of existing work. It is a prod-
uct of idea generation, a critical step in the scientific
workflow where new concepts are formed, new con-
nections are made, and new solutions are proposed
to address particular challenges in research. In pre-
vious work of text summarization, it is sometimes
related to the approach described in a paper, which
only partially reflects its key ideas.

Method The method of a study details the pro-
cedures and techniques used to validate the key
idea or hypothesis. In other words, the method is

not a part of the hypothesis itself, but rather the
procedure used to prove or reject the hypothesis.
In previous work of text summarization, method
is sometimes confused with the key idea (both re-
ferred to as part of the approach (Fisas et al., 2015;
Takeshita et al., 2024)), especially when the main
subject of the research is a “method.” We explic-
itly distinguish method from the key idea as they
refer to different steps in the scientific workflow
(generating ideas v.s. validating ideas).

Outcome The outcome includes the results and
findings as a product of the method in the study.
This aspect corresponds to the measurable results,
the interpretation of these results, and other types
of impact of the work that has already happened
by the time of publication. This concept is also
mentioned in previous work of text summarization,
as outcome or result.
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Projected Impact The projected impact outlines
the potential future implications of the research
that have not happened at the time of publication.
This aspect is often an ex-ante prediction of how
the results of the work would inspire follow-up re-
search or deployment, from the author’s point of
view. It discusses how the findings can contribute
to the field, suggests new research directions, and
potentially leads to societal or technological ad-
vancements. Previous text summarization work
often simply uses the concept of future work, while
ignoring the broader impact of the study.

2.2 Data Curation and Aspect Summarization

Advancing AI in understanding and improving sci-
entific workflows requires large-scale and high-
quality data. To address this challenge, we curate a
collection of scientific publications and structure it
into the above-defined core aspects at scale.

Large-scale scientific publication collection.
To build this initial version of the MASSW dataset,
we focus on Computer Science publications from
17 top-tier conferences listed in CSRankings.org,
which we identify as relevant to the broader field of
AI. We access the publications through Open Aca-
demic Graph (OAG)1, a linked graph database for
academic entities including publications, venues,
affiliations, and authors (Zhang et al., 2022, 2019a).
In total, 191,055 papers that span from 1969 to
2024 are collected, among which, 152,027 contain
both a title and an abstract. More details about data
curation can be found in Appendix A.

Automatic aspect summarization with LLMs.
Most relevant datasets on structured summaries of
publications were created using human annotations,
which only cover tens to thousands of papers (Mei
and Zhai, 2008; Fisas et al., 2015; Cachola et al.,
2020b; Wang et al., 2022; Takeshita et al., 2024),
limiting their scope for depicting a broader scien-
tific research landscape. For MASSW, we leverage
the power of LLMs (e.g., GPT-4) to automatically
summarize the five core aspects for all collected
papers that have a title and an abstract. In brief,
the prompt contains the same content as the an-
notation guidelines provided to human annotators,
along with an one-shot example. More details of
LLM-based summarization, including the prompts

1The OAG dataset is publicly released under the ODC-BY
license.

used, are described in Appendix B.

#Papers with Avg. #Tokens

Abstract 152,027 145.3
Context 149,849 34.8

Key Idea 149,411 35.1
Method 142,241 30.7

Outcome 132,614 27.6
Projected Impact 72,983 27.2

All Aspects 62,506 N/A

Table 2: Basic statistics of MASSW.

2.3 Dataset Statistics and Visualization

Table 2 reports basic statistics of the MASSW
dataset and each of the aspects. We include a
visualization of context in Figure 1 in Appendix
C to demonstrate the wide landscape captured by
MASSW.

3 Dataset Validation

Are LLM-generated summaries trustfully describ-
ing the core aspects of the scientific workflow? We
validate the structured summaries in MASSW by
comparing them with human-generated summaries.
We curate a small-scale subset of publications and
solicit the human annotations of the same five as-
pects. This subset demonstrates the alignment be-
tween the LLMs and human experts in generating
the multi-aspect summary of scientific workflows.

3.1 Evaluation Metric

We employ two categories of similarity evalua-
tion metrics: lexical-based and semantic-based.
Lexical-level metrics, such as BLEU (Papineni
et al., 2002) and ROUGE2 (Lin, 2004), impos-
ing strict requirements on lexical similarity, are
prevalent across various natural language genera-
tion tasks like machine translation. Nevertheless,
studies indicate their limited alignment with hu-
man judgments, primarily due to their reliance on
exact word matches (Sellam et al., 2020; Callison-
Burch et al., 2006; Ananthakrishnan et al., 2006;
Sai et al., 2022). Conversely, semantic-based met-
rics represent a more nuanced perspective, assess-
ing the similarity in meaning or content through
the use of pre-trained language models. We utilize
four semantic metrics: BERTScore (BS) (Zhang

2We report ROUGE-1 that evaluates on unigram.
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et al., 2019b), which compares token-wise contex-
tual embeddings, cosine similarity (CS), derived
from embeddings generated by (Wang et al., 2024),
BLEURT (Sellam et al., 2020), which is fine-tuned
to reflect human judgment, and FActScore, which
measures the factual consistency of generated con-
tent with the reference text (Min et al., 2023). Their
details can be found in Appendix E.

3.2 Evaluation Set and Human Annotation

We use a proportionate stratified sampling method
on different venues and publication years to select
the annotation subset. Specifically, for each venue,
we sorted the papers by publication dates and di-
vided them into 7 equal-sized buckets. From each
bucket, we randomly sampled one paper, resulting
in a balanced sample of 126 papers that accounts
for both venue diversity and temporal distribution.

Two trained human experts who are familiar with
reading scientific literature are assigned to annotate
the aspects of each paper, based on the title and
abstract, following a carefully designed codebook.
The complete annotation process is detailed in Ap-
pendix D. Table 3 (top) illustrates the agreement
between human experts by treating one annotation
as the reference and the other as the prediction for
each paper3. In general, there is a high level of
agreement across all five aspects, suggesting that
the scientific workflow is well-defined and the an-
notations do not have obvious individual bias.

3.3 Alignment between MASSW and Human
Summaries

Three LLMs are investigated to build the MASSW
dataset: GPT-3.5 (OpenAI, 2022), GPT-4 (Ope-
nAI, 2023), and Mixtral 8x7B (Jiang et al., 2024).
They are instructed using the same information
in the codebook for human annotators, and their
generated summaries are evaluated against human
annotations, shown in Table 3 and Table 8. Ideally,
if the LLM perfectly aligns with human experts,
the similarity between an LLM annotation and a
human annotation should be comparable to that
between the annotations of two humans.

Indeed, for semantic-based metrics, we only see
a small difference between LLM-human alignment
and human-human agreement, and this pattern is

3To help understand the scale of these metrics, we include
a range of examples with varying levels of similarity in Ap-
pendix H

consistent for all three models. This indicates that
the semantics of the core aspects of the scientific
workflows captured by the LLM closely mirror
those by human experts. For lexical-level met-
rics, there is a more notable disparity, especially
between GPT-4 and human experts. Our inspec-
tion suggests that this discrepancy primarily arises
because GPT-4 tends to generate abstractive sum-
maries, often rephrasing/refining the content con-
tained in the original paper whereas human anno-
tators are inclined to directly quote the narratives
in the original paper. This extractive approach is
inherently more compatible with lexical-level met-
rics, which favor direct word overlaps.

Hallucination Not all papers describe all five
aspects in the titles/abstracts, implying a risk of
hallucinations in extraction with LLMs. In addi-
tion to accessing extraction accuracy with human
annotations, we also conduct a human evaluation
of potential hallucinations. Particularly, we ask the
human annotators to mark aspects as “mentioned”
or “not mentioned” based on whether the aspect
is present in the title/abstract. Evaluation results
indicate that GPT-4 has the lowest level of halluci-
nation, with an average recall of “not mentioned”
across all aspects at 0.641 (Table 9). In comparison,
GPT-3.5 has the highest level of hallucination, with
an average recall of 0.204.

Given the desirable alignment with humans and
the lowest level of hallucination, we select GPT-4
to extract key aspects for MASSW.

In summary, the MASSW dataset, curated using
GPT-4, exhibits a high level of accuracy and a rela-
tively low hallucination rate in identifying the key
aspects of scientific workflows from publications.

4 Use MASSW to Benchmark AI4Science
Tasks

This section demonstrates how the MASSW dataset
can serve as a foundational resource for various
AI4Science tasks. As a demonstration, we bench-
mark multiple off-the-shelf LLMs for a handful
of example tasks, and we invite the community to
explore the greater variety of downstream tasks.
We present the task definitions in Section 4.1 and
detail the experimental setups and the performance
of baseline methods in Section 4.2
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Aspects CS BLEURT BS BLEU ROUGE-1 FActScore

Human
Agreement

Context 0.935 0.656 0.942 0.594 0.703 0.974
Key Idea 0.944 0.618 0.938 0.464 0.637 0.992
Method 0.900 0.559 0.924 0.357 0.540 0.988

Outcome 0.936 0.671 0.950 0.608 0.737 0.988
Projected Impact 0.941 0.742 0.955 0.642 0.748 1.000

GPT 4-Human
Alignment

Context 0.940 0.607 0.934 0.384 0.604 0.982
Key Idea 0.944 0.582 0.928 0.375 0.572 0.990
Method 0.894 0.510 0.908 0.197 0.450 0.987

Outcome 0.931 0.603 0.933 0.355 0.596 0.990
Projected Impact 0.916 0.611 0.933 0.282 0.563 1.000

Table 3: Human agreement (top) and GPT 4-human alignment (bottom) for the five extracted aspects of scientific
workflow. CS stands for cosine similarity and BS stands for BERTScore. Human agreement is calculated with one
annotation randomly selected as the reference and the other (2 annotations per paper) as the prediction. LLM-human
alignment and human-human agreement show a high level of similarity, which indicates that LLMs align well with
human experts. Please see Appendix H for a range of examples with varying levels of similarity.

4.1 Task Definitions

We demonstrate two types of downstream tasks
that use AI to assist and guide scientific workflows,
leveraging the structured nature of the MASSW
dataset. These tasks are designed to support re-
searchers in navigating the space of scientific ideas
and workflows—serving as an inspiration tool
rather than a substitute for human reasoning and
decision-making.

• Workflow Prediction: A scientific work-
flow has a sequence of steps, for example,
“digesting the literature” → “generating re-
search idea” → “validating the idea” → “in-
terpreting the results” → “planning follow-
up research”. An effective AI system should
assist researchers by extrapolating plausible
next steps based on prior steps, thereby offer-
ing recommendations that inspire exploration
rather than dictating fixed solutions. Hence,
for each key aspect in MASSW, we can task
a model to make predictions based on the as-
pects prior in the sequence:

– IDEA GENERATION: Given the context
of literature, predict the key idea of a new
study.

– METHOD RECOMMENDATION: Given
the context and a key idea, suggest a
method to validate the idea.

– OUTCOME PREDICTION: Given the con-
text, a key idea, and a method of valida-
tion, forecast the outcome of the valida-
tion/analysis.

– FUTURE WORK RECOMMENDATION:

Given all other aspects of a study, es-
timate its projected impact and recom-
mend tasks for follow-up studies.

• Title Prediction: A subsequent step of the
research workflow is to publish the results.
A powerful AI copilot should be able to en-
hance writing by recommending appropriate
and appealing titles that encapsulate the key
elements of a paper. We therefore introduce
the task of title prediction, which challenges
an AI model to generate a title given all five
aspects of a study.

4.2 Demonstration with Baselines

We now detail the experimental settings and the
performance of our baseline models.

• Test Data: To create the test set, we em-
ploy proportionate stratified sampling based
on dates of publication; we select 60 papers
(with all aspects mentioned) from each venue
to ensure broad representation, resulting in a
test set of 1020 papers.

• Baseline Models: We test GPT-3.5, GPT-4,
and Mixtral 8x7B as baseline models.

• Prompting Methods: We test four prompt-
ing strategies: (1) zero-shot, (2) zero-shot
chain of thought (adding the instruction “Let’s
think step by step” to the end of the zero-shot
prompt) (Kojima et al., 2022), (3) few-shot,
and (4) few-shot chain of thought (Wei et al.,
2022). The models were provided with (i)
definitions of all five aspects as defined in Ta-
ble 1, (ii) all necessary aspects for each task,
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and (iii) a specific task instruction. Detailed
prompting templates and settings are specified
in Appendix I.

• Evaluation Metrics: We evaluate the model
outputs using the same metrics as described in
Section 3. Due to space limit, BLEURT and
FActScore are reported in Table 4, while other
metrics are reported in Appendix J.

The benchmarking results are presented in Ta-
ble 4, offer several interesting observations:

• Task Complexity: Among the workflow pre-
diction tasks, outcome prediction and future
work recommendation are the most achievable
ones with the tested models, although they
still present challenges. Outcome prediction
often shows higher performance, likely be-
cause published work more often reports pos-
itive results, making it relatively predictable.
Interestingly, future work prediction tends to
show a better performance than key idea pre-
diction, even though these two tasks are more
homogeneous in nature: both extrapolating
new directions from the status quo. This is
likely because many papers include only a
cursory discussion of “projected” future direc-
tions, which tends to be more straightforward
and predictable than “real” follow-up research
that would lead to a future publication. Idea
generation and method recommendation are
inherently more difficult, since they require
both highly specialized knowledge in the do-
main and strong innovation capability.

• Model Performance: The few-shot prompt-
ing method enhances model performance over
other methods by helping the models under-
stand the narrative structure and focus re-
quired for the tasks. In contrast, adding CoT
to zero-shot prompts or using few-shot CoT
does not yield significant improvements, in-
dicating that the complexity of the scientific
innovation tasks might exceed the reasoning
capabilities of the off-the-shelf LLMs with-
out further instructing and fine-tuning in the
particular scientific domain.

• Influence of Metrics: Evaluation metrics also
play critical roles in producing the results. We
observe that GPT-4 consistently outperforms
GPT-3.5 and Mixtral-8x7B when evaluated

by BLEURT. However, Mixtral-8x7B excels
when evaluated by FActScore. This reveals
the complexity of evaluating scientific work-
flows, as different metrics can measure differ-
ent aspects of generated content. Further re-
search is needed to understand these nuances.

Overall, our experiments offer a demonstration
of several downstream AI4Science tasks that can be
facilitated by the MASSW dataset, and they high-
light the complexities and nuances of integrating
AI models into scientific workflows. The demon-
strated tasks are by no means the complete set,
and the benchmarked models are by no means the
best ones. With our dataset, additional tasks of
AI-assisted scientific discovery can be designed,
and additional AI/machine learning models can
be tested and optimized. Readers may consider
using part of this dataset to test various instruct-
ing/prompting strategies, fine-tune LLMs for scien-
tific reasoning, or implement retrieval-augmented
solutions. Furthermore, the current evaluation met-
rics, which primarily assess semantic and lexical
similarity, may not adequately reflect the nuances
of the tasks. AI models could have generated mean-
ingful ideas or research methods completely dif-
ferent from what’s reported in the original paper.
More sophisticated evaluation procedures or met-
rics could be advantageous given the rich and struc-
tured information in MASSW.

5 Related Work

Aspect-based document summarization
Aspect-based document summarization generates
summaries focused on specific document aspects
rather than providing a general overview. These
aspects may be predefined (E et al., 2023; Santosh
et al., 2024; Frermann and Klementiev, 2019;
Takeshita et al., 2024; Fisas et al., 2015) or
dynamically determined based on content (Amar
et al., 2023; Xu et al., 2011; Coavoux et al.,
2019; Yang et al., 2023; Hayashi et al., 2021).
In our case, the aspects are predefined with
domain knowledge, identifying five major aspects
inherent in scientific workflows. Aspect-based
summarization has been widely applied across
various domains. For instance, in the legal domain,
(Santosh et al., 2024) developed a challenging
dataset for summarizing legal case decisions. In
the context of online shopping, (Coavoux et al.,
2019) and (Xu et al., 2011) have explored the
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BLEURT Score FActScore
Model Prompt Idea Method Outcome Future Title Idea Method Outcome Future Title

GPT-3.5
0-Shot 0.413 0.384 0.406 0.411 0.455 0.741 0.873 0.895 0.931 0.819
2-Shot 0.411 0.389 0.421 0.443 0.471 0.833 0.877 0.931 0.932 0.936
0-CoT 0.340 0.367 0.395 0.422 0.442 0.823 0.832 0.836 0.893 0.713
2-CoT 0.396 0.382 0.399 0.443 0.447 0.846 0.869 0.908 0.933 0.808

GPT-4
0-Shot 0.435 0.390 0.420 0.456 0.442 0.744 0.805 0.822 0.893 0.628
2-Shot 0.421 0.400 0.440 0.431 0.460 0.725 0.777 0.837 0.905 0.786
0-CoT 0.412 0.395 0.410 0.451 0.441 0.812 0.828 0.853 0.907 0.696
2-CoT 0.412 0.373 0.431 0.421 0.439 0.809 0.832 0.875 0.941 0.725

Mixtral-8x7B
0-Shot 0.329 0.328 0.340 0.367 0.343 0.873 0.940 0.942 0.971 0.788
2-Shot 0.326 0.312 0.327 0.369 0.385 0.894 0.952 0.950 0.977 0.850
0-CoT 0.297 0.327 0.317 0.351 0.343 0.796 0.917 0.854 0.954 0.862
2-CoT 0.386 0.349 0.383 0.417 0.396 0.932 0.944 0.944 0.985 0.852

Average 0.382 0.366 0.391 0.415 0.426 0.819 0.871 0.887 0.935 0.789

Table 4: Evaluation results of the five benchmark tasks: Idea Generation (“Idea”), Method Recommendation
(“Method”), Outcome Prediction (“Outcome”), Future Work Recommendation (“Future”), and Title Prediction
(“Title”). k-CoT stands for k-shot CoT. The models with the best performance are bolded.

.

dynamic generation of multiple aspect-based
summaries for online reviews. Related to our
work, (Mei and Zhai, 2008), (Takeshita et al.,
2024), and (Fisas et al., 2015) have created
annotated datasets for summarizing publications in
information retrieval, natural language processing,
and computer graphics, respectively.

Our approach differs significantly in scope and
objective from such studies. In these researches,
the primary goal is to establish benchmarks for
evaluating models’ summarization capabilities, and
therefore their end product is usually a limited
set of human-annotated examples. In contrast,
we aimed to develop a comprehensive, large-scale
dataset of scientific workflows, where LLMs, after
validation, are used as a proxy for human experts to
generate the dataset. Our purpose in creating this
dataset is to support extensive downstream tasks
that employ AI to assist scientific innovation (such
as key idea generation). This purpose is achieved
by including a much larger volume of scientific
publications and tailoring the definition of aspects
so that they are closely tied to the exploration of
scientific workflows.

Scientific workflow automation With the rise
of LLMs and autonomous agents, many studies
investigate the potential of using LLM agents to
engage with certain components of scientific work-
flows, traditionally managed solely by human re-
searchers. Huang et al. (2024) proposes using
domain-knowledge-augmented LLM agents to au-
tomate and enhance the design of CRISPR-based
gene-editing experiments. Liu et al. (2024) finds
that GPT-4 is useful in converting experimental
workflow ideations into executable code on micro-
scope APIs. Boiko et al. (2023) shows that an AI
system driven by GPT-4 can autonomously design,
plan, and execute multiple complex experiments in
chemical syntheses. Agarwal et al. (2024) provides
an LLM-based toolkit for reviewing scientific litera-
ture on a given topic, utilizing retrieval augmented
generation to access the latest research. Procko
et al. (2023) uses LLMs to enhance scientific writ-
ing by creating a taxonomy of paper structures,
thereby improving efficiency in the academic pub-
lishing pipeline. These existing studies focus on
particular scientific domains and specific use cases,
while a significant gap remains in systematically
measuring the effectiveness of LLM agents in plan-
ning and navigating scientific workflows in general.
Our work addresses this gap by introducing multi-
ple new benchmark tasks that assess the capabili-
ties of LLMs across various essential stages of the
scientific reserch process.
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6 Conclusion

We present MASSW, a comprehensive dataset that
structures and summarizes the extensive under-
organized scientific literature in computer science.
By leveraging LLMs to extract five core aspects
from over 152,000 publications, we have aligned
these summaries with critical steps in the scientific
workflow. Our validation confirms the high quality
of these summaries, demonstrating their utility in
facilitating and benchmarking various downstream
tasks and analyses. MASSW serves as a valuable
and trustworthy resource for developing new AI
methods that optimize scientific workflows and fos-
ter innovation. We anticipate that this dataset will
enable researchers to more effectively navigate sci-
entific literature and inspire future advancements
in AI-driven scientific discovery.

7 Limitations

Offline Evaluation of Scientific Workflow Pre-
diction Scientific workflow prediction, like many
other text generation tasks, is inherently open-
ended. A given context can lead to multiple plausi-
ble outcomes, such as several valid research ideas
emerging from the same information. Rigorous
evaluation of these outcomes typically requires rich
feedback from domain experts (Si et al., 2024),
which limits the scalability and thus prevents au-
tomating the process as a large-scale benchmark.
While our current evaluation setup focuses on com-
paring the predictions with the ground truth by
measuring the textual similarity, it offers an offline,
large-scale, and automated benchmarking solution
that is able to cover a wide range of scientific fields.
Future work could explore incorporating more com-
prehensive evaluation techniques to enable a more
nuanced assessment of scientific workflow predic-
tion.

Limitations of Data Sources Another limita-
tion of MASSW is that it derives scientific work-
flows solely from the titles and abstracts of pub-
lications, primarily due to limited access to full
paper texts and the costs associated with process-
ing large volumes of full papers. While incorporat-
ing full texts—including tables and figures—could
enhance the accuracy and comprehensiveness of
workflow summaries, this approach faces several
challenges. Copyright restrictions limit access
to a substantial portion of full texts, and extract-

ing structured information from PDF-only formats
presents technical difficulties that may compromise
data quality. Additionally, the processing costs
would be significantly higher, with our initial GPT-
4 API expenses already reaching approximately
$7,500. Given these constraints, we acknowledge
this limitation and have listed it as a future direc-
tion. In an updated version of MASSW, we plan
to release full-text summaries for a subset of pa-
pers. Expanding the dataset to include literature
from other domains beyond AI-related computer
science conferences is another potential avenue for
improvement, ensuring broader applicability of the
defined aspects across different scientific fields.

Potential Societal Impacts We anticipate that
MASSW would unleash the great potential of build-
ing AI tools to optimize scientific workflows and
therefore accelerate the progress in AI for Science.
We are, however, aware of two potentially neg-
ative impacts. First, by the selection of top-tier
AI-related conferences, MASSW might introduce
biases to the downstream AI copilots, potentially
diminishing the influence of other venues and limit-
ing the diversity of research topics and methodolo-
gies considered. This may be addressed by iterating
and expanding the scope of MASSW. Second, the
reliance on AI-generated summaries and recom-
mendations could lead researchers to depend on
these tools, reducing their engagement with the
original papers, and therefore overlook the nuances
documented in the literature. This remains an open
question for human-AI collaboration.

Broader Applications Beyond Machine Learn-
ing While the demonstrated downstream tasks
primarily focus on machine learning prediction,
MASSW offers many other valuable applications.
First, MASSW can serve as a resource for mea-
suring the novelty of scientific ideas within the
context of historical knowledge (Wang et al., 2023).
Second, it can aid in building search engines that
allow researchers to navigate fine-grained scien-
tific workflows. For example, one could retrieve
ideas based on similar problem contexts or meth-
ods used in related studies, facilitating the ideation
process. Third, MASSW enables the visualization
of scientific literature and workflows, supporting
large-scale bibliometric analyses in the scientific
domain.
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A Data Curation

To build this initial version of the MASSW dataset,
we focus on Computer Science publications from
17 top-tier conferences listed in CSRankings.org,
which we identify as relevant to the broader field
of AI. Below we list the conferences included in
MASSW.

• Artificial Intelligence: AAAI, IJCAI;

• Computer Vision: CVPR, ECCV, ICCV;

• Machine Learning: ICLR, ICML, NeurIPS,
KDD;

• Natural Language Processing: ACL, EMNLP,
NAACL;

• The Web & Information Retrieval: SIGIR,
WWW;

• Databases: SIGMOD, VLDB;

• Interdisciplinary Areas: CHI.

We access the publications through Open Aca-
demic Graph (OAG)4, a linked graph database for
academic entities including publications, venues,
affiliations, and authors (Zhang et al., 2022, 2019a).
For publications before the year 2020, we access
the data through OAG v2.15, which is generated
in 2020 and contains publications as early as 1969.
For publications in and after 2020, we access the
data through OAG v3.16, which is generated in Feb,
2024 and contains publications from 2000 to 2024.

In total, 191,055 papers are collected that span
from 1969 to 2024, among which, 152,027 contain
both a title and an abstract.

B Aspect Summarization

We use OpenAI GPT-4 (snapshot gpt-4-06137)
to summarize the core aspects of each collected
publication. Here we provide the prompt we used
for automated summarization:

4The OAG dataset is publicly released under the ODC-BY
license.

5OAG v2.1: https://old.aminer.cn/oag-2-1/
oag-2-1.

6OAG v3.1: https://open.aminer.cn/open/article?
id=65bf053091c938e5025a31e2.

7OpenAI GPT-4 models: https://platform.openai.
com/docs/models/gpt-4-turbo-and-gpt-4.
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Aspect Summarization Prompt

System message:
Instructions
You are an expert in computer science. Your task is to
summarize the following five aspects of the papers given
the definitions below.

Definitions of Aspects
Context
- The status quo of related literature or reality which
motivated this study. This could normally be a problem,
a research question, or a research gap that has not been
successfully addressed by previous work.
- Anything happened before this study.
Key Idea
- The main intellectual merit of this paper, often in
comparison to the context. This could normally be a novel
idea or solution proposed in this paper that distinguishes
it from what’s already done in literature.
- Proposed in this study.
Method (Validation Methodology)
- The specific experiment or proof that investigates and
validates the key idea.
- CS papers often refer "Method" as algorithm or model,
but our definition here is **different**.
- Performed in this study.
Outcome
- The factual statement about the study output. This
could be the experiment results and any other measurable
outcome that has occurred. It marks whether the key
hypothesis is testified or not.
- Produced in this study.
Future Impact
- The impact of the work on the field explicitly anticipated
by the authors, and potential further research explicitly
identified by the author that may improve or extend this
study.

Notes
- If an aspect is NOT mentioned in the abstract, mark it as
"N/A" (not applicable). DO NOT come up with your own
interpretation.
- Each aspect should be summarized in 1-2 sentences in
most cases.
- Each aspect should be self-contained and should not con-
tain references including other aspects (cross-reference).
- Including specific names of proposed models, datasets,
etc., in the summary is acceptable.
- If the problem definition is novel (e.g., proposing a new
task), classify it as a Key Idea.
- Non-measurable outcomes should be categorized as
Future Impact.
- Impacts that have already occurred should be considered
as Outcome.
- A new observation that motivates the proposal of a key
idea should be classified under Key Idea.
- Future Impact should not account for real impacts, such
as the number of citations a paper has received.

Aspect Summarization Prompt (Cont’d)

Response Format
The response should be a JSON object in the following
format:
“‘json
{
"Context": "...",
"Key Idea": "...",
"Method": "...",
"Outcome": "...",
"Future Impact": "..."
}
“‘

User message:
Title: Attention Is All You Need
Abstract: The dominant sequence transduction models
are based on complex recurrent or convolutional neural
networks in an encoder-decoder configuration. The best
performing models also connect the encoder and decoder
through an attention mechanism. We propose a new sim-
ple network architecture, the Transformer, based solely
on attention mechanisms, dispensing with recurrence
and convolutions entirely. Experiments on two machine
translation tasks show these models to be superior in
quality while being more parallelizable and requiring
significantly less time to train. Our model achieves
28.4 BLEU on the WMT 2014 English-to-German
translation task, improving over the existing best results,
including ensembles by over 2 BLEU. On the WMT 2014
English-to-French translation task, our model establishes
a new single-model state-of-the-art BLEU score of 41.8
after training for 3.5 days on eight GPUs, a small fraction
of the training costs of the best models from the literature.
We show that the Transformer generalizes well to other
tasks by applying it successfully to English constituency
parsing both with large and limited training data.

Assistant message:
{
"Context": "The dominant sequence transduction models
are based on complex recurrent or convolutional neural
networks in an encoder-decoder configuration. The best
performing sequence transduction models connect the
encoder and decoder through an attention mechanism.",
"Key Idea": "The authors propose a simple network
architecture called Transformer based solely on attention
mechanisms and dispenses with recurrence and convolu-
tions.",
"Method": "The authors perform experiments on the
WMT 2014 English-to-German and English-to-French
translation task. The authors apply the proposed model to
English constituency parsing both with large and limited
training data.",
"Outcome": "The proposed model achieves a BLEU score
of 28.4 on the WMT 2014 English-to-French translation
task. The proposed model achieves a BLEU score of 41.8
on the WMT 2014 English-to-German translation task
after training for 3.5 days on 8 GPUs.",
"Future Impact": "N/A"
}

User prompt:
Title: [The title of the publication to be summarized]
Abstract: [The abstract of the publication to be summa-
rized]
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In the prompt, the first user message and the
assistant message provide a one-shot example to
the LLM. During automated summarization, GPT-
4 failed to summarize 12 publications due to safety
filtering. In total, we obtained core aspects from
152,015 publications.

C Dataset Visualization

Figure 1 visualizes the context aspect as an exam-
ple. We embed the aspect summary using Ope-
nAI Ada model, then conduct dimension reduction
with LargeVis (Tang et al., 2016). We then use
BERTopic to assign labels to each cluster identified
by HDBSCAN.

D Human Annotation Process

D.1 Overview

To ensure high-quality annotations, we recruited
five student researchers from the University of
Michigan, all with verified backgrounds in AI.
Each paper was independently annotated by two
different researchers to minimize individual bias
and ensure annotation reliability. We conducted
the annotation process using the Potato annotation
platform (Pei et al., 2022), providing annotators
with only the paper titles and abstracts to maintain
consistency in the input data.

D.2 Codebook

Task Description Our task is to construct a
dataset for multi-aspect summarization of scien-
tific papers. Our papers of interest are from top
computer science conferences. For each paper, the
aspects of interest include the following: (Same
content in Table 1)

Your task is to write summarizations of these
five aspects for each paper assigned to you. We
have the following requirements for this task:

• Read the content thoroughly before writing
your summaries.

• Write a short summary for each aspect (1-2
sentences in most cases).

• Each aspect should be self-contained and
should not contain references including other
aspects (cross reference).

• Only consider the abstract section and title as
the input.

FAQ

• Q: Is it fine to include the specific name of the
proposed model/dataset/etc in the summary?
A: Yes, it is fine to include them.

• Q: If the problem definition is novel (i.e.
proposing a new task), should it be a key idea
or context?
A: Key idea.

• Q: If the concept is not mentioned at all in the
abstract, what should I do?
A: Mark it as “N/A” (not applicable).

• Q: If the author claims a non-measurable out-
come, should it be considered as an Outcome
or Future Impact?
A: Future Impact.

• Q: If the author mentions an impact that has
happened (e.g. the first work to . . . ), should
it be considered as an Outcome or Future Im-
pact?
A: Outcome.

• Q: If the author mentions a new observation
that motivates them to propose the key idea,
should it be considered as context or key idea?
A: Key idea.

• Q: Should future impact consider its real im-
pact? For example, a paper gains a lot of
citations.
A: Future Impact should not consider other
papers.

E Implementation Details of
Semantic-Based Evaluation Metrics

• Cosine Similarity: We compute the cosine sim-
ilarity between sentence embeddings gener-
ated by multilingual-e5-large-instruct
from HuggingFace.

• BLEURT: We use the pre-trained checkpoint
BLEURT-20-D12.

• BERTScore: We use the pre-trained
checkpoint from HuggingFace
https://huggingface.co/spaces/
evaluate-metric/bertscore.
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Figure 1: Low dimensional visualization of contexts.
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• FActScore: We use the official FActScore
implementation with some modifications.
Specifically, while the original FActScore re-
trieves references from a trusted corpus, we
adapt the approach by directly providing the
reference following https://github.com/
shmsw25/FActScore/issues/32.

We follow the implementation of ROUGE to se-
lect the maximum score when there are multiple
references.

F Annotation Set Size Validation

We also conduct analysis to guarantee the sample
size of 126 papers is sufficient to evaluate the qual-
ity of the model-extracted aspects. We report the
results of statistical tests comparing human-human
agreement and model-human agreement using t-
tests in Table 6. The agreements measured by se-
mantic similarity (CosineSimilarity, BLEURT, and
BERTScore) are mostly not significantly different
under the t-test (generally, p > 0.05). The agree-
ments measured by lexical similarity (BLEU and
ROUGE-1) are statistically different, which is ex-
pected as humans and the LLM tend to use different
words.

G Tables for LLM-human agreement and
hallucination experiments.

In Table 8, we show the results of LLM-human
agreement for GPT-3.5 and Mixtral-8x7B. Both
models demonstrate a high level of alignment with
human annotation. Table 9 includes the results of
hallucination experiments. Each cell presents the
recall of “not mentioned” aspects as identified by
human experts. Higher values indicate lower rates
of hallucination.

Table 7 shows the breakdown of the “not men-
tioned” ratio identified by human annotators and
the false-positive ratio of GPT-4 (where an aspect
is “not mentioned” but falsely summarized by the
LLM due to hallucination). All but one aspects are
missing in no more than 20% of the data according
to human annotation. Every abstract mentions the
key idea, and over 90% mention outcomes. The
only aspect not mentioned in a significant portion
of abstracts is “projected impact,” as described in
Table 2. Notably, GPT-4 achieves strong recall
(0.923) in identifying missing “projected impact”

cases. As a result, the actual false-positive ratio of
GPT-4 remains below 10% for all five aspects.

H Examples of Texts for Different
Similarity Levels

We provide two examples of texts to illustrate how
the evaluation metrics could be interpreted. The
evaluation results can be found at Table 10 and 11.

• Reference 1: InstructGPT, even with 100x
fewer parameters, is preferred over GPT-3 in
human evaluations. It shows improvements
in truthfulness and reductions in toxic outputs
with minimal performance regressions on pub-
lic NLP datasets.

• Example 1a: InstructGPT, despite having
100x fewer parameters, is preferred over the
larger GPT-3 according to human evaluations,
demonstrating better truthfulness and fewer
toxic outputs with only minimal regressions
in performance on public NLP benchmarks.

• Example 1b: Human evaluations favor the
1.3B parameter InstructGPT model over the
175B GPT-3 model, even though it has sig-
nificantly fewer parameters. It also shows
enhanced truthfulness and reduced generation
of toxic content, with negligible declines in
performance across standard NLP datasets.

• Example 1c: In human assessments, the
smaller InstructGPT model, which has far
fewer parameters, outperforms GPT-3, show-
ing not only increased accuracy but also less
toxic output, with only slight performance
downturns on widely recognized NLP tests.

• Example 1d: This paper explores the en-
hancement of language model alignment with
human intent through fine-tuning methods us-
ing labeler feedback and reinforcement learn-
ing, resulting in a smaller, more efficient
model that surpasses a much larger baseline
in both user satisfaction and safety metrics.

• Example 1e: Effective communication is not
about speaking more; it’s about achieving
more with fewer words.

• Reference 2: The dominant sequence trans-
duction models are based on complex recur-
rent or convolutional neural networks in an
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Context Key Idea Method Outcome

CS (-1.346, 0.180) (-0.069, 0.945) (-0.911, 0.364) (0.148, 0.882)
BLEURT (1.711, 0.089) (1.845, 0.066) (1.388, 0.167) (2.736, 0.007)
BERTScore (1.427, 0.155) (2.140, 0.033) (1.191, 0.235) (3.077, 0.002)
BLEU (4.548, 0.000) (2.968, 0.003) (2.899, 0.004) (7.357, 0.000)
ROUGE-1 (2.936, 0.004) (2.418, 0.016) (2.103, 0.037) (4.268, 0.000)

Table 6: Statistical tests comparing human-human agreement and model-human agreement using t-tests. Numbers
in parentheses are t values followed by p values.

Aspect Human NA (%) GPT-4 FP (%)

Context 20.0 8.3
Key Idea 0.0 0.0
Method 15.8 9.1
Outcome 9.2 3.3
Projected Impact 86.7 6.7

Table 7: Analysis of aspects not mentioned in abstracts
and GPT-4’s false-positive rates.

encoder-decoder configuration. The best per-
forming sequence transduction models con-
nect the encoder and decoder through an at-
tention mechanism.

• Example 2a: The leading sequence trans-
duction models utilize complex recurrent or
convolutional neural networks in an encoder-
decoder framework, with the most effective
models incorporating an attention mechanism
between the encoder and decoder.

• Example 2b: Traditional sequence transduc-
tion models rely on sophisticated recurrent or
convolutional neural networks arranged in an
encoder-decoder setup, where top-performing
models are distinguished by the use of an at-
tention mechanism linking the encoder and
decoder.

• Example 2c: Existing high-performing se-
quence transduction models typically feature
either recurrent or convolutional neural net-
works configured in an encoder-decoder struc-
ture, often enhanced with an attention mecha-
nism to improve performance.

• Example 2d: The paper introduces the Trans-
former, a novel network architecture that es-
chews recurrent and convolutional structures
in favor of a design entirely based on attention
mechanisms, aiming to enhance parallelizabil-
ity and reduce training time.

• Example 2e: "Simplicity is the ultimate so-
phistication." - Leonardo da Vinci

I Experiment Details

Test set sampling. In the benchmark section, We
use proportionate stratified sampling to construct
the test set. According to publication year, we
separate the year range into at most 10 strata (i.e.
groups). Each group covers approximately the
same number of years. The we sample from each
strata proportionally to the number of papers in that
strata. The number of samples for each venue is
60, which results in 1020 papers in total.

Prompting templates. We recall that the model
will take in three part of information: (i) definitions
of all five aspects, (ii) all necessary aspects for
each task, and (iii) a specific task instruction. We
include the prompts for all tasks below.
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Aspects CS BLEURT BS BLEU ROUGE-1 FactScore

Human
Agreement

Context 0.935 0.656 0.942 0.594 0.703 0.974
Key Idea 0.944 0.618 0.938 0.464 0.637 0.992
Method 0.900 0.559 0.924 0.357 0.540 0.988

Outcome 0.936 0.671 0.950 0.608 0.737 0.988
Projected Impact 0.941 0.742 0.955 0.642 0.748 1.000

GPT-3.5-Human
Alignment

Context 0.934 0.597 0.934 0.524 0.635 0.989
Key Idea 0.936 0.575 0.927 0.439 0.582 0.980
Method 0.895 0.510 0.910 0.197 0.445 0.984

Outcome 0.928 0.608 0.934 0.452 0.626 0.986
Projected Impact 0.876 0.498 0.905 0.170 0.371 0.989

Mixtral-8x7B-Human
Alignment

Context 0.944 0.645 0.946 0.590 0.693 0.971
Key Idea 0.949 0.636 0.943 0.556 0.662 0.973
Method 0.905 0.554 0.920 0.295 0.509 0.987

Outcome 0.933 0.674 0.948 0.665 0.707 0.991
Projected Impact 0.917 0.635 0.936 0.384 0.599 0.987

Table 8: GPT-3.5 and Mixtral-8x7B-human alignment.

Model Context Method Outcome Projected Impact

GPT-3.5 0.000 0.105 0.364 0.346
GPT-4 0.583 0.421 0.636 0.923
Mixtral-8x7B 0.042 0.421 0.364 0.750

Table 9: Recall of “not mentioned” aspects as identified
by human experts. Higher values indicate lower rates of
hallucination. Key idea is not included as it presents in
all papers in the annotation set.

Example CS BLEURT BS BLEU ROUGE-1

1a 0.9500 0.7185 0.9589 0.2753 0.6970
1b 0.9366 0.6202 0.9188 0.0000 0.5135
1c 0.9326 0.5572 0.9109 0.0000 0.3582
1d 0.8384 0.3119 0.8504 0.0000 0.1351
1e 0.7594 0.1953 0.8396 0.0000 0.1702

Table 10: Evaluation of similarity between examples
and Reference 1 using various metrics.

Example CS BLEURT BS BLEU ROUGE-1

2a 0.9572 0.7256 0.9613 0.3772 0.7077
2b 0.9516 0.6781 0.9494 0.2689 0.6857
2c 0.9381 0.5660 0.9289 0.1927 0.5079
2d 0.8355 0.3598 0.8645 0.0000 0.2687
2e 0.7108 0.1728 0.8095 0.0000 0.0476

Table 11: Evaluation of similarity between examples
and Reference 2 using various metrics.

Prompt

System message:
You are an expert in research tasked with generating de-
tailed prompts for various aspects of academic research
papers. Each task involves creating a specific type of
prompt based on the provided information. Here are the
definitions of each part you will work with:
- Concept

- Definition
- Relative Time

- <Definitions of Context, Key Idea, ...>

Prompt

Template for idea generation:
Given the context: ’{context}’, generate key ideas that
could advance this area of study.

Template for method recommendation:
Given the context: ’{context}’ and the key idea:
’{key_idea}’, recommend the most suitable method to
validate this idea.

Template for outcome prediction:
Based on the context: ’{context}’, the key idea:
’{key_idea}’, and the recommended method: ’{method}’,
predict the potential outcome of this research.

Template for impact prediction:
Based on the context: ’{context}’, the key idea:
’{key_idea}’, the method: ’{method}’, and the outcome:
’{outcome}’, suggest projected Impact for this research.

Template for title prediction:
Given the context: ’{context}’, the key idea: ’{key_idea}’,
the method: ’{method}’, the outcome: ’{outcome}’, and
the future impact: ’{future_impact}’, predict the title of
this research paper. The title should be concise and reflec-
tive of the core aspects.

Details about prompting methods. For the zero
shot prediction, model will take in the system
prompt and user prompt. For the few shot prompt-
ing, we add two fixed round of conversation before
the actual user request. The few-shot examples can
be found in the code-base under the data folder.
For chain of thought prompts, we add the sentence
“Let’s think step by step. The final prediction should
start after the marker ’Prediction:’.” at the end of
zero-shot prompts. After LLMs produce the output,
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we extract the content after the word “Prediction”
as the final prediction.

Details about baseline LLMs. We use
Azure platform for all baseline models. The
model id used in this study are gpt-35-turbo
(0125)8, gpt-4 (turbo-2024-04-09) and
mistralai-mixtral-8x7b-instru-79. For the
mistral model, as the model does not take in
system prompt, we replace it with one round
of conversation (user: <system prompt>, assis-
tant: I got it. Please give me further
instructions!).

Example model outputs. We include an exam-
ple output for all the prompting methods in Ta-
ble 12.

J Supplementary Tables

We include the benchmark results for Cosine Simi-
larity (CS), BERTScore (BS), BLEU and ROUGE-
1 in Table 13, 14, 15, 16 respectively.

K Downstream Tasks Evaluation with
Human Annotated Data

To demonstrate if the LLM-generated summariza-
tion influence the evaluation of LLMs under the
downstream tasks, we further evaluate the models
with human annotated summaries. We report the
result in Table 17-18. Overall, the observed trends
remain consistent with respect to task complexity,
model performance, and the influence of metrics,
demonstrating the robustness of our findings.

L Dataset Documentation and Intended
Uses

We use the Data Cards recommended by the sub-
mission guideline. Please refer to our anonymous
code repo.

M Author Statement

All the authors bear all responsibility in case of
violation of rights, etc., and we confirm the data
license.

8https://learn.microsoft.com/en-us/azure/
ai-services/openai/concepts/models

9https://learn.microsoft.com/en-us/azure/
machine-learning/how-to-deploy-models-mistral?
view=azureml-api-2&tabs=mistral-large
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Prompt Type Model Output/Ground Truth

Ground Truth This paper introduces the concept of co-space applications, which provide opportunities unavailable in separate physical or virtual spaces,
and posit that the database community can significantly contribute to this emerging field.

0-shot

**Key Idea 1: Development of a Unified Interaction Framework**
- **Concept:** This key idea proposes creating a unified interaction framework that enables users to interact with both physical and virtual
elements through a single interface or set of interaction gestures. This framework integrates sensory feedback mechanisms (e.g., haptic,
auditory, visual cues) that are context-aware and adapt based on the user’s actions and environmental conditions.
- **Relative Time:** Proposed in this study.
**Key Idea 2: Hybrid Space Adaptation Engine**
- **Concept:** The introduction of a hybrid space adaptation engine designed to dynamically modify the virtual space in response to changes
in the physical environment and vice versa. This engine uses real-time data analytics and machine learning algorithms to predict and adapt to
user needs and environmental shifts, ensuring a consistent and immersive experience across both domains.
- **Relative Time:** Proposed in this study.
<Some other key ideas.>

2-shot

The researchers propose the development of an intuitive Mixed Reality (MR) interface that leverages advancements in augmented reality
(AR) and virtual reality (VR), combined with real-time spatial computing and machine learning algorithms. This interface is designed to
enable more seamless and intuitive user control and interaction between physical and virtual spaces, enhancing the co-space experience by
making digital manipulations feel as tangible as physical ones.

CoT

To address the context effectively, a detailed step-by-step approach will be taken to generate key ideas that could significantly advance the
study of co-space environments, where the integration and interaction between physical and virtual spaces present both challenges and
opportunities for technological innovation. These key ideas are crafted to facilitate a seamless manipulation of real and digital spaces by
users.
### Concept: - **Definition**: Co-space environments are settings in which physical and digital realms are intertwined, allowing for
continuous interaction and manipulation across these domains. - **Relative Time**: This concept is becoming increasingly relevant with
the advances in augmented reality (AR), virtual reality (VR), mixed reality (MR), and Internet of Things (IoT) technologies.
### Key Ideas:
1. **Development of a Unified Interaction Protocol (UIP)** - This protocol would standardize the way in which interactions occur between
the physical and virtual components of a co-space environment. The UIP would ensure that devices, regardless of their operational technology
(OT) or information technology (IT) origins, can communicate and interact seamlessly in a common language.
2. **Real-time Spatial Mapping and Augmentation Technology** - An advanced spatial mapping technology that dynamically captures the
physical environment and accurately overlays digital information in real-time. This would not only facilitate seamless user manipulation of
digital objects in real spaces but also enhance the realism and interactiveness of the virtual space.
<Some other key ideas.>
### Prediction: - The aforementioned key ideas, if successfully implemented, are poised to revolutionize the co-space environment by
breaking down the barriers between the physical and virtual realms. These innovations would not only facilitate seamless manipulation of
spaces by users but would also set a new standard for interactive technologies, significantly enhancing user experiences while addressing
privacy and security concerns. Moreover, the advancement in such areas could pave the way for novel applications ranging from immersive
education and remote collaboration to advanced urban planning and beyond.

2-shot CoT

Integrating physical and virtual realms in co-space environments poses technical and usability challenges, necessitating novel solutions
for seamless interaction. One way forward is to bridge the gap between these spaces with technologies that can intuitively understand and
manipulate both contexts in real-time.
Prediction: The authors propose an innovative interaction framework that blends Augmented Reality (AR) and Internet of Things (IoT)
technologies. This framework enables users to manipulate objects in both the physical and the virtual spaces through natural gestures and
commands, leveraging AR for visual integration and IoT devices for physical state changes.

Table 12: Comparison of Zero-shot, Few-shot, and Chain of Thought outputs for a single example by GPT-4.

Model Prompt Aspect Prediction Title Prediction
Idea Method Outcome Future Title

GPT-3.5

0-Shot 0.869 0.859 0.873 0.881 0.896
2-Shot 0.874 0.870 0.875 0.879 0.913
CoT 0.835 0.850 0.857 0.864 0.893
Few-Shot CoT 0.866 0.856 0.862 0.872 0.904

GPT-4

0-Shot 0.871 0.872 0.875 0.880 0.892
2-Shot 0.872 0.870 0.875 0.874 0.910
CoT 0.869 0.865 0.877 0.878 0.893
Few-Shot CoT 0.869 0.865 0.874 0.869 0.902

Mistral 8x7B

0-Shot 0.869 0.869 0.875 0.881 0.884
2-Shot 0.876 0.868 0.875 0.882 0.897
CoT 0.857 0.866 0.858 0.870 0.884
Few-Shot CoT 0.872 0.858 0.869 0.875 0.902

Table 13: Benchmark Results Measured by Cosine Similarity.
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Model Prompt Aspect Prediction Title Prediction
Idea Method Outcome Future Title

GPT-3.5

0-Shot 0.839 0.845 0.855 0.860 0.875
2-Shot 0.872 0.869 0.880 0.875 0.892
CoT 0.860 0.858 0.852 0.875 0.870
2-Shot CoT 0.867 0.875 0.878 0.880 0.891

GPT-4

0-Shot 0.815 0.783 0.812 0.814 0.869
2-Shot 0.869 0.810 0.886 0.854 0.883
CoT 0.829 0.806 0.841 0.837 0.869
2-Shot CoT 0.868 0.858 0.880 0.863 0.884

Mistral 8x7B

0-Shot 0.823 0.822 0.840 0.838 0.822
2-Shot 0.862 0.855 0.860 0.865 0.847
CoT 0.829 0.821 0.839 0.850 0.828
2-Shot CoT 0.870 0.866 0.875 0.877 0.862

Table 14: Benchmark Results Measured by BERTScore.

Model Prompt Aspect Prediction Title Prediction
Idea Method Outcome Future Title

GPT-3.5

0-Shot 0.014 0.017 0.032 0.027 0.068
2-Shot 0.034 0.029 0.042 0.033 0.101
CoT 0.015 0.018 0.020 0.023 0.050
2-Shot CoT 0.026 0.025 0.031 0.027 0.079

GPT-4

0-Shot 0.008 0.006 0.012 0.009 0.049
2-Shot 0.028 0.008 0.050 0.017 0.081
CoT 0.010 0.007 0.021 0.013 0.052
2-Shot CoT 0.025 0.019 0.041 0.016 0.064

Mistral 8x7B

0-Shot 0.014 0.014 0.027 0.020 0.020
2-Shot 0.036 0.023 0.044 0.033 0.048
CoT 0.014 0.014 0.023 0.020 0.011
2-Shot CoT 0.039 0.026 0.056 0.035 0.060

Table 15: Benchmark Results Measured by BLEU.

Model Prompt Aspect Prediction Title Prediction
Idea Method Outcome Future Title

GPT-3.5

0-Shot 0.188 0.193 0.228 0.240 0.432
2-Shot 0.275 0.267 0.287 0.276 0.459
CoT 0.202 0.217 0.198 0.245 0.405
2-Shot CoT 0.254 0.260 0.260 0.275 0.437

GPT-4

0-Shot 0.134 0.084 0.126 0.112 0.401
2-Shot 0.269 0.138 0.288 0.210 0.436
CoT 0.161 0.123 0.184 0.154 0.404
2-Shot CoT 0.261 0.240 0.273 0.228 0.413

Mixtral 8x7B

0-Shot 0.173 0.168 0.206 0.179 0.287
2-Shot 0.288 0.259 0.283 0.279 0.427
CoT 0.170 0.164 0.202 0.206 0.275
2-Shot CoT 0.286 0.264 0.288 0.293 0.436

Table 16: Benchmark Results Measured by ROUGE-1.

Model & Prompt Key Idea Method Outcome Projected Impact

GPT-4 0-Shot 0.454 0.383 0.390 0.411
GPT-4 2-Shot 0.414 0.373 0.424 0.439
GPT-4 0-CoT 0.360 0.348 0.377 0.407
GPT-4 2-CoT 0.386 0.358 0.436 0.425
GPT-3.5 0-Shot 0.402 0.378 0.398 0.425
GPT-3.5 2-Shot 0.387 0.377 0.398 0.414
GPT-3.5 0-CoT 0.330 0.357 0.365 0.352
GPT-3.5 2-CoT 0.372 0.382 0.390 0.391

Table 17: Downstream task evaluation results with human annotated summaries (BLEURT).
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Model & Prompt Key Idea Method Outcome Projected Impact

GPT-4 0-Shot 0.454 0.383 0.390 0.411
GPT-4 2-Shot 0.414 0.373 0.424 0.439
GPT-4 0-CoT 0.360 0.348 0.377 0.407
GPT-4 2-CoT 0.386 0.358 0.436 0.425
GPT-3.5 0-Shot 0.402 0.378 0.398 0.425
GPT-3.5 2-Shot 0.387 0.377 0.398 0.414
GPT-3.5 0-CoT 0.330 0.357 0.365 0.352
GPT-3.5 2-CoT 0.372 0.382 0.390 0.391

Table 18: Downstream task evaluation results with human annotated summaries (FActScore).
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