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Abstract
Social media has become a widely used plat-
form for communication and entertainment, but
it has also become a space where abuse and ha-
rassment can thrive. Women, in particular, face
hateful and abusive comments that reflect gen-
der inequality. This paper discusses our partici-
pation in the Abusive Text Targeting Women in
Malayalam social media comments for the Dra-
vidianLangTech@NAACL 2025 shared task.
The task provided a dataset of YouTube com-
ments in Tamil and Malayalam, focusing on
sensitive and controversial topics where abu-
sive behavior is prevalent. Our participation
focused on the Malayalam dataset, where the
goal was to classify comments into these cate-
gories accurately. Malayalam-BERT achieved
the best performance on the subtask, secur-
ing 3rd place with a macro f1-score of 0.7083,
showcasing transformer models’ effectiveness
for low-resource languages. These results con-
tribute to tackling gender-based abuse and im-
proving online content moderation.

1 Introduction

The rise of social media has changed the way peo-
ple communicate, share information, and interact
with digital content. However, women are frequent
targets of abusive comments, including harassment,
cyberbullying, and hate speech, which reflect soci-
etal biases. Detecting such abuse is crucial for cre-
ating safer online spaces. The Shared Task on Abu-
sive Tamil and Malayalam Text Targeting Women
on Social Media at DravidianLangTech@NAACL
2025 aims to tackle this challenge. The task fo-
cuses on detecting abusive comments targeting
women in Tamil and Malayalam, both low-resource
languages with challenges like agglutination, rich
morphology, and code-mixing. Research on detect-
ing abusive language in low-resource languages,
like Tamil and Malayalam has advanced in recent
years. The DravidianLangTech shared task (Raji-
akodi et al., 2025) introduced benchmark datasets

and evaluated transformer-based models for detect-
ing abusive Tamil and Malayalam text targeting
women. Their workshop paper (Priyadharshini
et al., 2022) presented a dataset for Tamil abu-
sive comment detection. In 2023, another work-
shop paper (Priyadharshini et al., 2023) introduced
datasets for Tamil, Telugu, and code-mixed Tamil-
English abusive comment detection. Another paper
(Hossain et al., 2022) explored abusive text classi-
fication across misogyny, homophobia, and trans-
phobia, addressing dataset imbalances. (Palaniku-
mar et al., 2022) used transliteration-based data
augmentation to enhance dataset size and improve
model performance in Tamil abusive text detection.
Additionally, (M et al., 2023) showed the effective-
ness of transformer models for detecting abusive
content in multilingual settings. Our participation
focused on the Malayalam subtask, where we ad-
dressed the complexities of detecting abusive text
targeting women. The key contributions of this
work are illustrated in the following:

• We explored various ML, DL, and
transformer-based models to classify
abusive comments in the Malayalam dataset.

• Demonstrated the efficacy of transformer
models, including Malayalam-BERT in low-
resource languages and advancing the devel-
opment of content moderation tools.

This work improves abusive language detection
for underrepresented languages, fostering safer
online platforms. Our code can be accessed at
https://github.com/Tofa571/Abusive-Malayalam.

2 Related Work

The detection of abusive language has become a
key area of research, especially in low-resource
languages. The DravidianLangTech shared task
(B et al., 2024) focused on detecting abuse tar-
geting women, where multilingual models outper-
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formed language-specific ones. Machine learning
approaches such as SVM and SGD (Sivanaiah et al.,
2023) addressed Tamil-English code-mixed abuse.
It highlighted the significance of addressing class
imbalance through undersampling techniques. An-
other study by (Prithila et al., 2023) introduced a
dataset specifically for detecting derogatory com-
ments against women. They emphasized the sig-
nificance of multilingual datasets and fine-tuning
transformer models for improved accuracy. Abu-
sive language detection on social media is chal-
lenging due to informal language and limited anno-
tated data in low-resource languages. A co-training
framework (Tuarob et al., 2023) utilizes both con-
tent and contextual features to improve accuracy,
especially for Indic languages. (Zia Ur Rehman
et al., 2023) proposed a cross-lingual transformer-
based model for Indic languages that incorporates
user history and post affinity and shows strong re-
sults for low-resource languages like Malayalam.
(Sharma et al., 2024) used a CNN-BiLSTM ensem-
ble for gendered abuse detection in Hindi, Tamil,
and Indian English but focused on a narrow set of
deep learning models, which may limit the abil-
ity to handle linguistic nuances in under-resourced
settings. Another study (Vetagiri et al., 2024) de-
tects gendered abuse in Hindi, Tamil, and Indian
English using a combination of CNN and BiLSTM
networks, effectively handling noisy text and code-
switching. A dual attention mechanism improved
abusive language detection by capturing both in-
ternal and contextual relationships, outperforming
traditional attention models (Jarquın-Vasquez et al.,
2024). The paper (Alharthi et al., 2023) found
that online abuse is primarily identity-driven (97%)
rather than behavior-driven (3%) and that popular
users are more likely to be targeted. In a recent
study, (Tofa et al., 2025) evaluated machine learn-
ing and transformer models, including Indic-BERT,
for hate speech detection in Devanagari Script Lan-
guages. (Paval et al., 2024) introduced a multi-
modal abuse detection system using Liquid Neural
Networks for text and CNN for audio, achieving
strong performance across 10 Indian languages.

3 Task and Dataset Description

For this shared task, a comprehensive dataset was
provided to identify abusive language targeting
women in Tamil and Malayalam social media text.
The task identifies whether a given comment is
abusive or non-abusive for better online content

moderation. The dataset for this task consists of
comments scraped from YouTube, covering explicit
abuse, implicit bias, stereotypes, and coded lan-
guage targeting women. Each comment is anno-
tated with binary labels. The abusive comment
detection dataset for Tamil was provided in the pre-
vious workshop (Priyadharshini et al., 2022), while
the dataset for Tamil and Telugu was shared in the
2023 workshop (Priyadharshini et al., 2023).
Abusive: Content that conveys hateful, harassing,
or derogatory language directed at women.
Non-Abusive: Content that does not contain hate-
ful, harassing, or derogatory language.
Here, Table 1 reports the number of samples across
the two categories.

Classes Train Valid Test
Abusive 1,531 303 323
Non-Abusive 1,402 326 306
Total 2,933 629 629

Table 1: Statistical Distribution of Classes across Train,
Validation, and Test Datasets.

The dataset is slightly imbalanced, with fewer
non-abusive samples in the train dataset. The bar
chart in Figure 1 represents the percentage of abu-
sive and non-abusive comments.
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Figure 1: Statistics of training dataset.

4 Methodology

The section describes the methodology including
data preparation, modeling, and evaluation phase.
Malayalam-BERT was chosen based on its strong
performance in prior NLP tasks, such as achiev-
ing the highest accuracy in fake news detection
for Malayalam text classification (Tabassum et al.,
2024). The schematic representation of our ap-
proach is depicted in Figure 2.

4.1 Preprocessing
In this stage, several steps were applied to clean
and standardize the text data. First, we cleaned the
text data by removing URLs, emojis, HTML tags,
punctuation, and special characters. The whites-
pace was normalized, and all text was converted to
lowercase for consistency.
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Figure 2: Abstract view of our methodology.

4.2 Feature Extraction

Feature extraction is conducted prior to training
the models. For machine learning models, we
employed Term Frequency-Inverse Document Fre-
quency (TF-IDF) (Salton and Buckley, 1988). For
deep learning models, word embeddings were gen-
erated using Word2Vec (Mikolov et al., 2013)
trained from scratch on our dataset, converting
words into dense vector representations that capture
semantic relationships. FastText embeddings were
used for the RNN model, providing better word
vectorization by considering subword information
(Bojanowski et al., 2017).

4.3 Model Building

In our research, we explored several ML, DL, and
transformer-based models.

4.3.1 ML models
We trained and evaluated algorithms using TF-IDF
features. These include Logistic Regression (LR)
(McFadden, 1972), Naïve Bayes (NB) (Maron,
1961), Support Vector Machines (SVM) (Liu et al.,
2010), and Random Forest (RF) (Liaw et al., 2002).
Additionally, we used a Voting Classifier ensemble
combining LR, SVM, and RF to improve perfor-
mance (Hossain et al., 2022).

4.3.2 DL models
In the case of the DL approach, we explored two
architectures: a Convolutional Neural Network
(CNN) (Chen et al., 2017) trained on Word2Vec
embeddings and a Simple Recurrent Neural Net-
work (SimpleRNN) model (Emon et al., 2019) that
used FastText embeddings. The CNN was trained
for 10 epochs and the SimpleRNN for 12 epochs,

both with a batch size of 32 and fine-tuned using
validation data.

4.3.3 Transformers
The transformer-based models, including MuRIL
(Khanuja et al., 2021), Indic-BERT (Kakwani et al.,
2020), XLM-R (Lample and Conneau, 2019) and
m-BERT (Devlin et al., 2018) were used to iden-
tify abusive content in code-mixed Indic languages.
Lastly, Malayalam-BERT, which has shown strong
performance in fake news classification (Tripty
et al., 2024), was also applied. These models are
fine-tuned with transformer-specific tokenizers to
handle multilingual text efficiently. Transformers
outperform ML and DL models using attention
mechanisms to capture context and dependencies.

5 Results & Discussion

Several machine learning, deep learning, and trans-
former models are experimented with using the
given dataset. Naive Bayes, SVM, and an ensemble
model performed best among ML models, while
CNN and RNN underperformed. Transformers
outperformed both, with Malayalam-BERT lead-
ing, followed by m-BERT and XLM-R, while
MuRIL lagged. To optimize performance, we fine-
tuned transformers using AdamW, training XLM-
R for 15 epochs, m-BERT for 15 and 10 epochs,
and Malayalam-BERT for 15 epochs, improving
at 12 epochs in Table 2. After adjusting hyper-

Hyperparameters XLM m-BERT Malayalam-BERT
Optimizer AdamW AdamW AdamW AdamW AdamW
Learning rate 2e-06 3e-06 2e-06 2e-06 3e-06
Epochs 15 15 10 15 12
Batch size 32 16 32 32 16
Weight Decay 1e-04 1e-05 1e-06 1e-04 1e-04
Dropout 0.5 0.4 0.5 0.5 0.4

Table 2: Summary of tuned hyper-parameters.

parameters, Malayalam-BERT achieved the high-
est MF1 of 0.71 at 15 epochs. m-BERT performed
best at 15 epochs, achieving a score of 0.67, while
XLM-R reached a macro-F1 score of 0.64. MuRIL
struggled with a score of 0.31. Indic-BERT scored
0.57 at 10 epochs, outperforming MuRIL but lag-
ging behind m-BERT and Malayalam-BERT. The
precision, recall, and macro-F1 scores for each
model are summarized in Table 3.

5.1 Quantitative Discussion
The results highlight the effectiveness of
Malayalam-BERT in detecting abusive Malay-
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Classifier P R MF1
LR 0.64 0.64 0.64
NB 0.65 0.65 0.65
RF 0.61 0.61 0.61
SVM 0.65 0.65 0.65
Ensemble 0.65 0.65 0.65
CNN 0.49 0.50 0.46
RNN 0.45 0.46 0.43
XLM 0.67 0.65 0.64
m-BERT 0.68 0.67 0.67
MuRIL 0.50 0.22 0.31
Indic-BERT 0.59 0.58 0.57
Malayalam-BERT 0.71 0.71 0.71

Table 3: Performance of explored models.

alam text targeting women. Malayalam-BERT
outperformed other transformer models like
m-BERT and XLM-R due to its targeted training
in Dravidian languages, allowing it to better
understand the linguistic nuances of Malayalam.
While m-BERT and XLM-R are multilingual
models, their broader training scope leads to
less precise detection of abusive language in
Malayalam. Indic-BERT performed moderately
better than MuRIL, which showed much lower
scores. Although there is a slight class imbalance,
we addressed this by applying class weights
during training. The confusion matrix is shown
in Figure 3. The model correctly classifies 239

Figure 3: Confusion matrix of our best performing
model.

Non-Abusive and 207 Abusive instances, but
misclassifies 67 Non-Abusive instances as Abusive
and 116 Abusive instances as Non-Abusive. These
misclassifications may be due to class imbalance,
where the model is biased toward the majority
class, and limited data diversity.

5.2 Qualitative Discussion
Table 4 highlights both correctly classified and mis-
classified cases. Among the misclassified cases:
False Positives:

• Sample 1 ("I loved you so much, now it’s
like full-blown acting.") expresses emotional
disappointment but isn’t abusive. The misclas-
sification suggests the model struggles with

Figure 4: Examples of the Malayalam-BERT model’s
anticipated outputs with English translations.

emotionally charged non-abusive language.

• Sample 3 ("No more lying on the ground and
rolling around... We are not stupid...") uses
negative words like ’stupid,’ but not in an abu-
sive way.

False Negatives:
• Sample 7 ("You don’t deserve 50 lakhs. There

were people out there who deserved it more
than you.") questions someone’s worthiness
without explicit offensive language, which the
model fails to recognize as abuse.

• Sample 8 ("If it was meant seriously, it
would have been a great comedy.") is sarcastic
ridicule that the model misses due to lack of
explicit offensive words.

These misclassifications indicate the model’s strug-
gle with indirect abuse and sarcasm.

6 Conclusion

Our study highlights the effectiveness of
Malayalam-BERT in detecting abusive language
targeting women on Malayalam social media,
outperforming traditional ML and DL models
with an F1 score of 0.71. In future work, we
intend to improve accuracy and F1 score through
advanced feature extraction and augmentation.
While focused on Malayalam, our methodology
can be adapted to other low-resource languages
using models like m-BERT, XLM-R, IndicBERT,
or MuRIL. Furthermore, we will investigate the in-
tegration of multimodal approaches, incorporating
textual, visual, and audio cues to improve abusive
content detection particularly for social media.
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Limitations

Our model’s performance is affected by certain con-
straints. While deep learning models like CNN and
RNN underperformed compared to transformer-
based models like Malayalam-BERT, this high-
lights their inefficiency for complex text classifi-
cation tasks. We trained embeddings from scratch
on this small Malayalam dataset, which may result
in sparse and ineffective representations, whereas
pre-trained FastText or Word2Vec are trained on
massive corpora and capture richer semantic and
syntactic relationships. A key limitation is the han-
dling of Out-of-Vocabulary (OOV) words, particu-
larly in informal social media text. The tokenizer
may struggle with Malayalam’s rich morphology
and misspelled or unique words, impacting perfor-
mance. Subword tokenization or domain-specific
vocabulary could mitigate this issue.
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