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Abstract

Posts containing multiple images have signifi-
cant research potential in Multimodal Named
Entity Recognition nowadays. The previous
methods determine whether the images are re-
lated to named entities in the text through simi-
larity computation, such as using CLIP. How-
ever, it is not effective in some cases and not
conducive to task transfer, especially in multi-
image scenarios. To address the issue, we pro-
pose a graph interaction framework on rele-
vance (GIFR) for Multimodal Named Entity
Recognition with multiple images. For humans,
they have the abilities to distinguish whether an
image is relevant to named entities, but human
capabilities are difficult to model. Therefore,
we propose using reinforcement learning based
on human preference to integrate human abil-
ities into the model to determine whether an
image-text pair is relevant, which is referred to
as relevance. To better leverage relevance, we
construct a heterogeneous graph and introduce
graph transformer to enable information inter-
action. Experiments on benchmark datasets
demonstrate that our method achieves the state-
of-the-art performance.

1 Introduction

With the inclusion of images, Multimodal Named
Entity Recognition (MNER) has emerged as a fo-
cal area of researches in NER (Xu et al., 2023).
The introduction of the image can provide richer
semantic information for NER, helping the iden-
tification of semantically ambiguous entities due
to insufficient textual context, which is effective in
various real-world scenarios (Chen et al., 2021).

Earlier works only concentrate on single-image
scenarios. With the significant production of user-
generated content in social media, the number of
posts containing multiple images is growing. To
bridge the gap in real MNER scenarios involving
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(a) Two examples of MNER
with multiple images.

(b) Two examples of relevant
image-text pair with low simi-
larity scores.

Figure 1: Examples of image-text pairs.

multiple images, Huang et al. (2024) proposes a
novel MNER dataset with multiple images called
MNER-MI. According to Huang et al. (2024), con-
sidering multiple images not only helps alleviate
the ambiguity present in posts with only one im-
age but also provides richer visual information for
identifying more named entities in the text. For in-
stance, consider the two examples presented in Fig-
ure 1a: If we leverage methods in single-image sce-
narios only considering the first image, we do not
have enough context to classify Raffi and Domo
as MISC.

However, in multi-image scenarios, MNER still
faces the same issues in single-image scenarios,
where some images are not helpful for recogniz-
ing named entities and may introduce additional
noise. With the increase in images, the issue be-
comes more severe in multi-image scenarios. For
example, in the first example of 1a, the three im-
ages containing sky are not helpful for recognizing
named entities.

Previous works have proposed numerous multi-
modal approaches to alleviating the negative impact
of irrelevant images (Zhao et al., 2022; Yu et al.,
2020; Xu et al., 2022b; Zhang et al., 2021). For ex-
ample, Xu et al. (2022a) proposes using the CLIP
model to calculate the similarity scores between
image and text to determine if the image is helpful
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for identifying named entities. However, it is not
effective in some cases. As illustrated in Figure
1b, these two images respectively demonstrate the
scenery of a park and a portrait of a person, which
are relevant to the named entities Cottonwood Is-
land Nature Park and Haechan. However, when
calculating their similarity scores using CLIP, they
are only 0.19 and 0.18. We argue that both text
and images contain rich semantic information, and
merely computing similarity scores is insufficient
to determine which visual information is beneficial
for MNER.

Moreover, we argue that the CLIP model aligns
images with descriptive text during training and
named entities are not present in the text. Addi-
tionally, posts contain numerous slang terms and
non-standard grammar. In that case, it is not con-
ducive to task transfer. However, for humans, they
can leverage their own abilities to judge whether an
image is relevant to the named entities in the text.
However, modelling human intuition is challenging.
Fortunately, reinforcement learning based on hu-
man preference can integrate human abilities into
model through rewards (Liu et al., 2020). In con-
trast to previous methods that utilize model with
limited transferability for similarity computation,
our method explicitly assign a score for the MNER
task to determine whether the image is relevant to
the named entities in the text, which is referred to
as relevance.

Therefore, we propose training a discriminator
using reinforcement learning based on human pref-
erence. This discriminator is utilized to determine
whether an image is relevant to named entities in
the text. In addition, how to effectively utilize
relevance in the domain of MNER with multiple
images is also a challenge. To better leverage rele-
vance, we explicitly model the relevance between
the images and text as a heterogeneous graph and
employ a graph transformer structure to enable in-
formation interaction.

Our main contributions can be summarized as
follows:

First, to our best knowledge, we are the first to
propose the limited transferability for similarity
computation and to leverage reinforcement learn-
ing based on human preference to integrate human
abilities into model through reward in MNER do-
main.

Second, we explicitly model the relevance be-
tween the images and text as a heterogeneous graph
to better leverage relevance and employ graph trans-

former to enable information interaction.
Finally, experiments demonstrate the efficiency

of our proposed GIFR on multi-image datasets,
achieving state-of-the-art performance.

2 Related Work

2.1 Multimodal Named Entity Recognition
with Single Images

MNER introduces images as an additional modal-
ity, providing supplementary information for NER.
Early researches in the domain of MNER only fo-
cus on posts containing single images.

The following works primarily concentrate on
the implicit fusion of semantic information from
the two modalities. Zhang et al. (2018) employs
a gating mechanism to calculate cross-modal at-
tention scores. Xu et al. (2023) fuses different
types of image representations through a Mixture-
of-Experts approach. Chen et al. (2022) proposes
to achieve the information interaction of two modal-
ities in the form of prompts.

The following works focus on filtering irrelevant
visual information to alleviate distracting visual
information. Xu et al. (2022b) computes similar-
ity scores of the image-text pairs to determine the
relevant image regions. Zhang et al. (2021) pro-
poses employing visual grounding to associate text
tokens with relevant image regions in order to al-
leviate the impact of distracting irrelevant regions.
Yu et al. (2020) introduces an auxiliary module
taking text as input to identify named entity bound-
aries preventing excessive focus on irrelevant vi-
sual information. Zhao et al. (2022) determines
whether the image is relevant by calculating the
cosine similarity between image captions and text.

However, implicit fusion and similarity compu-
tation fall short. They sometimes fail to establish
a correspondence between relevant visual infor-
mation and named entities in the text. We argue
that both text and images contain rich semantic in-
formation, and the relevance between images and
named entities in the text is complex, abstract, and
requires human involvement, which means that it
is difficult to model. Reinforcement learning based
on human preference can integrate human abili-
ties into model through rewards. Therefore, we
propose a reinforcement learning approach based
on human preference to determine the relevance
between images and named entities in the text.
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(a) The overview of Relevance-based Image Discriminator. (b) The overview of Intra-modal Interaction and Inter-modal
Interaction.

Figure 2: The overview of GIFR.

2.2 Multimodal Named Entity Recognition
with Multiple Images

Nowadays, there is an increasing number of posts
including multiple images. Multiple images can
provide more context to alleviate ambiguity and
help identify more named entities. Research focus
has gradually shifted towards MNER with multiple
images.

Huang et al. (2024) proposes modeling multiple
images as frames and using prompts to facilitate
information interaction between images and text.
However, this method does not explicitly filter vi-
sual information. Therefore, we propose modeling
images and text as a graph using relevance and in-
troduce a graph transformer to enable information
interaction.

3 Overview

3.1 Problem Definition

Given a text as X = {x0, x1, x2, . . . , xn−1} and
its associated images I = {I0, I1, . . . , Im−1} as in-
put. The aim of MNER involves extracting named
entities from the given text, and classifying these
named entities into pre-defined types. We model
this task as a sequence labelling problem. For each
token xi ∈ X , we need to predict its corresponding
label yi ∈ Y based on the text X and the images I ,
where Y = {y1, y2, y3, . . . , yn} is a predefined
set of labels following the BIO (Beginning, In-
side, Outside) labeling scheme (Sang and Veenstra,
1999).

3.2 Framework

As shown in Figure 2, our proposed framework con-
sists of three components: Relevance-based Image

Discriminator, Intra-modal Interaction, and Inter-
modal Interaction. For the first component, we ini-
tially divide the dataset into two sets, which is Ddis

and Dmodel. Ddis is used to train the Relevance-
based Image Discriminator. The model’s objective
is to assign a relevance score to each image based
on the input text and associated images, sorting
the images according to these scores. Then, we
model the images and text as a graph based on rel-
evance scores. For the second component, a graph
transformer is employed to enable information in-
teraction. For the third component, we project the
interacted image representations and input them as
prompts into a BERT (Devlin et al., 2018) model
to achieve information interaction between images
and text, and feed the text representation into a
conditional random field layer to get the final pre-
diction result.

4 Method

4.1 Relevance-based Image Discriminator

The Relevance-based Image Discriminator is used
to determine whether the images are relevant to the
named entities in the text. Since some irrelevant
images can interfere with the prediction results,
image filtering is necessary (Vempala and Preoţiuc-
Pietro, 2019; Sun et al., 2021). However, previous
filtering methods based on similarity scores are un-
reliable. Humans can judge whether an image is
relevant to named entities in the text based on their
own abilities. However, modeling these human in-
tuitions is quite challenging due to its complexity
and abstraction. Through reinforcement learning
based on human preference, models can learn hu-
man abilities through human involvement in the
form of rewards, so we choose to train a discrimi-



1240

nator to determine the relevance between images
and text based on reinforcement learning based on
human preference (Liu et al., 2020).

Inspired by Xu et al. (2022a), after dividing the
dataset, we use Ddis as the training set for the
discriminator. Inspired by Liu et al. (2020), for
an image-text pair containing multiple images, we
have humans rank the images within the image-text
pairs based on relevance. Humans rank the images
they consider more relevant higher and less rele-
vant ones lower. That is the images ranked higher
are preferred by humans. By involving humans in
this ranking process, we explicitly model human
preference. Moreover, we explicitly insert a blank
image between relevant and irrelevant images in ev-
ery image-text pair to further differentiate whether
an image is relevant to the named entities in the text
or not. In a given image-text pair, the discriminator
will assign a higher relevance score to the image
ranked higher and a lower relevance score to the
image ranked lower.

As shown in Figure 2a, we use the CLIP (Rad-
ford et al., 2021) model to encode text and images.
For text, we first tokenize it using byte code en-
coding (Sennrich et al., 2015) to obtain a sequence
X = (x0, x1, x2, . . . , xn−1), and then add special
tokens [SOS] and [EOS] at the beginning and the
end, resulting in ([SOS], x0, x1, x2, . . . , [EOS]).
These special tokens represent the start and end
of the sequence. We use the representation of
[EOS] from the last layer of the text encoder as
the representation of the entire text, denoted as
Te ∈ Rdt . For images, we first preprocess them
to 224 × 224 pixels. Then, we divide the image
into 7 × 7 regions, where each region has 32 ×
32 pixels, and treat each region as vi, resulting in
Ii = (v1, v2, v3, . . . , v49). We add a special token
[CLS] at the beginning of this sequence, resulting
in ([CLS], v1, v2, v3, . . . , v49) as the input of the
image encoder. The representation of [CLS] from
the last layer is used as the representation of the en-
tire image, denoted as Ve ∈ Rdv . Next, we project
the text representation Te and image representation
Ve to the same dimension to get Tt ∈ Rds and
Vt ∈ Rds . We then concatenate Tt and Vt to get
G ∈ Rd2s , and input G into an MLP to obtain a
scalar r.

Inspired by Ouyang et al. (2022) , for an image-
text pair P = {X, I} containing multiple images,
where X represents the text and the corresponding
images are I = {I0, I1, . . . , Im−1}, we use the
sort order of the images as the supervision signal.

We pair the images in I into pairs, denoting IA as
the relatively higher-ranked image and IB as the
relatively lower-ranked image. This means that IA
is more relevant to the named entities in the text X
compared to IB , and its relevance score should be
higher than that of IB . The corresponding loss is
shown below.

LD = − 1

|D|
∑

(IA,IB)∈D

log(σ(r(IA)− r(IB))),

(1)
where D is collection of image pairs, σ is the

sigmoid activation function, r(IA) and r(IB) rep-
resent the rewards obtained by passing images IA
and IB through the discriminator respectively, IA
is the more relevant image in the image-text pair,
while IB is the less relevant image in the pair.

After training the discriminator, we use the
Dmodel dataset as the test set and let the discrim-
inator sort the images in the test set according to
their relevance. For each image-text pair contain-
ing multiple images, a blank image is also included.
Images ranked after the blank image are consid-
ered irrelevant and images ranked before the blank
image are considered relevant.

4.2 Graph Construction
To better leverage relevance, we model the images
and text as a graph. Each node in the graph repre-
sents an image or a text, and we connect the images
and text belonging to the same image-text pair with
edges. The difference between the relevance scores
of an image and the blank image is used as the
weight of edge between that image and the corre-
sponding text since the loss of the discriminator is
based on the difference. This constructs a hetero-
geneous graph for the multi-modality.

Ri = σ(r(Ii)− r(Iblank)) 0 ≤ i ≤ m− 1, (2)

where Ri is the weight of the edge between the
image Ii and the text, r(Ii) and r(Iblank) repre-
sent the rewards obtained by passing images Ii and
Iblank through the discriminator, σ is the sigmoid
activation function.

4.3 Intra-modal Interaction
We argue that the multiple images belonging to
the same image-text pair require information in-
teraction. Previous MNER works have only used
gating mechanisms (Zhang et al., 2021) or GCN
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(Zhao et al., 2022) to enable information interac-
tion between graph nodes, but we argue that gating
mechanisms cannot achieve sufficient information
interaction, and GCN suffer from over-smoothing
and over-squashing problems. Therefore, we pro-
pose introducing graph transformer based on the
graph constructed using relevance into MNER. It
is a transformer-based framework that takes node
features as input. To incorporate graph structural
information, it incorporates edge information into
both positional embedding and attention score cal-
culation, enabling information interaction among
nodes on the graph (Ying et al., 2021).

As shown in Figure 2b, first, we use ViT (Doso-
vitskiy et al., 2020) to encode the images and obtain
the representation Vi for each image. For positional
encoding, since this is a heterogeneous graph, we
only consider the connection between images. Af-
ter ignoring the text, images linked by the text are
considered to have edges. For each node Vi, we
follow Ying et al. (2021) and assign a learnable
vector based on its degree deg(Vi). The positional
embedding is defined as follows:

hV i = Vi + zdeg(Vi), (3)

where Vi ∈ Rdv is the representation of the
image, zdeg(Vi) ∈ Rdv is the learnable vector that
represent the structural information of node Vi in
the graph, determined by the degree deg(Vi) of the
nodes.

When calculating the self-attention scores, we
follow Dwivedi and Bresson (2020) and incorpo-
rate the edge weights.

U = (softmax(
QHV

KT
HV√

dv
)⊙R)VHV

, (4)

where U ∈ Rm∗dv is the visual representation
and m is the number of images in the same image-
text pair, QHV

, KHV
and VHV

∈ Rm∗dv are the
corresponding query, key and value matrices in
transformer encoder layer, d is the number of atten-
tion heads, R ∈ R1∗m denotes the weight of the
edges of the constructed graph and ⊙ denotes the
element wise product.

4.4 Inter-modal Interaction

We use BERT to encode the text and incor-
porate visual information as prompts into each
layer of BERT to enable inter-modal interaction.

First, we follow Devlin et al. (2018) and to-
kenize the text and add special tokens [CLS]
and [SEP ] at the beginning and end, result-
ing in ([CLS], x0, x1, x2, . . . , [SEP ]). Then,
through the embedding layer, we obtain H =
(h0, h1, h2, . . . , hn+1) ∈ Rdt∗(n+2). To achieve
inter-modal interaction, inspired by Liang et al.
(2022), we first project the visual representation
into the same dimension as the text representation
and input the visual information as prompt. The
prompt containing visual information is defined as
follow:

P l = W l
pU

T 1 ≤ l ≤ L, (5)

where W l
p ∈ Rdt∗dv is the weight matrix, L

is the number of the layer of Transformer, which
means that every layer has their own prompt so
that each layer can interact with different visual
information, which is helpful to text representation
learning.

For each layer of Transformer, its input is H l−1,
and the prompt is P l, and its output is H l. We first
perform a linear transformation to obtain Ql, K l,
and V l ∈ Rdt∗(n+2) for the lth layer.

For the prompt, we follow Chen et al. (2022) and
perform a linear transformation to obtain the sup-
plementary K l

P ∈ Rdt∗m and V l
P ∈ Rdt∗m. Then,

in the lth layer, we perform inter-modal informa-
tion interaction.

K l
P = W l

kP
l,

V l
P = W l

vP
l,

(6)

H l = softmax(
(Ql)T [K l

P ,K
l]√

dt
)[V l

P , V
l]T , (7)

where W l
k ∈ Rdt∗dt and W l

v ∈ Rdt∗dt are two
weight matrices, [·] is the concatenation of both
visual and textual semantic information, H l ∈
R(n+2)∗dt is the lth layer output hidden representa-
tion and we denote HL ∈ R(n+2)∗dt as the output
representation of the last layer.

Since this is a NER task, for the text representa-
tion containing visual information, we finally use
a conditional random fields layer for decoding the
representation (Lafferty et al., 2001). Based on the
output probabilities, we predict the labels.
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P (y | HL) =
exp(S(HL, y))∑

y′∈Y exp(S(HL, y′))
,

S(HL, y) =

n∑
i=0

Tyi,yi+1 +

n∑
i=1

Ehi,yi ,

(8)

where the P (y | HL) represent the output condi-
tional probabilities given the final hidden represen-
tation HL, S(HL, y) is the unnormalized score for
the output sequence y, Y is the set of all possible
output sequences,

∑n
i=0 Tyi,yi+1 is the sum of tran-

sition scores between adjacent labels, where T is
the transition score matrix,

∑n
i=1Ehi,yi is the sum

of emission scores between each hidden represen-
tation hi and its corresponding label yi, where E
is the emission score matrix (Lafferty et al., 2001).

We follow Lample et al. (2016) and use the log-
likelihood loss as the loss function for this task,
which is defined as follows:

LN = − 1

|Dmodel|

N∑
k=1

log(P (yk | HL
k )) (9)

where |Dmodel| denotes the size of the dataset
Dmodel, which is N .

Type
MNER-MI MNER-MI-Plus

Train Dev Test Train Dev Test

PER 4529 573 439 7472 1199 1060
LOC 1878 210 156 2609 383 334
ORG 1273 165 92 2947 540 487
MISC 2054 260 233 2755 410 390

Total 9734 1208 920 15783 2532 2271

Image 19188 2438 2395 22561 3161 3118
Tweet 6856 860 860 10229 1583 1583

Table 1: Statistics of MNER-MI and MNER -MI-Plus.

5 Experiments

In this section, we conduct several experiments
to demonstrate the effectiveness of our proposed
model. Following Chen and Feng (2023), we
choose to use precision (P), recall (R), and F1 score
(F1) as the evaluation metrics.

5.1 Experiment Settings
Datasets. As shown in Table 1, the sizes of the train
/ validation / test sets for the two datasets are 6,856

/ 860 / 860 and 10,229 / 1,583 / 1,583 respectively.
The MNER-MI dataset only contains image-text
pairs composed of multiple images and the number
of images is 24,021, while MNER-MI-Plus, due to
the incorporation of Twitter2017, also includes one-
to-one image-text pairs and the number of images
is 28840 (Huang et al., 2024).

Parameters Settings. The experiments are con-
ducted on NVIDIA GeForce RTX 4060 GPUs with
PyTorch 2.3.1. We use CLIP-vit-base-patch321 as
the base model for encoding text and images in the
Discriminator. We use BERT-base2 and ViT-base-
patch163 as the base models for encoding text and
images in the MNER model. Following Loshchilov
and Hutter (2017), we use AdamW as the optimizer,
with the learning rate ranging from [1e-5, 8e-5],
batch size ranging from [8, 32], and the number of
training epochs ranging from [10, 25].

Baseline. For the choice of baseline models,
we select text-based unimodal models, text and
image-based multimodal models, and LLMs. For
text-based unimodal models, we choose BLSTM-
based models: BiLSTM-CRF (Huang et al., 2015),
CNNBiLSTM-CRF (Ma and Hovy, 2016), and
HBiLSTM-CRF (Lample et al., 2016), as well as
transformer-based models: BERT (Devlin et al.,
2018). For text and image-based multimodal mod-
els, we select the following models. GVATT-
HBiLSTM-CRF (Lu et al., 2018) and AdaCAN-
CNN-BiLSTM-CRF (Zhang et al., 2018) incorpo-
rate visual information on top of BLSTM-based
unimodal models. UMT (Yu et al., 2020) introduce
visual information through cross-attention based on
BERT and add an auxiliary module to identify en-
tity spans. UMGF (Zhang et al., 2021) employing
visual grounding to associate text tokens with rele-
vant image regions. MAF (Xu et al., 2022b) aligns
the representations of the two modalities through
contrastive learning. HVPNeT (Chen et al., 2022)
and VisualPT-MoE (Xu et al., 2023) achieve the
interaction between the two modalities in a prompt-
based way. For LLMs, we choose the text-based
GPT4 and the text and image-based MiniGPT4
(Zhu et al., 2023). The models listed above all
take single image as input while UMT-MI, UMGF-
MI, VisualPT-MoE-MI and TPM-MI (Huang et al.,
2024) take multiple images as input. UMT-MI,

1https://huggingface.co/openai/
clip-vit-base-patch32

2https://huggingface.co/bert-base-uncased
3https://huggingface.co/google/

vit-base-patch16-224

https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/bert-base-uncased
https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/google/vit-base-patch16-224
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Modality Model
MNER-MI MNER-MI-Plus

P R F1 P R F1

Text
BiLSTM-CRF 64.03 65.91 64.96 73.65 70.74 72.17
CNN-BiLSTM-CRF 64.89 66.89 65.87 73.71 71.97 72.83
GPT4 64.28 67.91 66.05 63.76 69.12 66.33
HBiLSTM-CRF 64.51 68.55 66.47 72.19 74.34 73.25
BERT 69.04 73.54 71.22 77.35 79.19 78.26

Text + Image

MiniGPT4 59.87 62.37 61.09 62.22 64.27 63.23
GVATT-HBiLSTM-CRF 67.83 67.19 67.51 76.31 73.11 74.68
AdaCAN-CNN-BiLSTM-CRF 67.89 68.24 68.06 75.67 73.85 74.75
UMT 74.23 74.03 74.13 81.71 79.50 80.59
MAF 74.91 73.60 74.25 80.17 81.29 80.73
UMGF 73.74 75.30 74.51 82.31 79.65 80.96
VisualPT-MoE 74.77 75.01 74.89 82.72 80.64 81.67
HVPNeT 74.93 75.28 75.10 81.88 80.94 81.41
UMT-MI 76.56 75.90 76.23 82.26 82.96 82.61
UMGF-MI 75.88 77.14 76.50 82.55 82.25 82.40
VisualPT-MoE-MI 76.87 76.38 76.62 82.61 82.79 82.70
TPM-MI 77.45 77.19 77.32 83.66 83.18 83.42
GIFR 77.46 78.76 78.10 83.52 84.42 83.97

Table 2: Performance of various models on the MNER-MI and MNER-MI-Plus.

UMGF-MI, and VisualPT-MoE-MI are variants of
their corresponding models.

5.2 Result and Analysis

As shown in Table 2, we compare the performance
of our proposed method and previous models on
the MNER-MI and MNER-MI-Plus datasets. We
can draw the following conclusions:

Firstly, BERT-based text models perform bet-
ter than BLSTM-based text models, with BERT
achieving F1 scores of 71.22 and 78.26, a few
points higher than BLSTM-based models indicat-
ing that pre-trained language models excel in the
domain of NER.

Secondly, the performance of many text and
image-based multimodal models is better than their
corresponding text-based unimodal models, demon-
strating the importance of introducing images as
auxiliary information for NER tasks. For exam-
ple, GVATT-HBiLSTM-CRF achieves F1 scores
of 67.51 and 74.68, and AdaCAN-CNN-BiLSTM-
CRF achieves F1 scores of 68.06 and 74.75, a
few points higher than their corresponding text-
based unimodal models, namely HBiLSTM-CRF
and CNN-BiLSTM-CRF. In addition, models that
take multiple images as input perform better than
their corresponding models that take single image

as input. For example, VisualPT-MoE achieves F1
scores of 74.89 and 81.67, less than two points
lower than VisualPT-MoE-MI. This proves that
more images can bring more auxiliary information
and improve performance.

Thirdly, for LLMs, GPT4 achieves F1 scores
of 66.05 and 66.33, performing worse than some
text-based unimodal models. MiniGPT4, which
incorporates visual information, achieves F1 scores
of 61.09 and 63.23, performing even worse than
GPT4. This indicates that LLMs still face chal-
lenges in the domain of NER, and Multimodal
LLMs find it more difficult to comprehend instruc-
tions and utilize information.

Finally, our proposed GIFR achieves the best
performance which demonstrates the effectiveness
of our proposed method. The reason is that we dis-
tinguish unhelpful images, encouraging the model
to focus on images that are relevant to the named
entities in the text and reducing the interference of
irrelevant images on the task. Additionally, the use
of graph transformer better leverages relevance to
achieve information interaction. Our model excels
in MNER-MI-Plus, demonstrating the performance
of our method in single-image scenarios.
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Model
MNER-MI MNER-MI-Plus

P R F1 P R F1

w/o D 77.06 77.92 77.50 82.94 83.96 83.45
w/o P 77.36 78.29 77.82 83.79 83.92 83.85
w/o G 75.57 76.90 76.23 82.86 83.27 83.06
GIFR 77.46 78.76 78.10 83.52 84.42 83.97

Table 3: Ablation study of our proposed GIFR. We pro-
pose three variants of our model: GIFR-w/o Discrimi-
nator(w/o D), GIFR-w/o Positonal Embedding(w/o P),
and GIFR-w/o Graph(w/o G).

5.3 Ablation Study

To investigate the impact of each module in our
proposed model on performance, we conducted
ablation experiments.

GIFR-w/o Discriminator removes the module
that determines whether an image and text are rele-
vant, i.e., the Relevance-based Image Discrimina-
tor, from the original model. It sets the weight of
all edges to 1 when constructing the graph. GIFR-
w/o Positonal Embedding removes the positional
embedding structure from the graph transformer
and replaces it with the regular positional embed-
ding used in a standard transformer. GIFR-w/o
Graph removes the graph constructed based on the
Relevance-based Image Discriminator and also re-
moves the Intra-modal Interaction used for infor-
mation interaction.

As shown in Table 3, all three variants ex-
hibit varying degrees of performance degradation.
Among them, GIFR-w/o Discriminator shows drop
of 0.60 and 0.52 points, indicating that irrelevant
images do interfere with the model’s judgment, and
our proposed Relevance-based Image Discrimina-
tor can effectively distinguish between relevant and
irrelevant images. GIFR-w/o Positonal Embedding
also shows a drop of 0.28 and 0.12 points, suggest-
ing that the positional embedding that incorporates
structural information of the graph is effective in
understanding the graph and facilitates better infor-
mation interaction. GIFR-w/o Graph drops 1.87
and 0.91 points compared to the original model,
indicating that for image-text pairs containing mul-
tiple images, it is necessary to distinguish between
relevant and irrelevant images and allow sufficient
interaction.

Image R Text

0.25
only in the Philippines
(LOC)

0.15
I vote BTSARMY for
BestFanArmy (MISC)

0.98
ZhangJingyi for Chanel
(ORG) More pics

0.73
Isabelle (MISC)’s morn-
ing announcement today

Table 4: The case study demonstrates the ability of this
discriminator to differentiate whether the images are
relevant to the named entities.

5.4 Case Study

To demonstrate the effectiveness of our proposed
GIFR, we identify a few examples from the dataset
as shown in Table 4. For ease of explanation, we
only highlight a portion of the named entities.

In the first two examples, the discriminator deter-
mines that the images are irrelevant to the named
entities. In the first example, the image shows a fan
with fire, which is irrelevant to “Philippines". In the
second example, the image only displays the word
“please" and doesn’t provide any relevant informa-
tion to the named entities “BestFanArmy". These
two images would introduce noise to the model.

In the following two examples, the discrimina-
tor recognizes that the images are relevant to the
named entities. In the third example, “Chanel" can
refer to a person or a brand. With the image, we
can see that a celebrity is endorsing the “Chanel"
brand, so “Chanel" should be classified as ORG. In
the fourth example, “Isabelle" usually refers to a
person, but from the image of an animal and the
dialogue box, we can infer that “Isabelle" is a car-
toon character, which should be classified as MISC.
Both of these images are relevant to the named
entities and help alleviate ambiguity.

6 Conclusion

In this paper, we propose our GIFR. In order to
better remove interference from images which are
irrelevant to the named entities in the text, we pro-
pose a discriminator distinguishing images based
on relevance through reinforcement learning based
on human preference. In addition, in order to better
leverage relevance, we explicitly model the rele-
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vance between the images and text as a hetero-
geneous graph and employ a graph transformer
structure to enable information interaction. We
have conducted extensive experiments, ablation
experiments, and case studies to demonstrate the
effectiveness of our proposed GIFR.

7 Limitations

When considering relevance, the focus is on the
entire image and the text. However, there are still
some irrelevant regions within the entire image,
indicating a lack of fine granularity.
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