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Abstract

We address the task of CoREFerence resolu-
tion (CoREF) in chunked long narratives. Ex-
isting approaches remain either focused on su-
pervised fine-tuning or limited to one-off pre-
diction, which poses a challenge where the con-
text is long. We develop a dynamic approach
to cope with this: by deploying dual Large Lan-
guage Models (LLMs), we assign specialised
LLMs to local named entity recognition and
distant CoREF tasks, respectively, while ensur-
ing their exchange of information. Utilising our
novel memorisation schemes, the coreference
resolution LLM would memorise characters
and their associated descriptions, thereby reduc-
ing token consumption compared with storing
previous messages. To alleviate hallucinations
of LLMs, we employ an automatic prompt op-
timisation method, with the LLM ranker mod-
ified to leverage annotations. Our approach
achieves performance gains over other LLM-
based models and fine-tuning approaches on
long narrative datasets, significantly reducing
the resources required for inference and train-
ing.

1 Introduction

When people read book-length narratives or
episodic stories, they typically do not read the
entire book in one sitting. Instead, they spread
the reading over non-consecutive days. Each time
they start a new chapter, they think of main char-
acters and recall relevant descriptions associated
with them, rather than revisiting earlier sections
as if they were reading the book for the first
time (Kintsch, 1994; Singer, 2017). Authors often
facilitate this process by clearly marking divisions
(e.g., Parts, Chapters, or Scenes) in their drafts, es-
pecially for long narratives such as novels, fiction
and serial news reports. Moreover, humans com-
prehend long narratives using stratified processing:
within a local context, readers concentrate on iden-
tifying narrative elements (e.g., characters, spatial
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locations and temporal specifications) (Piper et al.,
2021), while in the global context, they attempt to
link these characters to those stored in their mem-
ories (Brahman et al., 2021), thus updating their
impressions on the characters after the reading (Mc-
Daniel et al., 2012).

However, recently developed models (Soni et al.,
2023; Wagner et al., 2023) do not fully capture this
entire process. In contrast, Jorke et al. (2020) used
a dual attention model with BERT for local con-
text and an upper attention layer for global context,
but without storing past narrative elements. Fine-
tuning LLMs pose a challenge due to quadratic scal-
ing of Transformer attention. On the other hand,
Wang et al. (2023) demonstrated that memorisation
is helpful for text generation in the Project Guten-
berg dataset, where context exceeds LLMs’ capaci-
ties. Applying LLMs beyond their limited context
remains challenging, even though evidence shows
that LLMs are promising in entity linking (Hicke
and Mimno, 2024; Zhang et al., 2023b). Resort-
ing to in-context learning and expanding context
by prepending conversation history would lead to
high token consumption. It is inherently unnatural
to start from the beginning of a book each time,
despite already comprehending the prologue, as
with extra-long context LLMs. Conversely, readers
typically revisit earlier chapters to recall key char-
acters before continuing with new content (Miyake
and Shah, 1999). Mechanisms are needed to en-
able rewinding, enhancing character descriptions
in memorisation.

Apart from memorisation, the dynamic pro-
cessing of chunked narratives, such as books di-
vided into chapters, is hindered because current
state-of-the-art methods (Hicke and Mimno, 2024,
Zhang et al., 2023b) rely on one-off prediction or
pipeline approaches that combine both Named En-
tity Recognition (NER) and CoREFerence Resolu-
tion (CoREF). However, episodic reading of narra-
tives is more common (Rayner et al., 2012). Bohnet
et al. (2023) demonstrated that transition-based
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systems, which employ a link-append approach,
are more capable of identifying anaphora (Webber
et al., 2003) in long narratives.

To this end, we propose a joint entity recogni-
tion and coreference resolution model, called LLM-
LINK, which employs two instruction-tuned LLMs
in a two-layered formation for handling short and
long-term context, respectively. Motivated by re-
cent work on narrative text generation (Wang et al.,
2023), we introduce two memorisation schemes,
Prompt Cache and Conversation Memo, to keep
track of the characters and relevant plots. As
our experiments show, both strategies integrate
seamlessly with the proposed stratified architec-
ture. The integrated model achieves significant
improvements on two long narrative datasets and is
more cost-efficient compared to simply expanding
the LLM context.

A newly emergent challenge when using
instruction-tuned LLMs is hallucination (Brahman
et al., 2022), where LLMs exhibit undesirable be-
haviours such as incorrect entity span detection
and ungrounded coreference resolutions. To ad-
dress this, we adapt Automatic Prompt Optimisa-
tion (APO) (Pryzant et al., 2023), which optimises
user prompts in the instruction based on available
training examples. We modify the LLM ranker to
rank our model’s output according to ground-truth
labels. By applying APO to LLMLINK, we ob-
tain a competitive model that matches or surpasses
purpose-built entity linking methods and memory-
enhanced instruct LLLMs, with lower token con-
sumption and without the need for fine-tuning.

In summary, we demonstrate how instruction-
tuned LLMs can jointly recognise named entities
and resolve coreferences in dynamic settings for
long narratives through memorisation and prompt
optimisation. In particular:

1. We construct a dual LLMs framework that allo-
cate distinct responsibilities to the models based
on local and global contexts. This setup ensures
that NER and coreference resolution are han-
dled appropriately, with the upper-level LLM
accessing to the lower-level information crucial
for resolving coreferences.

2. We design memorisation strategies tailored for
instruction-tuned LLMs and narrative under-
standing. These strategies not only enhance
performance but also reducing token consump-
tion significantly compared to methods relying
on remembering previous messages.

3. We adapt APO and customise the LLM ranker to
leverage NER and co-reference annotations for

mitigating hallucinations commonly associated
with LLMs.

2 Related Work

Coreference Resolution on Narratives Existing
work on coreference resolution (Liu et al., 2019;
Toshniwal et al., 2020a; Paolini et al., 2021; Zhang
et al., 2022; Zheng et al., 2023) largely focused
on short documents, e.g., MUC-7 (Hirschman
and Chinchor, 1998), ACE (Doddington et al.,
2004), OntoNotes (Hovy et al., 2006) and CoNLL-
2011/2012 (Pradhan et al., 2011, 2012). On the
other hand, Ravi et al. (2023); Ahmed et al. (2024);
Nath et al. (2024); Min et al. (2024) addressed
CoREF of news events on ECB+ (Ravi et al., 2023).
However, few studies concentrated on narratives
until Bamman et al. (2019) released LitBank. Tosh-
niwal et al. (2020b); Baruah and Narayanan (2023)
presented pipeline approaches of mention proposal
and mention clustering. Jorke et al. (2020); Zhang
et al. (2023b); Hicke and Mimno (2024) jointly de-
tected mentions and coreferences in a single pass,
while Xia et al. (2020); Bohnet et al. (2023); Guo
et al. (2023) conducted joint NER and CoREF dy-
namically. Recent research interest (Hicke and
Mimno, 2024) emerges in exploiting LL.Ms since
context length is increased from 512 (Devlin et al.,
2019) to 32K (Jiang et al., 2023). Despite their
extended input context lengths, they are still in-
adequate for handling the narrative context due
to the exponential cost or token consumption dur-
ing the SFT or multi-turn inference. Additionally,
these LLMs still struggle with fine-grained entity
recognition and linking, often experiencing what
is known as the “loss in the middle” phenomenon.
We focus on addressing long-stride coreferences,
where the context is so extensive that it exceeds
the capacity of LLMs or incurs high computational
costs. Contrary to the aforementioned approaches,
we propose a hierarchical dual-LLM system aug-
mented with the memorisation mechanism and the
seamless integration of APO for joint NER and
co-reference resolution on long narratives.

Automatic Prompt Optimisation Automatic
prompt optimisation has recently been developed
for refining prompts with annotated datasets or hu-
man feedback. This mechanism employs meta
LLMs to analyse prompt quality and update
prompts accordingly. Zhou et al. (2023) performed
a Monte Carlo search over the semantic space of
prompts based on LLM feedback. Zhang et al.
(2023a) evaluated and edited prompts via reinforce-
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ment learning. Unlike the aforementioned work,
Pryzant et al. (2023) developed a directed sampling
method, which interprets feedback into semantic di-
rections to guide the search for randomly sampled
prompts. In contrast, Levi et al. (2024) employed a
meta LLM (aka the Prompt Generator) to propose
new prompts, whose instruction was generated by
another meta LLLM named Analyser. We adapt
APO for optimising the user prompts in our dual
LLMs by designing an additional meta LLM to
evaluate the quality of prompts based on the NER
and co-reference resolution results on long narra-
tives.

3 LLMLINK: Dynamic Entity Linking
with Memorisation and Prompt
Optimisation

We propose LLMLINK, the Dual LLM Memori-
sation and Optimisation model, for entity recog-
nition and linking within narrative understanding
corpora (Zhu et al., 2023). This bears similarity
with named entity recognition (NER) and coref-
erence resolution (CR), as it involves identifying
entities within text and linking references to the
same entity across different mentions. We establish
two instruction-LLM instances in a two-layered
framework in which the lower layer identifies enti-
ties and the upper layer resolves coreferences.

We follow the InstructGPT (Ouyang et al., 2022)
naming convention, where an instruction com-
prises a system prompt defining the task, a user
prompt outlining the context-completion, and the
context itself (which may include few-shot exam-
ples) while the LLM generates a completion. Dur-
ing training, an initial user prompt is crafted as the
input to the lower LLLM, with the system prompt
fixed as ‘You are an expert NER assistant. You
are responsible for identifying named entities and
generating their descriptions.’. Meanwhile, the up-
per LLM is fed with a user prompt as defined in
Section 3.1, with the system prompt set to ‘You are
an expert coreference resolution assistant. You are
responsible for linking the entities to the resolved
entities.’.

We are interested in extracting and linking enti-
ties from long narratives, such as novels. A long
narrative is segmented either by natural bound-
aries (such as parts, chapters, and sections) or into
chunks of a typical maximum length. The lower
LLM processes each chunk, wrapping the content
with the user prompt and generating the completion
(i.e., the tagged entities and their descriptions) in
the format specified by the prompt. Subsequently,

the completion text then splits into two dataflows:
one for ranking the prediction against the ground-
truth, and the other for forming the input to the
upper LLM. The upper LLM receives the NER pre-
dictions along with auxiliary summaries from the
lower LLM, and maintains a cache of some inputs
and outputs. Using this cache, it generates predic-
tions of coreferences that either link the entities in
the current chunk to previously resolved ones or
create new singletons.

The results are predicted coreference resolutions
that are used for ranking to create incentives for
APO. As we show in Figure 1, the training is a
gradient-free process that optimises user prompts
iteratively. In what follows, we elaborate on each
component of the hierarchical framework and ex-
plain the significance of dual LLM, Cache, and
APO.

3.1 Joint NER and Coreference Resolution
with Dual LLMs

Dynamic entity linking on narrative text typically
comprises two steps: each time a system encoun-
ters a text snippet, e.g., a paragraph, section or
chapter, it first detects the named entities in the
form of sub-strings of text, and next it resolves
coreferences by marking each entity either as a
mention or an emerging singleton. We limit the
chunk size to less than the entire passage, thus pre-
senting our model as a joint approach.

We follow the transition-based paradigm
(Bohnet et al., 2023) to link the entities incremen-
tally, in contrast to the one-off prediction of all
clusters of mentions in a single pass (Zhang et al.,
2023b). We propose to deploy two LLMs in a col-
laborative setup. Consider a narrative x; and its
constitutional chunks {x;1, z2, ..., Zin }, Where
x;j is the j-th chunk. The input to the lower layer
LLM (called NER LLM) is a concatenation of the
user prompt and the text chunk. An example for

j = lin Figure 1 is shown below:
User prompt uy,1, see Appendix A for full prompts

Input : Given a chapter, you have to identify
ONLY the following: PROPER_NOUN - The full
or partial name of an individual person, place,
or organization . .. NOUN_PHRASE - A grouping
of words that includes a noun, and functions with-
in a sentence as a subject, object, or another role,
...PRONOUNS - A word that is used instead of

a noun or noun phrase. This includes common
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forms (I, me . . . their), historical forms (thou,thee
... ye) and forms originating in transcriptions of
speech ("em, ’ee, yeh, yer). You will output in
JSON format. .. The input is: PART ONE-The

The content of the first chapter.

Old Buccaneer\n 1\n The Old Sea-dog . . . to come.

The output of the NER LLM is a structure com-
prising entities and auxiliary descriptions (see Ap-
pendix B for formats) denoted as {e;;, a;;}.

The upper layer is a new instance of LM which
we call the resolver LLM, whose input is uz ap-
pended with rfj, d;-kj, eij, a;j, T;; where r;“j is an
ordered dictionary of resolved entities that each key
refers to unique character or place. d;; are auxiliary
descriptions of the appeared singletons. It starts
with an empty cache at 7 = 1. The user prompt for-
malises the ingredients into an instruction as shown

below:
User prompt u g

Input : Given the resolved entities and their aux-
iliary descriptions, a chapter and the identified en-
tities within the chapter, you have to do one of the
following operations to every identified entity: (1)
link the entity to one of the resolved entities if th-
ey mention the same thing; (2) create a new entity
type and mark it as singleton if it is a PROPER _
NOUN and cannot be linked to any resolved entity;
(3) mark the entity as None if the entity can neither
be marked as singleton nor linked . . . The input is:
The JSON object of {7}, d};, ei1,a;1, T}

{“RESOLVED_ENTITIES”: null, “RESOLVED_
ENTITIES_DESCRIPTION”: null, ... }

The output, {r;;,d;;}, consists of a map of en-
tities with newly discovered singletons and new
links between the mentions and the proper nouns,
presented in JSON strings. It also includes a dic-
tionary of the updated descriptions of the entities,
which will subsequently update prior descriptions,
as will be discussed in Section 3.2.

3.2 Cache in Prompt vs. Conversation History

LLMLINK achieves memorisation (Wang et al.,
2023) via two mechanisms we propose — prompt
cache and conversation memo. This is distinct
from the previous work (Zhang et al., 2023b; Hicke
and Mimno, 2024) in which memorisation is im-
plemented by expanding the context to the entire
document.

Prompt Cache is a JSON-string-format dictionary
which records the coreference clusters. The ra-
tionale is that coreference relations are directed

acyclic graphs (Webber et al., 2003) that can be
stored in an adjacent table and applied to stream-
ing data, i.e., document chunks. At the j-th op-
eration, the prompt cache is defined as follows:
ri; = {(k,v)|[k € proper_noun_set;j,v €
noun_phrase_setij U pronoun_setij}. The re-
solver LM 7;; updates r;; to 7, ; with newly dis-
covered anaphors 7;;. The auxiliary descriptions
are updated accordingly.

Conversation Memo does not explicitly store the
resolved entities in any structure. Instead, it keeps
track of the conversation history. After the j-
th prediction, {e;j, a;j,rj,d;;} is appended to
the conversation memo, which serves as an as-
sistant message input to the resolver LM in the
next step. We expand auxiliary descriptions to in-
clude a story summary in addition to descriptions of
characters and places. To comply with the prompt
cache format and steer the generation, we initialise
{r}; d;;} as {ri;, d;;} and start the recording from
j=2.

Algorithm 1: LLMLINK for document x;

Input: A chunked document x; = {x; 1.},
system prompts {sr, sg }, seed user
prompts {ur1, ug }, marRewind.

Output: A dictionary 7 of recognized

entities and their coreferences.
1 for t + 1 to maxRewind do

2 J+1

3 if t = 1 then

4 {ri1,di1} < resolverLlm(
€il, a1, Ti1)

5 T;'kl — T, d;} —dj,j + 2

6 else

7 L T;O = r;fm’ ;FO = d:m

8 while j < m do

9 if isPromptCache then

10 {rij,d;i;} < resolverLlm(
i1 dij_ 15 €ijs @ij, Tij)

1 else
12 {rij,dij} < resolverLlm(
L hiyjfl’r;hd;peij,aij,iﬁij)
13 r;*j — update(r;j_l, Tij)
14 d;; < update(d;; ;,d;;)
15 jei+l

16 return r;

Let h;; denote the conversation history. The
entities and coreferences of a narrative are iden-
tified using a scan through the document dis-
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"Dr. Livesey": "Dr. Livesey" im": "Pew",

U, b (C) "He": "Pew", "his": "Pew", "I": "Jim Hawkins",...},
i "RESOLVED_ENTITIES_DESCRIPTION": {

"Pew": "The minor role, the antagonist",...,

T dij y;' 4\ {"RESOLVED_ENTITIES": ("Pewf’: ':IPew“,
'H

[ Mixtral-8x7B-Instruct ) "my mother": "Not specifically described in
Sh| (b) auxiliary data, related to the narrator
d:j I €;j a;; I Tij (likely Jim Hawkins).",...}}

System Prompt:

e [ {"ENTITIES": {"PROPER_NOUN": ["Pew"], "NOUN_PHRASE":["the capta-
You are an expert Yij in's body", ..., "the road"], "PRONOUNS": ["him", ..., "'em"]},
coreference resolu- ur, "PROPER_NOUN_DESCRIPTION": {"Pew": "The antagonist"}}
tion assistant... €1 Ay €ij | ij €im QAim
1: @ - 1:
5 ( Mixtral-8x7B-Instruct ( Mixtral-8x7B-Instruct ([ Mixtral-8x7B-Instruct
[ULI I Tin FUL J I Tij ﬁthI Lim
System Prompt: User Prompt: ...identify the entities... |User Prompt: ...identify...DO NOT convert “em” to “them”|User Prompt: ...identify...e.g., that form-
You are an Chapter 1: The Old Sea-dog at the | Chapter j: The Last of the Blind Man Chapter m: And Last
expert NER Admiral Benbow MY curiosity, in a sense, was stronger than my fear, for | THE next morning we fell early to
assistant... SQUIRE TRELAWNEY, Dr. Livesey,..] | could not remain where | was, but crept back to the... |work, for the transportation of great...

Figure 1: The system diagram of LLMLINK. (a) A lower-level LLM is deployed with a system prompt and user
prompts for NER. A text chunk is fed into the NER expert model, which identifies entities and generates auxiliary
descriptions. (b) An upper-level LLLM, specialised in coreference resolution, will then process those entities and
descriptions and output resolved entities. The upper-level LLM builds its memory from previous conversations
either by enriching the user prompt or supplying the assistant message. (c) Automatic Prompt Optimisation
(APO) is employed as the optimiser for training with named entity labels and coreference links.

played in Algorithm 1. Both memorisation ap- signed to generate challenging samples (aka the
proaches can be used interchangeably by switching ~ Sample Generator), provide editing suggestions
the s PromptCache configuration. To tackle the  (aka the Analyser), and upgrade prompts (aka the
flashback that a character is mentioned earlier in ~ Prompt Generator), respectively. We do not use
the narrative than its proper noun, we use an extra  the Sample Generator, as we rely on the dataset
loop that rewinds a document at least once, during  for the ground truth and data points. But we intro-
which the resolver LLM inherits the memory of the ~ duce an additional meta LLM as the LLM Ranker
previous scan. to evaluate the quality of the prompts, which is
invoked before the Analyser.
LLM Ranker: Prompt optimisation requires evalu-
Algorithm 1 is a zero-shot approach for joint entity ~ ating the quality of the generated prompts. We use
recognition and linking. Although effective, the  specialised LLM rankers to perform the ranking,
model sometimes lacks alignment with the narra-  following the prompt template/guidance in (Levi
tive context. For example, the NER LLM tends et al., 2024) on converting a text generation prompt
to convert eye dialects to their norm forms delib-  into a ranking prompt. For judging predictions of
erately, and the resolver LLM occasionally omits ~ named entities from the NER LLM (i.e., the lower-
backtracks in single blocks. To address these issues, ~ level LLM), we propose a 5-scale ranking based on
additional efforts are needed to reduce hallucina-  the percentage of correct predictions relative to the
tionsand improve robustness. ground truth (full prompt detailed in Appendix C).
While supervised fine-tuning is promising when  For the resolver LLM (i.e., the upper-level LLM),
annotations are available, the extensive context ~ Wwe use another customised LLM specified by a
size and fragmented error cases make it imprac-  ranker inductive prompt, which is modified to *...as-
tical. In contrast, Automatic Prompt Optimisation  signing the classification labels...distinctly repre-
(APO) (Pryzant et al., 2023) provides a gradient-  senting the accuracy of predicted coreferences...’
free alternative to address the misalignment be-  (see Appendix C). The LLM ranker uses corefer-
tween annotations and user intentions, fully lever- ~ ence ground-truth labels to compute the ranks.
aging LLLM capabilities without jeopardising other =~ Optimising v : In the inner loop of Algorithm 1,
tasks. We propose adapting AutoPrompt (Levi  APO is executed at each iteration, immediately
et al., 2024) to optimise and update are the user  after the identification of e;;. This results in a se-
prompt for the NER LLM, uy,, and the user prompt  quence of updated prompts {ur, 1,42, ..., UL m}-
for the resolver LLM, uy. AutoPrompt is an ex-  Note that APO is also invoked during the final
ternal plugin which utilises three meta LLMs de- rewind to achieve the optimal NER performance.
11338
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We use the ‘Generative Tasks’ setup of AutoPrompt
since sy, and uy, instruct the LLM to function as a
text generator. Other meta LLMs in APO such as
Analyser and Prompt Generator are kept as default.
Optimising v z: We place the APO procedure in
the final iteration. Similar to uy,, the APO runs
within the ‘Generative Tasks’ setup.

Other hyperparameters, such as the number of
updates (i.e., how many times the model iterates
over the whole dataset), are discussed in the Exper-
iments section.

4 Experimental Setup

4.1 Datasets

Our dynamic entity linking approach is evalu-
ated on the Coreference-Annotated LitBank (Bam-
man et al., 2020) and the refactored Narra-
tiveQA (Kocisky et al., 2018) dataset. The
Coreference-Annotated LitBank dataset! is a fic-
tion dataset with entities annotated in the ACE
format. Coreferences are resolved for proper
names (PROP) (e.g., Dr. Livesey), common phrases
(NOM) (e.g., his room), and pronouns (PRON) (e.g.,
him). Each coreference is grounded to a sin-
gleton (i.e., the first occurrence of that entity in
the coreference chain). We followed Bamman
et al. (2020); Zhang et al. (2023b); Guo et al.
(2023) 2 and divided the dataset into 90 docu-
ments for training and 10 documents for testing.>.
Duplicate annotations (e.g., lines 475 and 476
in ‘27_far_from_the_madding_crowd_brat.ann’)
were removed. For the NarrativeQA dataset*, we
followed the BookQA approach (Angelidis et al.,
2019) to refactor a subset of Who questions that
target characters as answers. We excluded Who
does questions and included What’s the name ques-
tions. We further filtered out questions where the
named entity or the named entity of the answer
cannot be grounded to a text span in the original
text, ensuring that each question defines a long-
term coreference. This results in 401 annotations
that ground references to singleton characters. We
refer to this subset of the dataset as WhoLink. The
number of documents and statistics for each dataset
are listed in the Table 1.

!Available as part of LitBank at https://github.com/
dbamman/litbank/tree/master/coref

thtps://github.com/dbamman/lrec2®2®—coref

3Validation was not performed since early stopping was
not used; instead, prompts were optimised for a fixed number
of rounds as in (Levi et al., 2024).

4https ://github.com/google-deepmind/
narrativegqa/tree/master

Shttps://github.com/somethingx1202/L1mLink

#Docs # Chapters # Tokens # Mentions

Datasets - - - -
Train Test‘Tram Test ‘Traln Test‘Traln Test
LitBank | 90 10 [25.06 25.06|102k 102k| 291 291
WhoLink®| 133 100|81.87 54.75|177k 131k|3.76 2.86

Table 1: Training and testing set statistics include docu-
ment count, average chapters, tokens, and mentions per
document. Note that LitBank has been presented with
splits for 10-fold cross-validation.

4.2 Baseline Models

We compare our method against these baselines:

LCA-LLM (Hicke and Mimno, 2024) is a fine-
tuned T5 (Raffel et al., 2020), a multi-task text-to-
text framework in which the most effective model
utilises both a Transformer encoder and decoder.
We followed the setup of (Hicke and Mimno, 2024)
to fine-tune T5 as a causal LM on the two datasets.

DOC-ARC (Jorke et al., 2020) is a hierarchi-
cal dual-attention model comprising two layers of
attention, with the lower-level attention using a pre-
trained language model for token representations,
while the higher-level attention overseeing all the
occurrences of selected tokens. Embeddings of
the same entity type are aggregated using weights
calculated by an attention mechanism.
Pure-Seq2seq (Zhang et al., 2023b) is an unmodi-
fied TO (Sanh et al., 2022) model fine-tuned with
coreference annotations in a text generation setup.
Annotations were converted into natural language
text by wrapping them in coreference cluster for-
mats with special tokens, and the fine-tuning of TO
is formulated as completing the token sequence.
Dual-Cache Guo et al. (2023) introduces a global
cache, managed by Longformer (Beltagy et al.,
2020), for tracking long-distance mentions along-
side an off-the-shelf local mention detector. When
a mention is detected, the model uses a Multi-layer
Perceptron to compute its similarity scores against
every cached entity and links the mention to the
closest singleton.

MovieCoref, developed by Baruah and Narayanan
(2023), adapts the word-level CR model of Dobro-
volskii (2021). This model first identifies a head
word, then links words based on coreference scores.
Finally, each linked word is extended to an entity
span by identifying the maximum start-end scores
in their neighbourhoods in conjunction with other
words in the coreference chain.

4.3 Settings

Each book is rewound twice (maxRewind = 2),
and prompts are optimised during the second pass.
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LitBank

Exact
Model NIEIR C%rff' String
Match
LCA-LLM 97.9 80.2 71.1
DOC-ARC 93.9 76.1 67.4
Pure-Seq2seq 97.2 78.2 68.7
Dual-Cache 97.3 79.8 70.4
MovieCoref 92.4 74.9 67.5
Mixtral8x7blns. 96.7 77.4 69.1
GPT-3.5-turbo 95.6 75.3 68.2
LLMLINK 98.4+.2 81.5+.4 73.0+5
WhoLink
LCA-LLM 89.2 71.4 64.7
DOC-ARC 85.0 59.8 54.3
Pure-Seq2seq 87.8 68.5 62.5
Dual-Cache 88.1 69.1 63.1
MovieCoref 83.2 56.6 53.8
Mixtral8x7blns. 91.6 75.6 68.7
GPT-3.5-turbo 90.6 74.8 68.2
LLMLINK 91.6+.3 78.2+.5 71.6+.5

Table 2: Results for named entity recognition and all
coreference resolution (pron/non-pron), reported in %.

The training set is iterated 5 times. One key con-
figuration is how chapters are defined, as this de-
termines the context size, for which we design
regular expressions. For documents without chap-
ter boundaries, we segment them into chunks of
8,192 tokens, which results in statistics shown in
Table 1. The maximum context size, including the
auxiliary descriptions, is 16,384 tokens. Exces-
sive descriptions of NOMs and PRONs are trimmed
to comply with the context limit. In conversation
memos, earlier conversations are truncated once
the upper LLM reaches its capacity. We modify
Mixtral-8x7B-Instruct-v0.1® (Jiang et al., 2024) for
implementation. Temperature and top_p are set to
0. Our APO module adapts AutoPrompt’ imple-
mentation, using the generation configuration and
the GT ranker as GPT-4 Turbo.

5 Experimental Results

LLMLINK is built with instruction-tuned LLMs.
Hence, it operates in a free-form completion mode
where ‘prediction’ of hallucinated named entities
or coreferences becomes unavoidable. Employ-
ing traditional coreference metrics (i.e., MUC, B3,

6https://huggingface.co/mistralai/Mixtral—
8x7B-Instruct-ve.1

"https://github.com/Eladlev/AutoPrompt

CEAF and BLANC) (Pradhan et al., 2014) will
result in low precision. Therefore, we resort to
F1-scores of named entity detection and corefer-
ence resolution, as in (Hicke and Mimno, 2024,
Guo et al., 2023). Exact string matches refer to
instances where character positions match those in
the original literature.

5.1 Overall Comparison

Results in Table 2 show that LCA-LLM and Mix-
tral8x7BInstruct are the top-performning baselines
in both NER and Coreference Resolution. This
is not surprising since LCA-LLM benefits from
fine-tuning, while Mixtral8x7BInstruct contains
56 billion parameters. The key difference is that
LCA-LLM predicts token logits and has to be fine-
tuned on the training set, potentially explaining
the performance gap observed between these two
models on LitBank and WhoLink, where annota-
tions in WhoLink are more sparse. Their Exact
String Match results across the datasets indicates
that token tagging models tend to be more stable.

Among the text completion models, Pure-
Seq2seq performs the best on LitBank but the worst
on WhoLink, showing its specialised nature. Mix-
tral demonstrates a significant advantage over Pure-
Seq2seq on WhoLink due to its instruction-tuned
design. Our model, LLMLINK, achieves the best
overall results on both datasets, except for NER-
F1 on WhoLink where it performs equally well.
On the other hand, Dual-Cache outperforms DOC-
ARC, showing a gain of at least 3% F1-score on
LitBank and ~ 10% gain on WhoLink. Meanwhile,
DOC-ARC surpasses MovieCoref by at least 1%
F1-score. These findings demonstrate the critical
role of memorisation, especially in handling long
context. Overall, instruction-tuned models, such as
Mixtral and GPT, excel on WhoLink with consis-
tent performance. Token tagging models achieve
higher performance when fine-tuned with sufficient
annotations. Text completion models, i.e., Pure-
Seq2seq, benefit from fine-tuning, but they are less
competitive compared to models like LCA-LLM,
possibly due to the lack of instruction-tuning. LLM-
LINK outperforms LCA-LLM primarily due to its
access to annotations.

5.2 Ablations

To analyse computational costs, we report token
consumption data for instruction-tuned models and
ablated components in Table 3. While token con-
sumption remains relatively low during inference
for other baselines (e.g., 11.27M for LCA-LLM,
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LitBank WhoLink
Model Coref. Cumul. Coref. Cumul.
Token Token
Fl Fl
Consum. Consum.
M.8x7blns. |77.44+.1 11.78M |75.6+.4 42.85M

+ Memo|80.6+.1 69.17M
Dual-LLMs |77.9+.2 22.56M
+ Cache|80.3+.2 32.13M

+ Memo|79.5+.2 35.21M
LLMLINK |81.5+.4 32.73M
w/o APO|80.6+.2 31.70M

w/o LLM ranker|79.3+.4 31.90M

77.2+.4 417.33M
75.8+.4 74.83M
77.6+.4 127.41M
76.9+.4 134.28M
78.2+.5 129.52M
78.1+.4 118.53M
76.0+.5 122.72M

Table 3: Coreference F1 score and cumulative token
consumption for LLMLINK and examined architectures,
with and without ablated components.

10.29M for DOC-ARC, and 21.51M for Pure-
Seq2seq), the cost of fine-tuning is significantly
higher®, rendering direct comparison infeasible
here.

Table 3 shows the performance gains through
various frameworks and components. Deploying
the Dual-LLM structure, i.e., simply using an ad-
ditional LLM for coreference resolution without
memorisation, yields a minor boost of ~ 0.5%.
Despite the marginal gain, it serves as a founda-
tion for the two memorisation designs. We ob-
tain major improvements with them on top of the
Dual-LLM architecture: introducing Cache brings
a boost of 2.4%, and incorporating Memo yields
an increase of 1.6%. The improved model costs
less than 35.21M tokens, which is around half the
token consumption of Mixtral-with-Memo. The
improvement is higher if we choose to alternate
between Cache and Memo. Utilising APO further
enhances the model, yielding a performance gain
of around 1% on LitBank. It is worth noting that,
for Mixtral8x7BInstruct, its memorisation size is
restricted by its 32K context size. If the maximum
context size were increased to 100K, the token
consumption would increase quadratically as the
context accumulates over subsequent chapters’ con-
versations. We also notice that without using our
proposed LLM ranker for APO, the performance
degrades significantly,

5.3 Case Study

We study cases where the proposed memorisation
mechanisms or the introduced APO process make
a difference in the predicted labels:

8https://openai.com/api/pricing/

Named Entity Recognition
Input: (see Appendix D for full text)

At that another fellow, probably him who had...
Output:

{"ENTITIES":{"PROPER_NOUN":["Pew"], "NOUN_PHRASE
": ["the captain's body","the door of the inn",
"that boy”,"the blind man"”,"the fellow from the
window”], "PRONOUNS”: ["him", "he”, "I", "his”,
"they”, "I", "I", "them", "they"”, "them"1},
"PROPER_NOUN_DESCRIPTION": {"Pew": "A character
, specifically referred to as a blind man"}}

Output (after APO):

{"ENTITIES": {"PROPER_NOUN": ["Bill", "Pew"], "
NOUN_PHRASE" : ["the captain's body”,"the door of
the inn"”, "the inn”, "that boy"”, "the blind man
”,"the road”]} ”PRONOUNS": ["him”,"he","I","hiS"
, "they”, "'em”, "they”, "'em"1},
"PROPER_NOUN_DESCRIPTION": {"Bill"”: "A character
possibly related to a past event”, "Pew”:"The b-
lind man character in the narrative”}}

As illustrated above, LLMLINK erroneously con-
verted ‘’em’ to ‘them’, which does not exist in the
original text. During APO, an error analysis, i.e.,
‘Failed to recognize ""em” which is a colloquial
form of "them'”, is generated, and the user prompt
is updated accordingly, enabling the generation of
the correct output.

Coreference Resolution
Input: (see Appendix E for full text)

{“RESOLVED_ENTITIES”: {“Tom Sawyer”: “singlet...

Output:

{"Tom":"Tom Sawyer"”, "Huckleberry":"Huckleberry
Finn", "Muff Potter"”:"Muff Potter”,"the far end
of the graveyard”:null,"”their”:null,"they"”:null
,"them”:null, "we"”:null,"you”:null,"us":null,"I1"
:null,"me":null, "you"”:null, "them”:null}

Output (with Memo “Input: {“IDENTIFIED_ ENTI-
TIES”: ..., {*“PROPER_NOUN_ DESCRIPTION": ...}, Out-
put: {"Tom": "Tom Sawyer", "Sid": "Sid", ..., "he": "Tom
Sawyer"}”):

{"Tom”: "Tom Sawyer","Huckleberry”: "Huckleberry
Finn","Muff Potter”: "Muff Potter”, "the far end
of the graveyard”: null,”their”: "Tom Sawyer and
Huckleberry Finn", "they"”: "Tom Sawyer and Huck-
leberry Finn"”,"them":"Tom Sawyer and Huckleberry
Finn", "we": "Tom Sawyer and Huckleberry Finn”,
"you": "Huckleberry Finn"”, "us": "Tom Sawyer and
Huckleberry Finn", "I": "Tom Sawyer"”, "me": "Tom
Sawyer”, "you": "Huckleberry Finn"”, "them"”: "The
devils or humans"}

We can observe nullified resolutions of the enti-
ties, i.e., the pronouns, in the initial output. By us-
ing previous conversations, the model successfully
links the pronouns to the corresponding characters.
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6 Conclusion

We have developed a joint named entity recogni-
tion and coreference resolution model that employs
dual LLMs to process segmented long narratives.
A lower-level LLM is placed within the chapter-
wide segment for NER, whose output is consumed
by an upper-level LLM, which resolves entities
to the same character, i.e., singleton, simultane-
ously. To increase accuracy while lowering cost,
we explore Cache and Memo as memorisation
schemes, which fit comfortably with instruction
LLMs. What’s more, we utilise Automatic Prompt
Optimisation with the LLM ranker to exploit train-
ing instances which are scattered and were erro-
neously predicted. The integrated model shows
compelling performance against fine-tuned mod-
els and memory-enhanced instruct-LLMs, signifi-
cantly reducing the amount of token consumption.

Limitations

While LLMLINK enjoys the benefit of in-context
learning that is suitable for zero-shot and few-shot
prediction, it inherits the weaknesses of instruction-
tuned LLMs that extra tokens are needed and
prompt engineering is intricate. On the contrary,
hidden representation models such as BERT con-
sume fewer tokens once fine-tuned and are unlikely
to generate hallucinations or perform inconsistently.
Another limitation of using dual LLMs is the design
of collaborative pattern, i.e., the lower layer LLM
receives no signals from the upper layer, which we
do not optimise. Additionally, maz Rewind and
rewind timing are preset ahead of the inference. It
remains a challenge how to shift focus backwards
during the interim of the reading process.
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A Appendix A

You are an expert NER assistant. You are respon-
sible for identifying named entities and genera-
ting their descriptions.Given a chapter,firstly,
you have to identify ONLY the following:
PROPER_NOUN - The full or partial name of an in-
dividual person, place, or organization, e.g.Tom
Sawyer, London, and Oxfam. NOUN_PHRASE - A grou-
ping of words that includes a noun,and functions
within a sentence as a subject,object,or another
role, e.g., the boy, the city, and the organisa-
tion. This ONLY includes those that refer to pe-
rsons, places or organizations.

PRONOUNS - A word that is used instead of a noun

or noun phrase. This includes “I”, “me”, “my”,
myself”, “you”, “your”, “yourself”, “she”, “her”,
Uherself’”’ ((he”’ “him”’ Uhis”, Uhimself‘”’“it", “«
its”, “We”, Uus”’ Uour”, “they”,“them”’ UtheirU’
UthOu"y N.theeN’Uthineny “ye",‘”em", Nlee”y Uyehﬂ’

and “yer”. This ONLY includes those that refer to
persons, places or organizations.

Secondly, you have to generate a description for
each PROPER_NOUN you identified:
PROPER_NOUN_DESCRIPTION - A phrase that describes
the role of the PROPER_NOUN.

You will output in JSON format, without any other
text. If an entity is not present, output None
for it. Like this:

{
“ENTITIES”: {"PROPER_NOUN":<>,
"NOUN_PHRASE" : <>, "PRONOUNS":<>},
“PROPER_NOUN_DESCRIPTION” : <>

3
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B Appendix B

You are an expert coreference resolution assistant. You are responsible for linking the entities to
the resolved entities. Given the resolved entities and their auxiliary descriptions, a chapter and
the identified entities within the chapter, Firstly, you have to do one of the following operations
to every identified entity: (1) link the entity to one of the resolved entities if they mention the
same thing; (2) create a new entity type and mark it as singleton if it is a PROPER_NOUN and cannot
be linked to any resolved entity.(3) mark the entity as None if the entity can neither be marked as
singleton nor linked. Secondly, you have to update the AUXILIARY_DESCRIPTIONS for each resolved ent-
ity that appears within the chapter.

You will output in JSON format, without any other text. Like this:

{

“RESOLVED_ENTITIES”:

{“Tom”: “Tom Sawyer”,“it”: null, "his": “Tom Sawyer”, "it": null,“it”: null,6“he”: “Tom Sawyer”, “he”
: “Tom Sawyer”, “it”: null, “he”: “Tom Sawyer”, “his aunt”: “Aunt Polly”, “him”: “Tom Sawyer”, “him-
self”: “Tom Sawyer”,“her”: “Aunt Polly”, “it”: null,“Sid”: “Sid”, “she”, “Aunt Polly”, “her”,“Aunt
Polly”,“it”: null, “Tom”: “Tom Sawyer”, “she”: “Aunt Polly”,6“She”: “Aunt Polly”, “it”: null, “her”:
“Aunt Polly”, “the boy”: “Tom Sawyer”,“it”: null},

“AUXILIARY_DESCRIPTIONS”:

{“Tom Sawyer”: “The main character, often getting into trouble, struggling with his studies and
rules, but clever in his ways”, “Aunt Polly”: “Tom's aunt, who is responsible for his upbringing, st-
rict yet affectionate”, “Sid”: “Tom's less adventurous half-brother, often contrasting Tom”, “Mary”
: “Tom's cousin, occasionally helps Tom with his recitations, supportive of him”, “Jim”: “Young bla-
ck boy involved in Tom's schemes, experiences societal limitations”, “Ben Rogers”: “A boy from whom
others buy or trade items, mentioned in context with a blue ticket and a hoop-stick.”, “Billy Fisher
”: “Village boy, trades kite with Tom”, “Jeff Thatcher”: “Resident of Tom’s village, his house is
near where the new girl resides”, “Amy Lawrence”: “Tom's love interest, though their relationship is
complex”, “Huckleberry Finn”: “Son of the town drunkard, envied by other children for his lack of
constraints.”, “Joe Harper”: “Tom's close friend who shares similar interests and engages in games
and mischief with him.”, “Becky Thatcher”: “Tom's love interest; they engage in typical childhood g-
ames and the exchange of tokens like kisses and promises.”,. . ., “St. Petersburg”: “The village set-
ting of the story”}

3

C Appendix C

Establish a revised five-point assessment scale
for the named entity recognition generator that
emphasizes differentiation between all levels
of accuracy. Assign the classification labels
ot "3t "4" 0 and "5", with each level
distinctly representing the accuracy of the re-
cognition of the named entities given the
ground-truth:

1. Less than 80 percent ("1"): Less than 80\%
of the recognized named entities match the
ground-truth.

2. More than 80 percent and less than 85 percent
("2"): More than 80\% and less than 85\% of the

recognized named entities match the ground-truth.

3. More than 85 percent and less than 90 percent
("3"): More than 85\% and less than 90\% of the

recognized named entities match the ground-truth.

4. More than 90 percent and less than 95 percent
("4"): More than 90\% and less than 95\% of the

recognized named entities match the ground-truth.
5. More than 95 percent and less than 100 percent

("5"): More than 95\% and less than 100\% of the

recognized named entities match the ground-truth.

This adjusted scale is designed to evaluate the
accuracy of named entity recognition by calcula-
ting the percentage of correctly predicted named
entities.

D Appendix D

At that another fellow, probably him who had r-
emained below to search the captain's body,came
to the door of the inn. "Bill's been overhauled
a'ready,” said he; "nothin' left.”

"It's these people of the inn--it's that boy. I
wish I had put his eyes out!” cried the blind
man, Pew. "There were no time ago--they had the
door bolted when I tried it. Scatter, lads, and
find 'em."

"Sure enough,they left their glim here,
the fellow from the window.

"Scatter and find'em!Rout the house out!"reite-
rated Pew,striking with his stick upon the road

said
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E Appendix E

{“RESOLVED_ENTITIES”: {“Tom Sawyer”: “singleton”
, “Tom”: “Tom Sawyer”, “Aunt Polly”: “singleton”
, “Sid”: “singleton”, “Mary”: “singleton”, “Huc-
kleberry Finn”: “singleton”, “Huckleberry”: “Hu-
ckleberry Finn”,“Becky Thatcher”:“singleton”, “
Becky”: “Becky Thatcher”}, “CHAPTER”: ““Listen!”
The boys bent their heads together and scarcely
breathed. A muffled sound of voices floated up
from the far end of the graveyard. “Look! See
there!” whispered Tom. “What is it?” “It's devi-
1fire. Oh, Tom, this is awful.” Some vague figu-
res approached through the gloom,swinging an old
-fashioned tin lantern that freckled the ground
with innumerable little spangles of light. Pres-
ently Huckleberry whispered with a shudder:“It's
the devils sure enough.Three of 'em! Lordy, Tom,
we're goners! Can you pray?” “I'll try,but don't
you be afeard. They ain't going to hurt us. 'Now

I lay me down to sleep, I--'” “Sh!” “What is it,
Huck?” “They're _humans_! One of 'em is, anyway.
One of 'em's old Muff Potter's voice.”” “IDENTI-

FIED_ENTITIES”:["Tom","Huckleberry"”,"Muff Potter
" “the far end of the graveyard”,"”their"”,"they",
"them","we","you","us","I","me", "you","them"],"
PROPER_NOUN_DESCRIPTION":{"Tom":"The protagonist
, engaged in a spooky adventure in a graveyard
with his friend Huckleberry.", "Huckleberry": "A
friend of Tom's, also involved in the nighttime
adventure, initially mistaking humans for supern
atural beings.","Muff Potter”:"Identified by his
voice among the figures approaching with a lant-
ern, recognized by Huck."}}
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