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Abstract

Decoding strategies for generative large lan-
guage models (LLMs) are a critical but of-
ten underexplored aspect of text generation
tasks. Guided by specific hyperparameters,
these strategies aim to transform the raw proba-
bility distributions produced by language mod-
els into coherent, fluent text. In this study, we
undertake a large-scale empirical assessment
of a range of decoding methods, open-source
LLMs, textual domains, and evaluation proto-
cols to determine how hyperparameter choices
shape the outputs. Our experiments include
both factual (e.g., news) and creative (e.g., fic-
tion) domains, and incorporate a broad suite of
automatic evaluation metrics alongside human
judgments. Through extensive sensitivity anal-
yses, we distill practical recommendations for
selecting and tuning hyperparameters, noting
that optimal configurations vary across models
and tasks. By synthesizing these insights, this
study provides actionable guidance for refining
decoding strategies, enabling researchers and
practitioners to achieve higher-quality, more re-
liable, and context-appropriate text generation
outcomes.

1 Introduction

Generative large language models (LLMs) do not
directly produce natural language text. Instead,
they generate a high-dimensional probability dis-
tribution over all tokens in their vocabulary. The
process of converting these probabilities into co-
herent text, known as decoding, can substantially
influence the quality of the generated output, some-
times matching the impact of the LLM itself.

Most decoding strategies employed with contem-
porary LLMs involve hyperparameters that play
critical roles in shaping the generated text. These
hyperparameters strongly influence factors such
as coherence, fluency, and diversity (Zhou et al.,
2024). Despite their importance, the selection

Figure 1: Influence of the nucleus sampling hyperpa-
rameter p on the distribution of diversity and coherence
metrics in text generated by Mistral 7B v0.3 (green).
For comparison, the distribution of the same metrics in
human-written text is displayed in blue.

and tuning of these hyperparameters remain under-
explored. Users often rely on default settings and
prioritize benchmarking different models over op-
timizing decoding strategies. This approach over-
looks the varying requirements of different text
generation tasks, ranging from factual domains like
news generation to creative areas such as fiction.
Additionally, the effectiveness of decoding strate-
gies may vary across different models, a nuance
that current practices— which assess strategies uni-
formly across models—fail to capture.

Recent research underscores the impact of hy-
perparameter configurations on both the coher-
ence and diversity of generated text when using
sampling-based decoding (Zhou et al., 2024). In
this study, we extend this by systematically vary-
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ing the hyperparameters of commonly used decod-
ing strategies—deterministic, sampling-based, and
contrastive—to evaluate their effects on text quality
across diverse datasets, metrics, and open-source
LLMs. By employing predefined grids for hyperpa-
rameters in deterministic (beam width), stochastic
(top-k, top-p, and temperature), and contrastive
(α and k) decoding strategies, we investigate their
role in balancing coherence, fluency, diversity, and
overall text quality. This investigation is particu-
larly relevant for addressing common issues such
as degeneration and ensuring effective adaptation
to a wide range of text generation tasks (Shi et al.,
2024).

Furthermore, while modern LLMs are highly ad-
vanced, they remain susceptible to problems like
incoherence or degeneration under certain hyper-
parameter settings. Our work addresses these chal-
lenges by providing a sensitivity analysis and of-
fering practical guidelines for tuning decoding hy-
perparameters. This aims to optimize the desired
properties of the generated text while mitigating un-
desirable behaviors, including repetitiveness, and
inconsistencies or hallucinations.

Contributions This study advances the field of
decoding strategies for LLMs by performing a
large-scale sensitivity analysis of commonly used
decoding methods and examining their practical
effects on model performance.

1. We conduct an extensive experimental analy-
sis to evaluate the impact of hyperparameter
values on various text quality metrics across
models in open-ended text generation.

2. Our comprehensive analysis reveals key fac-
tors that influence the quality of LLM-
generated texts, as assessed by widely adopted
evaluation metrics covering multiple lexical
dimensions.

3. Based on these insights, we offer actionable
recommendations for practitioners to select
appropriate decoding strategies and hyperpa-
rameters tailored to specific use cases.

4. We create (and share) a unique database for fu-
ture research: In total, we generate 2.2 million
text continuations, which are publicly avail-
able for future meta-analyses, along with our
complete codebase: https://github.com/
YecanLee/Decoding-Decoded.

2 Decoding Strategies and
Hyperparameters

Decoding strategies are generally categorized into
two types: deterministic and stochastic. Given the
complexity introduced by their hyperparameters,
we additionally separate contrastive strategies (cf.
Sec. 2.3) from the other deterministic ones (cf.
Sec. 2.1). While the latter are solely focused on
maximizing the joint probability, the former ex-
plicitly compromise this objective by incentivizing
more diverse texts. We further do not go into detail
on other existing strategies that we do not employ,
such as Frustratingly Simple Decoding (Yang et al.,
2024b), Typical sampling (Meister et al., 2023),
Contrastive Decoding (Li et al., 2023), and Adap-
tive Decoding (Zhu et al., 2024).

2.1 Deterministic Strategies
Deterministic strategies follow fixed decision-
making processes that do not incorporate random-
ness. These methods are widely used in tasks re-
quiring high reproducibility and reliability.

Greedy search. This strategy selects the token
with the highest probability at each time step, re-
sulting in a sequence that maximizes the local likeli-
hood. However, it often leads to suboptimal results
due to the lack of look-ahead, which can cause the
model to get trapped in less coherent output.

Beam search. Freitag and Al-Onaizan (2017) ex-
tends the greedy approach by maintaining a beam
of the w most probable sequences at each time step.
The hyperparameter w, known as the beam width,
aims to reduce the risk of suboptimal sequence
choices, but the results can still generate repetitive
text in open-ended tasks.

2.2 Sampling-based Strategies
Sampling-based strategies introduce stochasticity
to encourage diversity in text generation. These
methods allow for more creative and varied outputs
but require careful tuning of hyperparameters to
balance coherence and randomness.

Sampling with temperature. Introduced by
Ackley et al. (1985), this method samples from the
full distribution over all tokens while modifying the
softmax. The temperature hyperparameter controls
the sharpness of the distribution — higher tempera-
tures flatten it, increasing randomness, while lower
temperatures make it more deterministic, favoring
tokens with higher probabilities even more.

https://github.com/YecanLee/Decoding-Decoded
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Top-k Sampling. Proposed by Fan et al. (2018),
this strategy limits sampling to the top k tokens
with the highest probabilities, forming a subset
V (k). Truncating the distribution reduces the risk
of sampling from the long tail of low-probability
(and potentially incoherent) tokens, while still in-
troducing some diversity through stochasticity.

Nucleus Sampling. Also known as top-p sam-
pling, this method was introduced by Holtzman
et al. (2019). It samples from the smallest subset
S whose cumulative probability exceeds a thresh-
old p. Nucleus sampling adapts dynamically to the
token distribution, preserving both diversity and
relevance by considering only the most probable
tokens.

2.3 Contrastive Strategies
Contrastive strategies leverage comparisons be-
tween different models or hypotheses to improve
text quality. These methods focus on enhancing
coherence and informativeness without sacrificing
diversity.

Contrastive Search. Su et al. (2022) introduce
a look-ahead mechanism that penalizes tokens dis-
rupting the isotropy of the latent space in the lan-
guage model, penalizing degeneration while pro-
ducing more semantically consistent text.

Adaptive Contrastive Search. Garces-Arias
et al. (2024) propose an adaptive strategy that aims
to strike a balance between coherence and diver-
sity dynamically, based on the model entropy at
each time step, removing the need for extensive
hyperparameter tuning.

3 Related Work

The selection of decoding strategies is critical in
determining the performance of text generation
models, particularly in balancing output quality
and diversity. Wiher et al. (2022) provide a foun-
dational analysis of decoding methods, including
beam search, top-k sampling, and nucleus sam-
pling. Their findings indicate that while beam
search is effective for structured tasks such as ma-
chine translation, it often results in repetitive or
less coherent text in creative tasks like story gener-
ation. This underscores the necessity of adapting
decoding strategies to specific task requirements.

Subsequent studies, such as Amini et al. (2023),
build on these insights by offering a comprehensive
review of the principles that guide text generation.

This research highlights the influence of various de-
coding mechanisms on the final output, emphasiz-
ing the importance of selecting suitable strategies
tailored to specific tasks. Additionally, it examines
the trade-off between fluency and diversity, par-
ticularly in open-ended text generation scenarios.
More recently, Shi et al. (2024) investigate how de-
coding strategies scale with large language models
(LLMs), exploring the interactions between decod-
ing strategies, their hyperparameters, and model
size. The authors demonstrate the increasing com-
plexity of optimizing these strategies as models
grow in scale, especially in open-ended generation
contexts. Our experiments substantially extend the
work of Shi et al. (2024) by exploring additional hy-
perparameter combinations across a broader range
of models and evaluating text quality using multi-
ple metrics beyond MAUVE.

Additionally, Zhou et al. (2024) provide an
in-depth exploration of sampling-based methods.
They offer guidelines for managing the balance
between diversity and the risk of incoherence, illus-
trating how hyperparameter tuning can influence
the quality and diversity of generated outputs. This
work is a practical resource for selecting decod-
ing strategies based on task-specific requirements.
In contrast, our focus extends beyond the evalua-
tion of risk associated with tuning temperature and
truncation parameters in stochastic strategies.

While providing valuable insights, many exist-
ing studies do not offer a comprehensive analysis
of how different decoding strategies affect various
quality metrics, such as coherence, diversity, and
MAUVE. We address this gap and introduce QText,
which combines these metrics using the harmonic
mean. We compare the best and worst-performing
strategies based on these metrics with those iden-
tified by human evaluators, highlighting areas of
agreement and divergence. Detailed insights are
provided in Figure 3 and Section A.2.

4 Experimental setup

We employ seven models to generate stories from
prompts sourced from three distinct datasets, using
six decoding strategies with varying hyperparam-
eter configurations. To evaluate the quality of the
generated text, we rely on three widely used auto-
matic metrics: coherence, diversity, and MAUVE,
and we also measure QText. In addition, human
evaluators are engaged to provide further assess-
ment of the quality of the generations.
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4.1 Models

We employ GPT2-XL (1.5B parameters) (Radford
et al., 2019), Mistral 7B v0.1 and v0.3 (Touvron
et al., 2023), Llama 3.1 8B (Dubey et al., 2024),
Deepseek 7B (DeepSeek-AI et al., 2024), Qwen2
7B (Yang et al., 2024a), and Falcon 2 11B (Malartic
et al., 2024).

4.2 Hyperparameters

For contrastive search, we evaluate combina-
tions of α ∈ {0.2, 0.4, 0.6, 0.8, 1.0} and k ∈
{1, 3, 5, 10, 15, 20, 50}, while for beam search,
we consider beam width ∈ {3, 5, 10, 15, 20, 50}.
For sampling with temperature we consider tem-
perature ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}, for top-
k sampling, we use k ∈ {1, 3, 5, 10, 15, 20, 50}
and for top-p (nucleus) sampling we evaluate
p ∈ {0.6, 0.7, 0.8, 0.9, 0.95}, for a total of 60
hyperparameter combinations. We also use the
hyperparameter-free adaptive contrastive search for
comparison, which increase the number of experi-
ments by 3, totaling to 1242 experiments and 2.2
Mio generated stories. Further details are presented
in Table 1.

4.3 Evaluation Metrics

We follow Su and Xu (2022) and use three metrics
to automatically measure the quality the genera-
tions: Diversity, MAUVE, and Coherence.

Diversity. This metric aggregates n-gram repeti-
tion rates:

DIV =
4∏

n=2

| unique n-grams (xcont ) |
total n-grams (xcont ) |

A low diversity score suggests the model suffers
from repetition, and a high diversity score means
the model-generated text is lexically diverse.

MAUVE. MAUVE (Pillutla et al., 2021) score
measures the distribution similarity between the set
of generated text and the set of gold references.

Coherence. Proposed by Su et al. (2022), the
coherence metric is defined as the averaged log-
likelihood of the generated text conditioned on the
prefix text as

Coherence(x̂,x) =
1

|x̂|

|x̂|∑
i=1

log pM (x̂i | [x : x̂<i])

where x and x̂ are the prefix text and the gen-
erated text, respectively; [:] is the concatenation
operation and M is the OPT model (2.7B) (Zhang
et al., 2022). Finally, we apply a smoothed Min-
Max normalization to the coherence values to en-
sure consistency and comparability with Diversity
and MAUVE metrics.

COH =
Coherence −min(Coherence) + 1

max(Coherence)−min(Coherence) + 1

Aggregation. QText
Following a generalization of the F1-score for

three metrics, we use the harmonic mean of Di-
versity, MAUVE, and Coherence as aggregation
measure:

QText =
3

1
DIV + 1

MAUVE + 1
COH

Values close to one indicate high-quality text
generation, while values approaching zero reflect
low-quality outcomes.

Human Evaluation. To evaluate the quality of
the generated text, we consider two critical aspects:
fluency and coherence. A fluent text is written in
grammatical English and has a natural flow (e.g. ex-
cluding unnatural repetition or web formatting). A
coherent text should stay on topic with the prompt
and avoid unnatural topic drift. We provide five
native English speakers with 39 competing continu-
ations for one prompt per dataset, and subsequently
ask them to rank them based on their perceived
quality, for a total of 570 evaluations. Definitions
and instructions for the rating process are shown in
Appendix A.4, Figure 26.

4.4 Datasets
We evaluate our proposed method across three
domains in open-ended text generation: news,
Wikipedia, and stories. For the news domain,
we utilize 2,000 articles from Wikinews; for the
Wikipedia domain, we employ 1,314 examples
from the WikiText-103 dataset (Merity et al., 2016);
and for the stories domain, we employ the Project
Gutenberg split of BookCorpus (1,947 examples;
Zhu et al., 2015). Each example consists of
a prompt paired with a gold-standard, human-
generated continuation for evaluation purposes. For
each prompt, we generate 256 tokens as a contin-
uation. The resulting text is assessed using both
automatic metrics (outlined in Section 4.3 ) and
human scores.
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Models Datasets Metrics Decoding strategy Hyperparameter Values # Experiments
Deepseek Wikitext Coherence Beam search Beam width {3, 5, 10, 15, 20, 50} 7 x 3 x 6 = 126
Falcon2 Wikinews Diversity Contrastive search k {1, 3, 5, 10, 15, 20, 50} 7 x 3 x 7 x 5 = 735
GPT2-XL Book MAUVE α {0.2, 0.4, 0.6, 0.8, 1.0}
Llama3 QText Adaptive contrastive search NA NA 1 x 3 x 1 = 3
Mistralv01 Human Evaluation Sampling with temperature Temperature {0.1, 0.3, 0.5, 0.7, 0.9, 1.0} 7 x 3 x 6 = 126
Mistralv03 Top k sampling k {1, 3, 5, 10, 15, 20, 50} 7 x 3 x 7 = 147
Qwen2 Top p (nucleus) sampling p {0.6, 0.7, 0.8, 0.9, 0.95} 7 x 3 x 5 = 105

Grand Total 1,242

Table 1: Overview of the experimental setup. The total number of experiments was determined by the combinations
of models, datasets, and hyperparameter values explored. Falcon2 (11B) was run on an NVIDIA A100 GPU, while
all other models were evaluated using an NVIDIA GeForce RTX 4090.

5 Results

Automatic Evaluation Below, we present a com-
prehensive interpretation of the results reported
in Table 2. These findings aggregate the perfor-
mance of various decoding strategies and their as-
sociated hyperparameters across multiple models
and datasets, taking into account weighted averages
to reflect dataset size differences. The reported
metrics include coherence, diversity, MAUVE, and
QText. Notably, coherence has a theoretical max-
imum of 0, while diversity, MAUVE, and QText
each have a theoretical maximum of 100. The final
row represents human-produced text, with refer-
ence values of approximately -2.74 for coherence,
93.28 for diversity, 100 for MAUVE, and 87.37 for
QText, serving as an aspirational benchmark for
automated methods.

Beam search yields coherence values around -
0.55 to -0.72, which are far from the human coher-
ence of -2.74. Its diversity remains low, peaking at
only 12.78 and dropping to 6.17 as the beam width
increases. MAUVE and QText scores under beam
search never exceed 25.27 and 21.50, respectively,
well below the human benchmarks.

Contrastive search achieves its best performance
with moderate values of k and α, such as (α =
0.8, k = 3) or (α = 0.6, k = 10). However, com-
binations involving higher values of k and α tend
to reduce coherence to levels considerably below
human-like values, sometimes reaching as low as
-5.76. In contrast, smaller values of the degenera-
tion penalty, such as α = 0.2, are associated with
very high coherence but extremely low diversity, re-
sembling the performance characteristics of beam
search. Even with optimal hyperparameter settings,
achieving coherence and diversity levels compara-
ble to human performance remains a challenge.

Adaptive contrastive search (hyperparameter-
free) achieves strong overall performance. It
reaches a diversity of 93.94 and a QText of 85.72,

both near human levels. Its coherence is -1.68,
which is closer to human than many contrastive
search configurations, but still not ideal. MAUVE
is 79.61, which is better than basic beam search but
not as high as the best stochastic approaches.

Sampling with temperature exhibits a trade-off
between coherence and diversity that becomes
more favorable at higher temperatures. At a temper-
ature of 1.0, for instance, diversity reaches 93.27,
MAUVE is 91.17, and QText is 83.30, all nearing
human references. Coherence is -3.07, which is
closer to human coherence than beam search or
low-temperature sampling.

Top-k sampling improves diversity and MAUVE
as k grows. At k = 10, diversity is 77.10, MAUVE
is 85.80, and QText is 80.28, all improved over
lower k values. However, coherence remains
around -1.90, which is not close enough to the
human target.

Top-p (nucleus) sampling offers strong perfor-
mance when p = 0.95. At this value, diversity is
87.60, MAUVE is 90.05, and QText is 85.31, all
close to human scores. Coherence at this setting is
-2.21, which is closer to the human reference than
many other strategies. Figure 1 illustrates this ef-
fect over the distribution of coherence and diversity
for Mistralv03 outputs.

No single decoding strategy achieves human-
level scores across all metrics; however, certain
configurations exhibit performance closely aligned
with human references. Notable examples include
top-p sampling at p = 0.95, adaptive contrastive
search, and sampling with temperature at t = 1.0,
which emerge as particularly effective methods.

These findings reflect aggregated performance
across three datasets and seven models. Detailed
results for individual models and configurations are
presented in Figures 3 through 24 and discussed
in Section 6. Additionally, Figure 2 highlights
the top five best- and worst-performing combina-
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Automatic Evaluation
Type Strategy Configuration Coherence Diversity MAUVE QText

Deterministic

Beam search
(Beam width)

3 -0.72 12.78 25.27 21.50
5 -0.69 12.14 22.01 19.92
10 -0.64 10.52 18.33 17.24
15 -0.62 9.40 16.37 15.59
20 -0.60 8.52 14.85 14.26
50 -0.55⋆ 6.17 9.94 10.19

Contrastive search
(α, k)

(0.2, 1) -0.75 9.90 24.21 18.25
(0.2, 3) -0.95 20.73 42.30 33.95
(0.2, 5) -0.98 22.75 44.22 36.44
(0.2, 10) -1.03 24.70 47.12 39.13
(0.2, 15) -1.07 25.82 47.85 40.32
(0.2, 20) -1.12 26.48 48.68 41.12
(0.2, 50) -1.28 29.18 52.06 44.38
(0.4, 1) -0.75 9.90 24.15 18.25
(0.4, 3) -1.24 42.11 59.86 54.02
(0.4, 5) -1.39 49.02 61.35 57.98
(0.4, 10) -1.61 55.31 62.70 59.77
(0.4, 15) -1.81 58.85 63.90 61.28
(0.4, 20) -1.96 61.62 63.44 62.15
(0.4, 50) -2.16 70.77 69.42 70.08
(0.6, 1) -0.78 10.68 25.54 19.60
(0.6, 3) -1.44 62.11 70.46 68.52
(0.6, 5) -1.62 69.89 73.76 72.76
(0.6, 10) -1.99 76.58 72.12 73.28
(0.6, 15) -2.29 78.88 66.85 70.21
(0.6, 20) -2.51 80.03 59.57 65.73
(0.6, 50) -3.39 84.08 29.30 38.70
(0.8, 1) -0.75 9.87 23.94 18.18
(0.8, 3) -1.97 77.12 74.94 74.07
(0.8, 5) -2.56 81.38 62.02 66.39
(0.8, 10) -3.51 84.52 29.78 40.97
(0.8, 15) -4.03 85.84 17.31 23.74
(0.8, 20) -4.34 86.77 14.52 18.48
(0.8, 50) -5.13 87.85 12.21 12.96
(1.0, 1) -0.75 9.85 24.05 18.18
(1.0, 3) -3.11 83.95 58.92 63.33
(1.0, 5) -3.93 85.42 29.09 37.63
(1.0, 10) -4.73 86.96 13.36 17.28
(1.0, 15) -5.03 87.51 11.51 12.76
(1.0, 20) -5.20 87.62 11.31 11.69
(1.0, 50) -5.76 87.96 11.28 10.85

Adaptive contrastive search - -1.68 93.94⋆ 79.61 85.72⋆
(Hyperparameter-free)

Stochastic

Sampling with temperature
(t)

0.1 -0.76 10.56 25.19 19.26
0.3 -0.92 17.16 37.28 28.97
0.5 -1.20 34.88 60.67 50.63
0.7 -1.70 66.07 82.85 75.78
0.9 -2.48 88.38 90.85 84.58
1 -3.07 93.27 91.17⋆ 83.30

Top-k
(k)

1 -0.76 10.10 24.93 18.66
3 -1.41 50.04 72.75 63.86
5 -1.66 65.69 81.48 74.82
10 -1.90 77.10 85.80 80.28
15 -1.98 77.67 84.40 78.65
20 -2.05 79.20 84.21 78.86
50 -2.23 79.85 85.33 78.32

Top-p (nucleus)
(p)

0.6 -1.36 46.66 72.96 62.86
0.7 -1.56 61.38 80.80 73.60
0.8 -1.78 74.50 85.84 80.76
0.9 -2.05 84.09 89.18 84.50
0.95 -2.21 87.60 90.05 85.31

Reference Human - -2.74 93.28 100.00 87.37

Table 2: Aggregated automatic evaluation results: Average scores across all seven models and all three datasets.
Weighted averages are used, accounting for the different sample sizes in the datasets. The highest scores per strategy
are highlighted in bold, with the best results overall additionally marked by a ⋆.



9998

Figure 2: Top five and bottom five decoding strategies, based on QText averages for each dataset. The highest-
ranking strategies generally strike a balance between coherence and diversity, while the lowest-ranking strategies
tend to overemphasize one at the expense of the other—such as beam search, which favors coherence, or contrastive
search with α = 1.0 and k = 50, which prioritizes diversity.

tions of models and decoding strategies based on
QText. A notable observation is the frequent ap-
pearance of older and smaller architectures, such as
GPT2-XL (1.5B) with configurations like CS_(0.6,
5) or CS_(0.8, 3), among the top performers. This
underscores the importance of hyperparameter se-
lection over model size. Conversely, the lowest-
performing configurations consistently overempha-
sized a single metric, such as beam search prior-
itizing coherence or contrastive search with high
α values emphasizing diversity. The inclusion of
much larger architectures, such as Falcon2 (11B),
among the lowest-performing configurations fur-
ther indicates that model size alone does not guar-
antee superior performance. Case studies demon-
strating the impact of hyperparameter choices on
text generation are provided in Tables 4, 5, and 6.

Human Evaluation Table 3 summarizes the top
five and bottom five decoding strategies as ranked
by human evaluation scores. The findings reveal a
strong alignment between humans and QText for
high-performing strategies across datasets.

Specifically, in the book dataset, strategies such
as ACS and CS_(0.4, 10) achieve high human
scores (97.5), which correspond closely to their
QText values (86.03 and 78.31, respectively). Sim-
ilarly, in the wikinews and wikitext datasets, strate-
gies like CS_(0.6, 10) and CS_(0.6, 5) achieve

high human ratings (97.5) and strong QText val-
ues (87.48 and 86.84, respectively). For lower-
performing strategies, discrepancies between hu-
mans and QText are observed. In the book dataset,
the strategy CS_(0.2, 50) receives a low human
score (5.0) but a comparatively higher QText value
(44.27). Nevertheless, both human evaluations and
QText consistently indicate that strategies overly
prioritizing diversity, such as CS_(1.0, 50), or
coherence, such as BS_50, tend to produce low-
quality text generations.

To examine the broader alignment between au-
tomatic metrics with human preferences, we an-
alyze their correlation. Figure 25 illustrates that
human scores have moderate, statistically signifi-
cant positive correlations with QText and MAUVE.
Coherence demonstrates a lower but statistically
significant positive correlation, while diversity ex-
hibits a very weak and non-significant correlation.
These findings highlight limitations of automatic
metrics, consistent with previous work by Su and
Collier (2023) and Garces-Arias et al. (2024).

6 Practical Recommendations

Based on the results of our study, we provide the
following practical recommendations for selecting
decoding strategies in open-ended text generation.
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Dataset Model Decoding Strategy Human Score QText

Top five decoding methods per dataset

book Mistralv03 CS_(0.4, 10) 97.50 78.31
GPT2-XL ACS 97.50 86.03
Mistralv03 CS_(0.4, 20) 95.00 82.30
Mistralv03 TopP_0.95 95.00 85.97
Mistralv03 TopP_0.95 95.00 85.97

wikinews Mistralv03 CS_(0.6, 10) 97.50 87.48
Mistralv03 CS_(0.4, 10) 95.00 88.12
Mistralv03 TopK_50 95.00 87.10
GPT2-XL ACS 92.50 86.31
Mistralv03 TopP_0.95 92.50 87.19

wikitext GPT2-XL ACS 97.50 84.81
Mistralv03 CS_(0.6, 5) 97.50 86.84
Mistralv03 TopP_0.95 97.50 83.22
Mistralv03 TopK_50 95.00 84.89
Mistralv03 CS_(0.4, 20) 95.00 81.13

Bottom five decoding methods per dataset

book Mistralv03 CS_(0.8, 50) 2.50 5.13
Mistralv03 CS_(1.0, 50) 2.50 3.10
Mistralv03 CS_(0.2, 50) 5.00 44.27
Mistralv03 CS_(0.8, 10) 5.00 9.45
GPT2-XL CS_(0.8, 50) 5.00 5.13

wikinews Mistralv03 BS_20 2.50 26.08
Mistralv03 BS_50 5.00 17.41
Mistralv03 CS_(0.8, 50) 5.00 6.73
Mistralv03 CS_(1.0, 5) 5.00 8.99
Mistralv03 CS_(0.8, 50) 5.00 6.73

wikitext Mistralv03 CS_(1.0, 50) 2.50 9.80
Mistralv03 CS_(1.0, 5) 5.00 29.25
Mistralv03 CS_(0.8, 10) 5.00 38.43
Mistralv03 CS_(1.0, 50) 5.00 9.80
Mistralv03 CS_(0.8, 50) 5.00 13.19

Table 3: Top and bottom five models and decoding
strategies for human evaluators. Results indicate a mod-
erate, statistically significant positive correlation based
on 570 evaluations, rPearson = 0.64 (p-value < 2.2e-16).

Deterministic Strategies Beam search is gener-
ally not recommended for open-ended text genera-
tion tasks due to its propensity to produce outputs
that fail to capture the diversity of human language.
As illustrated in Figure 4, our findings demonstrate
consistently low performance across all models and
beam width settings when compared to human ref-
erences across four evaluation metrics. A notable
trend is that smaller beam widths (e.g. 3 or 5)
tend to yield better results; however, even at these
settings, the performance disparity remains sub-
stantial, particularly concerning MAUVE scores
and diversity measures. While the Falcon2 (11B)
model emerged as the best performer in this task,
it still underperforms across all four metrics.

Sampling Strategies Sampling with temperature
is highly sensitive to its temperature hyperparame-
ter. Figure 20 illustrates that performance increases
monotonically for all models and metrics as tem-
perature rises in t ∈ [0.1, 1.0]. The best results
are consistently observed at temperatures of 0.9 or

1.0. Both Falcon2 and Qwen2 perform best overall,
though all models achieve strong results at higher
temperatures. Larger models do not show a clear
advantage over smaller ones. Specifically, GPT2-
XL (1.5B) might outperform Llama3 (8B) under
the same hyperparameter configuration.

For top-k sampling, performance is also sensi-
tive to the truncation hyperparameter k. As shown
in Figure 22, small k values (e.g., k = 3, 5) pro-
duce lower performance, while medium to larger
k values (e.g., k = 10, 15, 20, 50) yield higher per-
formance. The highest results occur at k = 20 or
k = 50, and performance similar to human refer-
ences is achievable with k = 10 or k = 15. Qwen2
reaches the best overall performance, but most mod-
els perform well at higher k values. Llama3 is an
exception, showing inconsistent performance and
lower scores at higher k values. Similar to the
temperature results, larger models do not reliably
outperform smaller ones. Specifically, GPT2-XL
(1.5B) performs as well as or better than Llama3
(8B), and Qwen2 (7B) outperforms Falcon2 (11B).

For top-p (nucleus) sampling, Figure 24 shows
that for all models, performance increases mono-
tonically as p moves from 0.6 to 0.95. The best
results occur at p = 0.9 or p = 0.95, consistent
with previous work by Holtzman et al. (2019). Fal-
con2 and Qwen2 achieve the highest overall perfor-
mance, but all models perform well at these higher
values. As with the other sampling strategies, larger
models do not consistently dominate smaller ones.

It is worth mentioning that combinations of vari-
ous stochastic decoding strategies are possible, e.g.
first adjusting temperature values before truncation
with hyperparameters k or p. However, this type of
analysis lies beyond the scope of the present work.

Contrastive Strategies Figures 6 through 17 il-
lustrate that optimal Contrastive Search perfor-
mance depends on balancing the hyperparame-
ters α (degeneration penalty) and k (truncation
length). The best overall combination was observed
at α = 0.6 and k = 5, which aligns with previous
work by Su et al. (2022). Other settings of (α, k)
such as (0.8, 3), (0.4, 20), and (0.4, 50), also main-
tained a suitable trade-off between diversity and
coherence, performing similar to human references.
Very low and very high values of α reduced per-
formance, regardless of the choice of k. Specifi-
cally, α = 0.2 produced results similar to beam
search, with low diversity and high coherence. In
contrast, α = 1.0 generated outputs with high di-
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versity but very low coherence. These findings
align with the work by Su and Xu (2022). Under
balanced conditions, all models except Llama3 ap-
proached human-level performance. The Llama3
model favored coherence but showed limited diver-
sity, indicating degeneration and suggesting that it
may be unsuitable for open-ended generation with
this decoding strategy.

We also evaluated the hyperparameter-free Adap-
tive Contrastive Search. Figure 18 shows that al-
though its MAUVE score is moderate, it achieves
a balance of diversity and coherence that produces
QText values closer to human references. As in-
dicated in Table 2, it attains the highest diversity
(93.95%) and the highest QText score (87.37%)
among all tested decoding strategies and hyperpa-
rameter combinations. However, its outputs tend
to be more coherent than those produced by hu-
mans, a pattern observed in most of the examined
hyperparameter configurations.

General recommendations It is important to
note that relying solely on automatic evaluation
metrics may lead to incomplete assessments of text
quality. The results presented here indicate that
current automatic metrics do not fully capture hu-
man preferences. Previous studies (Garces-Arias
et al., 2024) have shown that certain decoding meth-
ods, such as CS-based DoubleExp, achieve high
scores on metrics like MAUVE but are consistently
rejected by human evaluators.

Additionally, stylistic diversity should be con-
sidered when choosing decoding strategies. For
example, creative writing tasks may benefit from
strategies encouraging diversity and moderate co-
herence, supporting narrative variation. In con-
trast, tasks focused on factual accuracy and coher-
ence, such as Wikipedia or news generation (as
in Wikinews), may require tighter control over co-
herence. Section A provides detailed performance
analyses across different settings, offering further
guidance on which strategies yield the best results
for each dataset type.

7 Conclusion

Decoding strategies for large language models are
a crucial yet often underexamined aspect of open-
ended text generation. This study presents a de-
tailed analysis of how hyperparameter selection
across various decoding strategies substantially in-
fluences the quality of generated text. The findings
highlight the necessity of maintaining a balance

between coherence and diversity, as strategies that
heavily prioritize one tend to underperform overall.
Through extensive sensitivity analysis, we show
that the choice of decoding method and its asso-
ciated hyperparameters can impact text quality as
much as, if not more than, model size.

We provide practical guidelines for decoding
strategies, recommending balanced approaches
such as contrastive search with moderate values
of α and k, alongside hyperparameter-free meth-
ods like adaptive contrastive search. While sam-
pling methods, such as top-k and nucleus sampling,
can produce high-quality text, they exhibit greater
variability and demand careful tuning.

Human evaluations demonstrate a moderate cor-
relation with automatic metrics, pointing to the
need for more reliable and robust evaluation tools.
Current metrics sometimes prioritize diversity over
coherence, which may not always align with hu-
man judgment. Our findings support the growing
consensus that more nuanced metrics are required
to better capture the trade-offs considered by hu-
man evaluators when assessing text quality. These
insights aim to assist practitioners in understand-
ing the critical role of hyperparameter selection in
open-ended text generation.

Limitations

While this study provides insights into how hy-
perparameters affect the quality of generated text,
it also has limitations. First, the impact of our
findings on models that have undergone supervised
fine-tuning (SFT) remains unexplored. Future work
could investigate how these models perform under
similar experimental conditions.

Moreover, the analysis was conducted exclu-
sively in English, leaving the generalizability to
multilingual settings untested. Previous studies
(Su and Collier, 2023; Garces-Arias et al., 2024)
suggest that these findings may generalize to other
languages, but further investigation is required.

Finally, this study focuses on analyzing the sensi-
tivity of commonly used automatic metrics, which
are inherently influenced by the models employed
in the evaluation process. For example, coherence
is assessed using the OPT 2.7B model (Zhang et al.,
2022), and MAUVE is computed using GPT-2-
based embeddings. The potential biases introduced
by these model choices have not been fully ex-
plored, and addressing this in future research may
offer valuable insights.
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A Appendix

A.1 Case Studies

Prompt "The atmosphere dripped with emotion. Even Sola, the 13-year old, caught the current. Her eyes,
fixated on the mother-son scene",

Beam search (10) "in front of her, welled up with tears.

’I’m so proud of you,’ the mother said.

’I’m so proud of you,’ the son said.

’I’m so proud of you,’ the mother said.

’I’m so proud of you,’ the son said... (text continues)"
Contrastive search (0.6,
10)

"unfavor-

ablc: 0.5pt;

\baselineskip=1pt ... (text continues)"
Contrastive search (1.0,
50)

", were moist.

’I’m sorry, Mama,’ the boy said.

’I’m sorry too, son,’ the mother replied.

’I’m sorry for not being a good son. I’m sorry for not being there for you... (text continues)"
Adaptive contrastive
search

", shimmered with tears. A few minutes later, I was on the roof of the school, peering through binoculars
to see what was happening down below. In the distance, I could see the silhouettes of a number of school
buses, their windows blackened by fire... (text continues)"

Sampling with tempera-
ture (1)

"unfolding before her, darted from one to the other, but she could not see it. Not really.

’You’re not my son,’ the mother spoke, her voice strong in spite of the tears rolling down her
cheeks... (text continues)"

Top-k (50) "reflected a desire to be a mother. Her heart was full of love for her mother. She felt the mother’s pain.
She had lost her own mother to cancer.

A 13-year-old, a 24-year-old, and a 40-year-old stood in the center of the church... (text contin-
ues)"

Top-p (0.9) "were shining with silent approval. She had seen something unusual. She had witnessed an act of parental
care. The son was trying to calm his mother. He spoke words of assurance; he told her things would work
out... (text continues)"

Human ", were wide with wonder.

’Mommy, why is he crying?’ she asked softly.

’It’s okay, Sola. It’s okay. Don’t worry,’ her mother replied... (text continues)"

Table 4: Case Study: Comparison of multiple decoding strategies for a prompt taken from the Book corpus. Beam
search exhibits a repetitive behavior, while contrastive search generates erratic continuations for some of the
hyperparameter choices.
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Prompt "Two French journalists kidnapped on Wednesday north-east of the capital Kabul are believed to
be in good health, although the condition of their three Afghan assistants is unknown.",

Beam search (10) "Two French journalists kidnapped on Wednesday north-east of the capital Kabul are believed to be in
good health, although the condition of their three Afghan assistants is unknown.

Two French journalists kidnapped on Wednesday north-east of the capital Kabul are believed to
be in good health, although the condition of their three Afghan assistants is unknown... (text continues)"

Contrastive search (0.6,
10)

"Sylvain Dufoix and Nicolas Hénin of Canal+ were abducted by gunmen in broad daylight, along a road
that connects Taloqan, the capital of Takhar province, 200 kilometers (125 miles). A spokesman for
President Hamid Karzai condemned the ’brutality and barbarianism of terrorists who target civilians.’ ...
(text continues)"

Contrastive search (1.0,
50)

"Reporters without Borders (RSF) condemns the ’barbaric’ abduction of the two reporters and their
Afghan assistants, and calls on the Taliban to release them immediately.

’Two years after the murder of seven French journalists in Mali and five years after the killing
of the American journalist James Foley by IS, the world’s media are once again being targeted with this
barbaric kidnapping.’ ... (text continues)"

Adaptive contrastive
search

"French President Nicolas Sarkozy said on Thursday that he had been in contact with the Taliban, who
have claimed responsibility for the kidnapping.

’I have asked the Taliban to release the hostages,’ Sarkozy said. ’I have asked the Taliban to
release the hostages unharmed.’ ... (text continues)"

Sampling with tempera-
ture (1)

"French President Nicolas Sarkozy has confirmed that two French journalists kidnapped in northern
Afghanistan were in good health, although he rejected the Taliban’s call for the French government to
withdraw its troops from Afghanistan.

’They are in good health,’ Sarkozy said, speaking in New Delhi. ’We are doing everything to
ensure their return.’ ... (text continues)"

Top-k (50) "The two French journalists, Nicolas Hénin and Edouard Elias, were kidnapped by gunmen in the Tagab
district of Kapisa province, north-east of Kabul, on Wednesday.

Their Afghan assistants, who were also kidnapped, are believed to be in poor health, according
to a statement from the French foreign ministry. ... (text continues)"

Top-p (0.9) "The two French journalists, Nicolas Hénin and Edouard Elias, were kidnapped by gunmen in the Tagab
district of Kapisa province, north-east of Kabul, on Wednesday.

Their Afghan assistants, who were also kidnapped, are believed to be in poor health, according
to a statement from the French foreign ministry. ... (text continues)"

Human "France’s foreign ministry said in a statement on Thursday that the three had been ’kidnapped by armed
individuals who took them from their hotel in Herat province at gunpoint.’ Afghan President Ashraf
Ghani’s spokesman Aimal Faizi said a helicopter had been sent to pick up the journalists ... (text
continues)"

Table 5: Case Study: Comparison of multiple decoding strategies for a prompt taken from the Wikinews corpus.
Beam search exhibits a repetitive behavior.
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Prompt "Headlam served as Officer Commanding North @-@ Western Area in 1946, and as Director of
Training from 1947 to 1950. In 1950 2̆013 51,",

Beam search (10) "he was Commandant of the Royal Military Academy Sandhurst. From 1951 to 1953, he was Deputy
Chief of the Imperial General Staff. From 1953 to 1955, he was Chief of the Imperial General Staff...
(text continues)"

Contrastive search (0.6,
10)

"Headlamexercised command responsi"

Contrastive search (1.0,
50)

"he was the Officer Commanding the 1st Battalion, The Royal Ulster Rifles. He was promoted to Brigadier
in 1951, and served as the Director of Army Education from 1951 to 1954... (text continues)"

Adaptive contrastive
search

"he was Commandant of the Royal Military Academy, Sandhurst, and from 1951 to 1953, he was Deputy
Chief of the Imperial General Staff. From 1953 to 1955, he was Chief of the Imperial General Staff...
(text continues)"

Sampling with tempera-
ture (1)

"he served as Commander, 1st Battalion, Royal Canadian Regiment. In 1951–53, he was Chief of Staff of
Canadian Army Staff, and in 1953–55, he was responsible for the reorganization of the Canadian Army
Staff as Director of Operations... (text continues)"

Top-k (50) "he served as the Commanding Officer of the 1st Battalion of the Nigerian Regiment. Headlam was
a member of the first intake of the Nigerian Military School in 1933. He attended the Royal Military
College, Sandhurst in 1935... (text continues)"

Top-p (0.9) "he was Commandant of Depot @-@ Training, and the next year was Deputy Chief of @-@ Staff Training.
Headlam returned to the Far East, serving as Commander, Australian Troops on the Malay Peninsula from
1952 to 1954... (text continues)"

Human "he was Director of Operations and Intelligence, and in 1951–54, Commander of the 1st Division, which
was the most powerful division in the world. He was appointed Commander-in-Chief of the Army in
1954... (text continues)"

Table 6: Case Study: Comparison of multiple decoding strategies for a prompt taken from the Wikitext corpus.
Beam search exhibits a repetitive behavior, while contrastive search and sampling-based strategies generate erratic
continuations for some of the hyperparameter choices.
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A.2 Performance per Model, Dataset and Decoding Strategy

Remark: In the following, we exclude Mistralv01 for visualization purposes, as its behavior closely
mirrors that of Mistralv03, which employs the same architecture but was trained with additional data.

Figure 3: Distribution of metric values per model, by using a Beam Search decoding strategy.

Figure 4: Effect of beam width on metric behavior.
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Figure 5: Distribution of metric values per model, by using a Contrastive Search decoding strategy.

Figure 6: Effect of α (fix) and k on metric behavior (model Deepseek visualized).
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Figure 7: Effect of k (fix) and α on metric behavior (model Deepseek visualized).

Figure 8: Effect of α (fix) and k on metric behavior (model Falcon2 visualized).
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Figure 9: Effect of k (fix) and α on metric behavior (model Falcon2 visualized).

Figure 10: Effect of α (fix) and k on metric behavior (model GPT2-XL visualized).
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Figure 11: Effect of k (fix) and α on metric behavior (model GPT2-XL visualized).

Figure 12: Effect of α (fix) and k on metric behavior (model Llama3 visualized).
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Figure 13: Effect of k (fix) and α on metric behavior (model Llama3 visualized).

Figure 14: Effect of α (fix) and k on metric behavior (model Mistralv03 visualized).
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Figure 15: Effect of k (fix) and α on metric behavior (model Mistralv03 visualized).

Figure 16: Effect of α (fix) and k on metric behavior (model Qwen2 visualized).
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Figure 17: Effect of k (fix) and α on metric behavior (model Qwen2 visualized).

Figure 18: Distribution of metric values per model, by using an Adaptive Contrastive Search decoding strategy, here
we report results for GPT2-XL only.
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Figure 19: Distribution of metric values per model, by using a Sampling with temperature decoding strategy.

Figure 20: Effect of temperature on metric behavior, visualized by model.
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Figure 21: Distribution of metric values per model, by using a Top-k Sampling decoding strategy.

Figure 22: Effect of k on metric behavior, visualized by model.
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Figure 23: Distribution of metric values per model, by using a Top-p Nucleus Sampling decoding strategy.

Figure 24: Effect of p on metric behavior, visualized by model.
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A.3 Correlation of Human evaluation and Automatic metrics

Figure 25: Correlation between human judgments and automatic metrics. Human scores show moderate, statistically
significant positive correlations with QText and MAUVE. Coherence shows a low, statistically significant positive
correlation, while Diversity exhibits a very weak correlation that is not statistically significant.
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A.4 Human Evaluation Form

Figure 26: Human evaluation form, including general instructions and definitions for the evaluation criteria.
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