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Abstract

Scaling automatic evaluation of multilingual
text generation of LLMs to new tasks, domains,
and languages remains a challenge. Traditional
evaluation on benchmark datasets carries the
risk of reference data leakage in LLM train-
ing or involves additional human annotation
effort. The alternative strategy of using an-
other LLLM as a scorer also faces uncertainty
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about the ability of this LLM itself to score
non-English text. To address these issues, we
propose an annotation-free cross-lingual evalu-
ation protocol for multilingual text generation.
Given an LLM candidate to be evaluated and a
set of non-English inputs for a particular text
generation task, our method first generates En-
glish references from the translation of the non-
English inputs into English. This is done by an
LLM that excels in the equivalent English text
generation task. The non-English text gener-
ated by the LLM candidate is compared against
the generated English references using a cross-
lingual evaluation metric to assess the ability
of the candidate LLM on multilingual text gen-
eration. Our protocol shows a high correlation
to the reference-based ROUGE metric in four
languages on news text summarization. We
also evaluate a diverse set of LLMs in over 90
languages with different prompting strategies
to study their multilingual generative abilities.

1 Introduction

Large language models (LLMs) such as GPT-4
(OpenAl, 2023) have shown remarkable text gener-
ation capabilities and have been useful for tasks like
text summarization (Pu et al., 2023; Goyal et al.,
2022), question answering (Zhao et al., 2023), and
text simplification (Feng et al., 2023). However,
they have been predominantly trained on English
corpora (Brown et al., 2020; Touvron et al., 2023)
and benchmarked on English datasets. Generally,
LLMs are not able to replicate similar success in
other languages (Lai et al., 2023; Zhang et al., 2023;
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prompt

Figure 1: Proposed cross-lingual evaluation protocol.

Ahuja et al., 2023). Moreover, comparative studies
(Ahuja et al., 2024) also reveal a substantial perfor-
mance gap between proprietary and open-source
LLMs in other languages.

LLMs are being increasingly trained on multi-
lingual data and claim multilingual text generation
capabilities (Jiang et al., 2024). This necessitates
reliable methods of automatic evaluation. How-
ever, multilingual evaluation is often done using
benchmarks dominated by language understand-
ing tasks with limited representation of generation
tasks (Lai et al., 2023; Liang et al., 2020; Asai et al.,
2023) and often only on a handful of languages
(Chen et al., 2022). Moreover, relying on such
benchmarks leads to unfair comparisons due to data
leakage (Zhou et al., 2023) since most LLMs are
pre-trained on massive web-crawled corpora which
may include the references from these benchmarks.
Reference-based evaluation also hinders evalua-
tion on newer tasks and domains due to annotation
needs. The alternative approach is to use an LLM
such as GPT-4 for scoring (Liu et al., 2023). In
addition to the costs, the ability of GPT-4 to judge
itself and other LLMs in other languages remains
unclear. Moreover, LLM-based evaluation exhibits
biases such as preferring longer text and their own
outputs (Zheng et al., 2024; Shen et al., 2023).
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To address these issues, we propose a cross-
lingual evaluation protocol for evaluating multi-
lingual text generation of LLMs without requir-
ing annotated references or LLM-based scoring.
Our protocol (shown in Figure 1) relies on trans-
lating the non-English input text into a reference
language, typically English. An LLM (referred to
as reference LLLM) that is known to have a strong
performance in English (e.g. GPT-4) is used to gen-
erate a reference in English given the English trans-
lation of the non-English input text. The English
translation may be generated using machine trans-
lation (MT). For almost all language directions in
WMT 2023 campaign (Kocmi et al., 2023), it was
concluded that “MT systems produce outputs that
cannot be identified as being worse than the manu-
ally produced references translations”. Moreover,
minor translation errors on the input, especially
fluency errors, are unlikely to affect the reference
quality given the robustness of the reference LLM.

The LLM candidate (referred to as target LLM)
to be evaluated is used to generate the output text
in a specific language given the original input text.
We then make use of neural cross-lingual evalu-
ation metrics to compare this output against the
generated English reference to assess the quality.

We evaluate our protocol by computing corre-
lations (Louis and Nenkova, 2013; Ellouze et al.,
2013) against the de-facto reference-based multi-
lingual ROUGE metric (Lin, 2004). We find that
our protocol closely correlates to it, indicating that
our low-cost, reference-free approach can be an
alternative to reference-based evaluation of multi-
lingual text generation. Furthermore, we use our
method to rank several popular LLMs in several
languages on the same task providing insights into
their multilingual text generation capabilities.

2 Cross-lingual Evaluation Protocol

Our protocol assesses the text generation capability
of the target LLM in a non-English language [ for a
given text generation task. In this task, the LLM is
provided with an input d; in language /. The goal
is to generate the output text h (or hypothesis) in
[ based on d; following the task instructions. Our
evaluation protocol requires two key components:
1) the translation or equivalent of d; in a reference
language, which we consider to be English (d.,,);
and 2) the availability of a reference LLM, such as
GPT-4, known for its strong text generation capa-
bilities in English.

Given d.y, the reference LLM generates an
English reference r., given a suitable prompt.
Finally, we use a neural cross-lingual evaluation
(XE) metric to compare the hypothesis h generated
by the target LLM against the English reference
Ten generated by the reference LLM. We propose
two XE metrics.

1. XE using Sentence Embeddings (XESE):
XESE uses the formulation of the cross-lingual
summarization metric LaSE introduced by Bhat-
tacharjee et al. (2023), originally used to compare
the system-generated summary in one language to
that of the human-written reference in another lan-
guage. The comparison is done using similarity
measurement between sentence embeddings from
a multilingual text representation model.

XESE = SE(h, repn) X LP(h,ren) x LCi(h)

where SE(h,7e,) is inner-product between sen-
tence embeddings of i and r.,. Length Penalty
(LP ) penalizes long hypotheses h compared to
their references r.,, and (2) Language Confidence
(L)) is included for penalizing outputs that are
not in the intended language (.

1 |h] < |ren|+€
exp(1l —

LP(h,7en) = {

\re|:|| —c) otherwise
where e is an offset to account for length differences
(set to 6 based on Bhattacharjee et al. 2023), and
LG is the language confidence that penalizes if h
is not in the expected language [:

1 if argmaxy Piq(l'lh) =1

Piq(l|h), otherwise.

LCy(h) = {
where Pyq(I|h) is the probability predicted by a
language identification (LID) model that the hy-
pothesis h is in the target language [.

The overall system score is the average score
across all hypotheses scores.

2. XE by Translation Quality (XETQ): XETQ
uses MT quality estimation (QE) as the backbone.
QE measures the quality of translated output text
given the original source text. Typically, QE is
done using supervised models that gives a quality
score given the source text and the MT output. In
our protocol, we treat r.,, as the source text and h
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as the MT output for QE. LC; is also incorporated
in the XETQ:

XETQ = QE(h, en) x LC;(h)

LC; is necessary since the underlying QE models
we use are multilingual and the QE score itself does
not penalize if the language of h is different from
the target language. We avoid LP since QE models
implicitly penalize length differences.

Our method does not rely on human-annotated
references in either English or the target language.
However, it requires English translations of the in-
puts which can be obtained automatically via good-
quality MT systems (as shown in Section 4). This
enables the online evaluation of deployed LLMs
on real user inputs as well. The protocol can be
applied to specialized tasks, domains, and a large
number of languages. Moreover, not relying on pre-
existing public benchmarks avoids inflated scores
due to benchmark data leakage (Zhou et al., 2023)
where the references in the benchmark test sets are
included during the pre-training of LLMs. Also,
we use the costly reference LLM only once to cre-
ate one set of English references that can be used
in evaluating the outputs from target LLMs in mul-
tiple languages. This is significantly cheaper com-
pared to using an LL.M-as-a-judge where typically
one or more costly LLM inference calls are made
to score each generated text for all target LLMs
and languages leading to significantly higher costs.

3 Experiments

3.1 Evaluations

We conduct two kinds of evaluation: (1) meta-
evaluation of the XE metrics and (2) comparison of
LLMs using the proposed XE metrics. Both evalua-
tions are done on the news text summarization task.

Meta-evaluation: Firstly, we conduct a meta-
evaluation to assess if our reference-free protocol
can substitute automatic text generation metrics
for scaling multilingual text generation evaluation.
For this purpose, we compute the system-level and
summary-level correlations of XESE and XETQ
against ROUGE-2 (Section 4.1). ROUGE-2 is the
de-facto reference-based summarization metric and
correlates highly with human scores for news sum-
marization (Bhandari et al., 2020). Additional eval-
uation against BLEU (Papineni et al., 2002) is re-
ported in Appendix B.6.

Two levels of correlation are employed: system-
level and summary-level. At the system-level, the
correlation of the ranking of the systems (i.e., tar-
get LLLMs) by a metric M to that of the ranking
produced by ROUGE-2 (R) is computed via Spear-
man’s rank correlation coefficient (p):

651", (rank’, — rank%)?
n(n? —1)

p=1-

where ranki\/l is the rank assigned for the ith sys-
tem by metric M among the m systems.

On the other hand, summary-level correlation
measures the concordance between metric M and
ROUGE-2 (R) in ranking individual summaries
generated by the m systems for the same input j.
We use the Kendall’s rank correlation coefficient
as the correlation statistic which also accounts for
the ties assigned by the metrics. Summary-level
correlation 7 over n inputs is given by:

r= S (MY ML RYRY)
j=1

where M; and R; are the metric score and
ROUGE-2 score for the output generated by the
ith system on the jth input, respectively. 7; is the
Kendall’s tau statistic for the jth input 7; given by:

C; - D,
V(G + D + TGy + D; + TF)

Tj =

where C'; is the number of concordant pairs and D
is the number of discordant pairs. A concordant
pair is when the metrics M and R rank a pair
of outputs (from system ¢ and k, for example)
similarly, i.e. if ./\/l§ < ./\/l;c and R; < R;“ or if
M > M?% and R > RE. Similarly a discordant
pair is when they rank dissimilarly. T]-M and TJR
are the number of ties assigned by M and R,
respectively for the jth input. Ties are neither
considered in the discordant nor concordant pairs.
The correlation statistics are computed using the
nlpstats Python library.

LLM Comparison: Secondly, a comparison of the
multilingual text generation capabilities of popular
LLMs is conducted using our protocol. The results
with XESE are provided in Section 4.2.
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3.2 Datasets

For the meta-evaluation, we require a dataset with
human-written reference summaries in the target
language to compute ROUGE-2. We also require
the corresponding articles in English for comput-
ing XESE and XETQ. Hence, we aligned 100
article-summary pairs from CrossSum (Bhattachar-
jee et al., 2023) in four languages: Arabic (ar),
Spanish (es), Portuguese (pt), and Chinese (zh),
with their corresponding human-written English ar-
ticles. We also use translated articles from each of
these four languages to English using NLLB-3.3B
MT model (NLLB team et al., 2022) to additionally
investigate the applicability of our method to sce-
narios where human translations are unavailable.

For the comparison of various LLMs with XE
metrics, we do not require any human-written sum-
maries. Hence, we use NTREX-128 (Federmann
et al., 2022) dataset containing 123 news articles
aligned across 128 languages including English.
We primarily evaluate the LL.Ms on nine languages:
Arabic (ar), German (de), Spanish (es), French
(fr), Italian (it), Japanese (ja), Korean (ko), Por-
tuguese (pt), and Traditional Chinese (zh). We
further report evaluations on an additional set of 83
languages (in Appendix B.8).

3.3 Maetrics

Proposed XE Metrics: For XESE, we experi-
ment with both LaBSE (Feng et al., 2022) and
SONAR (Duquenne et al., 2023) for computing
sentence embeddings. They support over 100
and 200 languages, respectively. For XETQ, we
experiment with COMETKIWI (Rei et al., 2022,
2023) and xCOMET-XL (Guerreiro et al., 2023) as
the QE model, both supporting over 90 languages.
We use fasttext (Joulin et al., 2016) LID to compute
language confidence. It can predict 176 languages.
GPT-4 is used as the reference LLM for generating
the English summaries given the corresponding
English articles.

Baseline Metrics: We use two baseline metrics
for comparison. (1) G-Eval (Liu et al., 2023) is
a popular LLM-based scoring method that uses
chain-of-thought prompting with GPT-4 to provide
aspect-based scores of summaries. G-Eval scores
four aspects (coherence, consistency, fluency, and
relevance) of a summary on a 1 to 5 scale. We re-
port the correlations of each aspect separately and
the average correlation across all aspects. (2) MT

System-level (p) Summary-level (7)
ar es pt zh |ar es pt zh

G-Eval
(Relevance) 33 .21 .17 .00 | .11 .10 -.01 -.01
(Coherence) 43 21 .19 -10| .07 .10 .02 -.05
(Consistency) | .40 .24 .14 .12 | .13 .19 .04 .08
(Fluency) 31 .21 .19 .16 | .08 .16 .06 .00

Avg. Correl 37 22 17 .04 | .10 .14 .03 .00
MT ROUGEgpr | .64 48 43 -29| .14 .17 .14 .03

XESE [SONAR] 98 90 .76 .88 | .50 .53 .57 .62

XESE [LABSE] 90 93 83 95 | 49 .56 .60 .64
XETQ xcomer) | 98 .74 .67 98 | 47 46 49 .57
XETQ xiwy 88 74 71 98 | 37 48 47 52

using machine-translated inputs
XESEMT [LaBse | .93 .88 .86 .95 | 46 .55 .59 .64
XETQMT xwyy | .91 .76 .67 93 | 42 50 .47 .53

Table 1: Correlation of the metrics against ROUGE-2.

ROUGEGgpr is the ROUGE-2 score of the English
machine translation (MT) of the summaries gener-
ated by the target LLM against the corresponding
GPT-4 generated English reference summaries.

34 LLMs

We evaluate the following open-source in-
struction fine-tuned LLMs which are available
on Huggingface Llama-2-7B-Chat-hf, Llama-2-
13B-Chat-hf, Llama-2-70B-Chat-hf, Mistral-7B-
Instruct-v0.2, Towerlnstruct-v0.1, Gemma-7B-it,
Mixtral-8x7B-Instruct-v0.1, BLOOMZ. Addition-
ally, we evaluate two proprietary LLMs: Ope-
nAl GPT-3.5 (gpt-3.5-turbo-1106), and GPT-4
(gpt-4-1106-preview). We evaluate all LLMs
in a zero-shot setup using prompts with English
instructions (P,,) and with instructions translated
to the target language (P;) (see Appendix A for
prompts and parameters). For meta-evaluation, we
use outputs of open-source LLMs with P;.

4 Results and Discussion

4.1 Meta-Evaluation of Metrics

In Table 1, we report system-level (p) and
summary-level (7) correlations against ROUGE-2.
We find that all variants of XETQ and XESE show
strong system-level correlations against ROUGE
compared to all aspects of G-Eval and also to
MT ROUGEGgpt which employs the same English
GPT-4 generated reference used by XETQ and
XESE. A high system-level correlation indicates
that even without references, XETQ and XESE can
closely match the ranking of LLMs produced by
ROUGE. This shows that the proposed XE metrics
are valuable alternatives to reference-based auto-
matic multilingual evaluation measures. While MT
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ar de es fr it ja ko pt zh
Pen Pl Pen Pl Pen Pl Pen Pl Pen Pl Pen Pl Pen Pl Pen Pl Pen Pl
Llama-2-7B-Chat .05 48 09 42 23 49 .11 39 .18 45 .05 .30 .10 49 .16 .50 .07 .30
Mistral-7b-Instruct-v0.2 .64 .60 .33 35 27 27 24 30 25 31 .22 21 54 46 .32 33 .09 .07
Tower-Instruct-v0.1 21 54 01 27 04 24 04 19 05 23 23 32 53 .66 .03 25 .08 .21
Gemma-7B-it S8 53 66 .60 .60 .61 .58 .61 .S58 57 46 44 .65 62 .61 .65 41 49
Llama-2-13B-Chat 36 53 50 59 57 65 53 57 S8 58 41 47 51 58 .53 .60 35 .38
Llama-2-70B-Chat 09 56 41 53 52 58 46 59 50 58 27 45 24 61 .52 57 .16 .37
Mixtral-8x7b-Instruct 69 65 46 48 33 36 35 31 38 38 36 27 64 .62 .35 41 .18 .11
BLOOMZ S3 51 30 36 54 55 51 51 43 49 31 28 33 .19 52 53 41 41
GPT-3.5 .64 68 .69 .65 .70 .67 .67 .66 .70 .61 .53 51 .65 .67 .67 .67 .50 22
GPT-4 J2 61 67 50 62 56 57 46 64 51 53 .60 .70 .71 59 56 40 .29

Table 2: XESE scores using prompts with instructions in English (P.,,) and in the target language (P;).

ROUGEGgpr is also annotation free, its correlation
is lower compared to our XE metrics. This is pos-
sibly due to its reliance on the MT of the outputs
and the discrete n-gram matches, leading to a pro-
nounced coverage bias. On the other hand, XE
metrics measure the proximity to the English GPT-
4 generated summary in the continuous space and
do not rely on MT.

Ranking at the summary-level is harder than ag-
gregated system ranking and the correlation values
tend to be lower (Novikova et al., 2017; Peyrard
et al., 2017). Nonetheless, XE metrics perform
better at the summary level also. XESE [LABSE]
performs best on average compared to all other
XE metrics in both system and summary-level
correlations. XETQ [KIWI] performs on par to
XETQ [xCOMET], except in Arabic. We use XESE
[LABSE] for subsequent LLM comparisons (referred
as XESE, henceforth).

We also compute correlation of the XE metrics
when the reference summaries are generated by
GPT-4 from machine-translated English articles
(XESEMT and XETQMT in final two rows of Table
1). Similar to the case with human-written English
articles, we observe a strong correlation to ROUGE-
2. Since MT is used only on the input side and as
long as meaning is preserved, minor translation
inaccuracies or lack of native-like fluency, if any,
does not seem to impact the metrics’ usefulness.

4.2 Comparison of LLMs

We evaluate several LLMs on nine languages using
the XESE metric in Table 2 using prompts with
English instruction (P, ) and with instructions in
the corresponding target language (P;). Additional
evaluations on 83 other languages are in Appendix
B. Gemma achieves the best performance (except
on ar) among all open-source models despite be-
ing comparatively small (7B parameters). This can
be attributed to its larger vocabulary that covers

multiple languages despite not being trained with a
notable quantity of multilingual corpora (Gemma
Team, 2024). This finding holds even on the ex-
tended set of languages in Section B.8 (Tables 10
and 11). Unsurprisingly, high scores are also ob-
served for Mixtral-8x7b (Jiang et al., 2024) which
is a large mixture-of-experts model pre-trained with
multilingual data. Despite the multilingual pre-
training and size, BLOOMZ is not competitive with
these LLMs. On ko with P;, TowerInstruct-7B, an
LLM fine-tuned for MT including ko, performs
the best. Among the proprietary models, GPT-3.5
is competitive with GPT-4 and observes improve-
ments, particularly in Latin-based languages. We
also find that LLMs in general, except for GPT-4,
tend to produce better scores with the P; strategy
compared to P.,,. In P;, the entire prompt is in
a single language and this may suit the language
modeling loss of next-word prediction better. This
peculiarity of GPT-4 possibly indicates English
instructions being used during fine-tuning on mul-
tilingual tasks.

5 Conclusion

We propose a simple protocol for multilingual text
generation evaluation of LLMs by cross-lingually
comparing the output generated by LLMs with a
reference output generated by another LLM in En-
glish. Our approach can be extended to special-
ized text generation tasks, custom domains, and
low-resource languages without annotations by hu-
mans. We propose two metrics for the cross-lingual
evaluation, XETQ and XESE. Our study of their
correlations to automatic metrics in multiple lan-
guages shows that the protocol can be used in place
of reference-based evaluation. We also evaluate
several popular LLMs on a large set of languages
highlighting their capabilities.
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Limitations

We identify the following limitations in this work:

* XESE and XETQ metrics require the underly-
ing model to support the target language.

* Due to cost, time, and license restrictions, we
were unable to add evaluations of larger and
more recent LLMs. The scope of the paper is
limited to the applicability of the evaluation
method which can be easily applied to evalu-
ate text generation ability of any new LLM.

* Our approach has been only tested on the news
summarization task. However, the summariza-
tion results are encouraging and show that our
approach can be used as a replacement for
reference-based metrics.

* We showed that our protocol can be used in
place of reference-based automatic metrics
like ROUGE. However, with human annota-
tors in other languages, meta-evaluation can
be done against human ratings instead.

* Our meta-evaluation is also limited to four
languages due to computational costs. The
baseline G-Eval is particularly costly since it
involves running GPT-4 four times for a single
example.
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A Prompts and Parameters

We use the following English-instruction prompt
for the summarization task in the respective lan-
guage:

Summarize the text concisely using only the
{{language}} language:

TEXT: {{text}}

SUMMARY :

We translate the above prompt to the nine lan-
guages using a high-quality commercial MT engine
and conduct evaluation with the translated prompts
in the corresponding language.

For generating reference summaries in English
given the translated English input, we use the fol-
lowing prompt with GPT-4.

Generate a concise summary in two sentences or
fewer for the text: {{text}}
Summary:

For generating the machine translated English
inputs and for computing the baseline metric M'T-
ROUGE-G metric, we employ an MT pipeline with
open-source tools and models. We split the ar-
ticle into sentences using PySBD! and translate

"https://github.com/nipunsadvilkar/pySBD

using the NLLB 3.3B using the Huggingface trans-
lator pipeline. We set length_penalty to 1.0,
max_length to 1024, and num_beams to 4.

For running the publicly available LLM models,
we use VLLM. For all models, we set the sampling
temperature to 1.0 and top_p to 1.

B Additional Results

B.1 XETQ Evaluation

We report scores of the LLMs using the XETQ met-
ric (Table 3). According to XETQ, Mixtral-8x7b
performs the best among open-source models with
the exception of Chinese, Japanese, and Korean
where Gemma seems to be superior. This is in con-
trast to the findings by XESE metric. Nonetheless,
XESE metric can be considered to be more reliable
due to its higher overall correlation to ROUGE-2.

B.2 Language Accuracy

Since these LLMs are predominantly trained on
English corpora, they have a tendency to produce
responses in English language. We specifically
evaluate the language accuracy, i.e., the percentage
of times the LLLM accurately generated in the tar-
get language (Table 4). We show the results when
using the prompts having instructions in English
(Pey,) and in the corresponding target language (P;).
As expected, GPT models generate the output in
the correct language for majority of languages in
both prompting strategies. Among the other mod-
els, Gemma-7B-it seems to be the most reliable in
terms of language accuracy followed by Mixtral-
8x7b. We also find that both Mistral models exhibit
robustness especially in Latin-based languages and
ar. The language accuracy also generally improves
when the P; strategy is used.

B.3 Contribution of Penalty Factors

We investigate the contribution of LP and LC in
the XE metrics. The results are reported in Table
5. We find the correlation values drop sharply with
the removal of these correction factors in the final
metric. We observe a steeper drop when we ablate
LC in both metrics. This indicates the necessity
to integrate the validation of the language of the
generated output when evaluating multilinguality
of LLMs.

B.4 Reference LLM

To understand the generalization to another refer-
ence LLM instead from GPT-4, we apply our evalu-
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ar de es fr it ja ko pt zh
Pen Pl Pen Pl Pen Pl Pcn Pl Pen Pl Pen Pl Pen Pl Pen Pl Pen Pl
LLaMa-7B-Chat 02 10 04 .19 16 36 .06 25 .11 25 .04 24 05 .19 .10 33 .05 24
Mistral-7b-Instruct-v0.2 .10 .10 .24 27 .30 .34 21 .27 28 34 .14 .15 .16 .15 27 32 .11 .12
Tower-Instruct-v0.1 .04 08 01 .19 05 25 .03 .15 .07 22 .15 22 .18 23 .04 22 .10 .21
Gemma-7B-it 20 15 26 23 37 38 29 26 .37 36 39 35 35 35 35 35 39 32
LLaMa-13B-Chat 09 13 22 26 39 37 26 32 35 34 29 34 19 23 32 33 24 27
LLaMa-70B-Chat .03 .14 20 27 37 43 28 33 33 38 24 36 .11 25 .32 39 .12 .32
Mixtral-8x7b-Instruct 23 19 42 42 39 39 37 34 45 40 33 25 35 28 41 39 34 23
BLOOMZ A2 .14 01 07 .12 .15 .06 .07 .06 .07 .08 .08 .05 .02 .09 .12 .15 .15
GPT-3.5 33 46 42 47 44 46 39 40 46 48 42 52 41 48 45 47 44 51
GPT-4 48 53 47 52 49 51 44 44 51 S3 56 S50 58 47 50 52 .52 .54

Table 3: XETQ scores using prompts with instructions in English (P.,,) and in the target language (P;).

ar de es fr it ja ko pt zh

Pen Pl Pen Pl Pen Pl Pen Pl Pen Pl Pen Pl Pen Pl Pen Pl Pen Pl
Llama-2-7B-Chat-hf .09 87 .15 76 43 91 .18 86 .30 .79 .11 .73 15 76 29 92 .15 .76
Mistral-7b-Instruct 98 98 96 95 95 98 91 98 94 98 .76 68 90 .77 .94 97 59 .55
Tower-Instruct-13B 37 98 07 97 15 1. .13 98 24 98 .66 94 78 99 .14 98 41 94
Gemma-7B-it 98 98 99 9% 1. 1. 1. 1. 1. 1. 1. 99 1. 1. 1. 1. .98 .98
Llama-2-13B-Chat-hf S7 89 75 93 94 98 87 98 93 94 78 93 77 90 .82 97 .76 .85
Llama-2-70B-Chat-hf A5 89 66 85 88 98 83 99 80 95 58 94 35 89 86 .96 .34 90
Mixtral-8x7b-Instruct 1. 98 1. 1. 1. 1. 1. 98 1. 1. 97 8 97 95 96 97 .89 .80
BLOOMZ 1. 99 62 8 98 1. 98 1. 84 95 81 .8 8 8 98 1. 96 .97
GPT-3.5 9 98 1. 1. 1. 1. 98 1. 9 1. 1. 1. 1. 1. 1. 1. 1. 1.
GPT-4 9 98 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 99 1.

Table 4: Language accuracies using prompts with instructions in English (P.,,) and in target language (P;).

System-level (p) Summary-level (1) System-level (p) Summary-level (1)

ar e pt zh ar e pt zh ar es pt zh ar es pt zh

G-Eval 0.40 0.38 0.17 -0.05| .10 .12 .01 -.02 XESE[LABSE] 90 90 .86 98 | .57 .62 .60 .66

XESE 90 93 83 95 49 56 .60 .64 XETQ(kiwi] 88 .69 .69 95 | 40 44 43 50
-LP 90 .79 81 .26 45 43 49 13

-LC, | 55 38 21 .02 | -01 .10 .05 -.11 Table 7: Correlation of the metrics with BLEU

XETQ 88 .74 71 98 37 48 47 52
-LC; | -43 .10 .14 .00 -.18 .04 .03 -.06

Table 5: Ablation of length penalty (LP) and language
confidence (LC;)

System-level (p) Summary-level (1)
ar es pt zh ar es pt zh
using GPT-4 reference
XESE[LABSE] 90 90 .86 .98 57 .62 .60 .66
XETQixiwi| .88 .69 .69 95 | 40 44 43 50
using Claude-3.5 reference
XESE[LABSE] 90 93 83 .76 | .51 .56 .60 .65
XETQxiwi| .88 74 .67 98 | 45 .48 .50 .53

Table 6: Correlation of the metrics when references are
generated using Claude 3.5 instead of GPT-4

ation protocol using reference summaries generated
by Claude 3.5°. Correlation results are reported in
Table 6. We find that the correlations remain simi-
larly high for the metrics (except for XESE with zh
possibly due to the additional LLP factor that needs
to be tuned).

2h'ctps ://www.anthropic.com/news/
claude-3-5-sonnet

B.5 Correlation against BLEU

In addition to ROUGE-2, we also study the corre-
lation of XESE and XETQ against another popular
reference-based text generation metric, BLEU (Pa-
pineni et al., 2002). Results are reported in Table
8. We use sacrebleu® with flores200 tokenizer.
BLEU was originally used for machine translation
Similar to the conclusions observed from ROUGE,
we observe high correlations for XESE (>85 on all
languages). This indicates the ability of XESE to
match abilities of diverse text generation metrics.

B.6 Correlation against G-Eval

We also assess the correlation of XESE and XETQ
metrics against the four G-Eval aspects to under-
stand if they correspond to or model any of them.
We find that XETQ exhibits higher than usual cor-
relation on es and pt, particularly on the content-
based aspects (relevance, coherence, and consis-
tency), against ROUGE-2. However, the correla-

Shttps://github.com/mjpost/sacrebleu
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XESE[LABSE] XETQrxiwr
ar es pt zh | ar es pt zh
(Relevance) 19 .12 .02 .19 | .21 .69 .60 .14
(Coherence) 26 .12 .00 .10 | 24 .62 .55 .05
(Consistency) | .21 .19 .12 .19 | 26 .76 .67 .33
(Fluency) .05 21

Avg. Correl 18 .16 .01 .20 | .18 .65 .54 .19

Table 8: System-level correlation with G-Eval

fr ja ru tr
XESE@assgr 98 .57 .74 .86
XETQxiwi 64 83 76 .79

Table 9: Correlation with ROUGE-2 on other languages

tion of our best performing XESE metric against
G-eval is low on all aspects.

B.7 Correlation on Additional Languages

The correlation on four languages in Table 1 used
multi-way aligned articles from CrossSum dataset
with all languages sharing the same set of corre-
sponding English articles leading to better compa-
rability of correlation across languages. In this sec-
tion, we conduct additional correlation analysis on
four more languages: French (fr), Japanese (ja),
Russian (ru), and Turkish (tr) where shared align-
ments to English were not available in CrossSum,
but are independently aligned to their correspond-
ing English articles. To compute the reference sum-
maries in English for the test set in each language,
we use GPT-40 (gpt-40-2024-05-13).

We sample 100 article-summary pairs for each
language along with their corresponding English
article-summary pairs. The system-level correla-
tion is reported in Table 9. We find that the metrics
continue to exhibit a high positive correlation to
ROUGE-2 in general. A lower correlation is ob-
served on ja with XESE. This may also depend on
the ability of the underlying model, i.e., LaBSE in
this case, to work in that particular language.

B.8 Extending Evaluation of LLMs

We conduct evaluation on an extended set of lan-
guages using XESE scores and prompts with in-
structions in the target language (P;). We evaluate
on the remaining languages that are available in
NTREX-128 and also supported by LaBSE and
the language identification (LID) model that we
use, resulting in 83 additional languages. The in-
structions are translated to corresponding language
using NLLB-3.3B (NLLB team et al., 2022). We
also use the LID model from NLLB for the ex-
tended language coverage. We report the results in

Tables 10 and 11 with abbreviated LLM names (L2:
Llama-2, M: Mistral, MX: Mixtral, TI: Towerln-
struct, G: Gemma). We run the same set of open-
source instruction fine-tuned LLMs used in ear-
lier comparisons with the exception of BLOOMZ
due to its size and computational runtime. For
proprietary LLMs, we use the cheaper GPT-40
(gpt-40-2024-05-13) in place of GPT-4.

As exhibited by previous experiments with
XESE, Gemma performs the best among all open-
source models on an overwhelming number of lan-
guages. Mixtral-8x7b comes second in the remain-
ing languages with a few exceptions where the
Llama models (13B or 70B) give a better result.
This further signifies the importance of having an
extended vocabulary in building the base LLM de-
spite the pre-training of Gemma being predomi-
nantly done on English itself. Unsurprisingly, we
also find that the GPT models mostly dominate over
open-source models. However, most Indo-Aryan
languages (Hindi, Bengali, Gujarati, Kannada, Pun-
jabi, Sinhala, Tamil, Telugu, Urdu) are exceptions
where open-source models outperform the GPT
models.
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Language L2-7B M-7B TI-13B G-7B L1L2-13B L12-70B MX-8x7B | GPT-3.5 GPT-40
Afrikaans .16 13 13 .56 .37 .37 27 .67 .60
Albanian 21 21 .16 41 22 .30 43 .59 .63
Ambharic 13 .04 .05 .00 12 .16 11 .14 31
Armenian A1 .14 .16 24 17 .07 .20 .36 .54
Azerbaijani 25 .40 27 47 42 .35 .38 .64 .66
Basque .20 .19 .19 49 25 21 22 .59 .56
Belarusian .02 21 13 .61 17 13 .49 .68 71
Bengali 22 33 22 .62 34 .26 .39 47 48
Bosnian 33 .20 18 43 41 .38 24 .50 .54
Bulgarian .37 44 .33 .65 48 .50 .49 .73 .64
Burmese .07 .08 .04 17 .06 .07 13 12 .24
Catalan .60 24 .18 .63 .64 .59 .40 71 57
Chinese (Simpl.) 13 .02 11 33 25 20 .06 35 27
Croatian 49 .37 .29 .54 .63 .58 41 .65 .66
Czech 43 47 .36 .66 .58 Sl .52 .73 .67
Danish .38 24 .30 .65 .61 .55 32 .68 .62
Dutch .39 .30 24 .62 .57 .55 .35 .64 .55
Estonian 13 35 27 .63 42 .49 51 12 .74
Finnish .61 .35 48 .68 .69 .69 .20 75 75
Galician .06 .05 .01 .64 .14 .10 .36 .69 53
Georgian 21 .14 24 44 34 31 37 51 .61
Greek 49 .58 43 .59 53 .56 .66 .55 .49
Gujarati 11 .09 .03 31 .07 1 34 .16 17
Hausa .10 .10 .09 .36 13 15 12 .14 42
Hebrew 51 .56 43 .59 .52 43 .57 .68 .68
Hindi .35 46 41 .36 44 45 47 44 .36
Hungarian 48 .52 .40 .61 54 .54 48 .70 .69
Icelandic .19 28 25 52 31 .30 .34 .66 .59
Igbo .10 18 12 31 17 18 18 27 44
Indonesian 58 41 .37 .66 .62 .61 53 72 .68
Irish 21 .01 .20 .24 22 22 .14 49 45
Kannada .07 A1 .03 45 .05 .09 42 .16 .18
Kazakh .09 13 21 42 .09 .08 28 .62 74
Khmer 12 .07 .06 .59 13 .14 17 21 .26
Kinyarwanda 23 21 11 31 24 21 .16 .20 .36
Kirghiz .14 A1 .04 22 .14 .16 .36 .62 .65
Lao .09 12 .05 22 .09 .07 .14 .10 .19
Latvian .30 .26 .19 .59 31 .29 .39 .69 .69
Lithuanian 27 45 23 48 33 23 .54 .70 75
Luxembourgish .01 .01 .02 43 .10 .16 22 .50 52
Macedonian 11 .29 .14 .63 .28 28 A7 .69 .61
Malagasy 18 15 12 34 .18 .20 .19 24 .46
Malay 43 .30 28 .57 .57 .54 47 .64 .57
Malayalam .05 .04 .06 13 11 .08 31 .40 .46
Maltese .19 .16 .19 38 .20 15 27 49 44
Maori .16 .04 .10 32 .16 .19 .18 .30 43
Marathi 28 31 28 49 .40 .35 45 52 .58
Mongolian .06 .10 .16 38 13 .10 .19 51 71
Nepali 27 .37 31 21 .39 33 41 48 .59
Nyanja .19 .18 11 33 17 24 12 45 48
Persian .50 .56 48 32 .56 49 .60 .57 47
Polish 45 .53 .38 .66 .62 .56 .54 .73 72
Punjabi .10 .04 .03 .02 .10 A1 .24 15 .19
Romanian Sl .34 27 .57 .58 .59 .36 .63 .56
Russian .36 51 37 .65 44 .53 57 .67 75

Table 10: XESE scores on an extended set of languages using prompts with instructions in target language.
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Language L2-7B M-7B TI-13B G-7B L2-13B L2-70B MX-8x7B | GPT-3.5 GPT-40
Samoan .10 .10 .06 .29 14 12 1 .08 .24
Serbian .04 43 31 .00 12 A1 49 .06 .66
Shona 21 .19 .08 .38 .26 25 22 43 .61
Sinhala .14 .06 .06 45 12 A1 24 .16 30
Slovak .20 31 .26 .67 45 .39 .39 72 .64
Slovenian 41 .40 31 .56 .57 .60 47 .60 .65
Somali .20 .14 15 .33 .19 23 13 17 45
Swabhili .20 .18 .08 .62 .35 .37 .29 .69 .63
Swedish 33 35 .30 .67 .63 .59 45 .62 .56
Tagalog .16 .10 15 .50 .37 23 25 .50 54
Tajik .07 15 18 .29 .09 .08 28 .61 .60
Tamil .19 22 .10 .60 23 21 44 32 42
Tatar .04 .08 12 .10 .07 .06 23 42 .68
Telugu .09 .09 .02 22 .06 .09 30 15 18
Thai 37 .40 37 .61 41 .40 .52 .60 .69
Tibetan .01 12 .07 .02 .02 .01 .16 .00 13
Turkish .56 .46 45 52 .61 .59 .54 .70 .69
Turkmen .19 .16 .16 40 .29 .20 .30 41 .70
Uighur .06 .10 1 .02 .09 .04 21 37 44
Ukrainian .36 51 .36 .67 .50 51 .57 1 .74
Urdu 43 44 41 .02 43 43 .56 .46 33
Uzbek 23 .26 .20 .53 .30 27 31 .61 .66
Vietnamese .50 17 41 .50 .55 49 42 49 A7
Welsh .07 .04 A1 45 23 .19 15 52 41
Wolof .05 .04 .03 .16 .07 .05 .08 .16 .02
Xhosa .20 .18 .06 45 22 .19 23 .30 .56
Yoruba .04 17 17 .29 11 .09 .16 .28 32
Zulu 25 21 21 48 28 23 21 45 .60

Table 11: XESE scores on an extended set of languages using prompts with instructions in target language.
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