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Abstract

The rapid advancements in Large Language
Models (LLMs) have revolutionized natural
language processing (NLP) and adjacent fields,
yet fine-tuning these models for specific tasks
remains computationally expensive and risks
degrading pre-learned features. To address
these challenges, we propose Propulsion, a
novel parameter-efficient fine-tuning (PEFT)
method designed to optimize task-specific per-
formance while drastically reducing computa-
tional overhead. Inspired by the concept of con-
trolled adjustments in physical motion, Propul-
sion selectively re-scales specific dimensions
of a pre-trained model, guiding output predic-
tions toward task objectives without modify-
ing the model’s parameters. By introducing
lightweight, trainable Propulsion parameters
at the pre-trained layer, we minimize the num-
ber of parameters updated during fine-tuning,
thus preventing the overfitting or overwriting
of existing knowledge. Our theoretical analy-
sis, supported by Neural Tangent Kernel (NTK)
theory, shows that Propulsion approximates the
performance of full fine-tuning with far fewer
trainable parameters. Empirically, Propulsion
reduces the parameter count from 355.3 million
to a mere 0.086 million—achieving over a 10x
reduction compared to standard approaches like
LoRA—while maintaining competitive perfor-
mance across benchmarks.

1 Introduction

Training large language models consumes signif-
icant computational resources, sometimes taking
up to six months (Zhao et al., 2023). This cre-
ates bottlenecks in AI development and raises en-
vironmental concerns (Rillig et al., 2023). To mit-
igate this, we often fine-tune pre-trained models
like BERT (Devlin et al., 2018), GPT (Mann et al.,
2020), and RoBERTa (Liu et al., 2019) instead of

‡This work does not relate to Prakash’s position at Ama-
zon.

training from scratch. However, fine-tuning these
pre-trained models is still challenging due to their
large sizes; for instance, modern LLMs can have up
to 7 billion parameters (Jiang et al., 2023; Touvron
et al., 2023; Almazrouei et al., 2023; Le Scao et al.,
2023). Traditional full model fine-tuning is effec-
tive but often too expensive and inefficient, limited
by computational resources and time (Bender et al.,
2021; Kim et al., 2024; Wu et al., 2024).

Recent advances have explored the realm of
PEFT (Xu et al., 2023; Kowsher et al., 2023) tech-
niques as a solution to these challenges. Methods
such as adapter layers (Lin et al., 2020; Houlsby
et al., 2019), prompt tuning (Lester et al., 2021),
low-rank adaptation (Hu et al., 2021), quanti-
zation (Gray and Neuhoff, 1998), selective row
or columns tuning (Kowsher et al., 2024), and
lightweight fine-tuning (Liu et al., 2021a) alter-
natives propose modifications that require adjust-
ing only a fraction of the model’s total parameters.
These approaches, while promising, often involve
trade-offs between efficiency, performance, and
adaptability, thus there is still room to improve the
combined utility. To address the limitations of ex-
isting PEFT methods, we introduce Propulsion: a
novel approach for fine-tuning that leverages the ob-
servation that small, targeted changes in the output
vectors of a model’s layers can lead to substantial
shifts in the model’s overall behavior. In physical
dynamics, propulsion can steer or change an ob-
ject’s trajectory through small, controlled bursts of
force (Turchi, 1998; Budashko, 2020). Similarly,
our Propulsion method applies minimal yet strate-
gic adjustments or re-scaling to the pre-trained di-
mensions of a neural network, as effectively "steer-
ing" the model’s responses towards desired out-
comes with minimal energy expenditure and max-
imal retention of pre-learned features. To do this,
we introduce a series of trainable linear parame-
ters—denoted as "Propulsion parameters". These
parameters are finely tuned to amplify or attenuate
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Figure 1: A detailed illustration of the model architectures for five different adapters: (a) LoRA, (b) AdaLoRA, (c)
Prefix & Prompt Tuning, and (d) Propulsion. In the diagrams, W represents the pre-trained weight matrix, which is
kept frozen, while X denotes the input. The matrices A, B, and E are trainable and of lower rank. The variable z
indicates the Propulsion parameter.

specific aspects of the model’s behavior, thereby
optimizing performance on specific tasks with min-
imal computational overhead. Figure 1 compares
the different PEFT methods with our Propulsion
approach.

To support our method theoretically, we analyze
Propulsion in the context of the NTK framework.
The NTK, introduced by Jacot et al. (2018), charac-
terizes the training dynamics of neural networks in
the regime where the width of the network tends to
infinity. Under this framework, it has been shown
that fine-tuning methods such as LoRA approx-
imate the full fine-tuning of neural networks by
focusing on a low-rank subspace (Jang et al., 2024;
Tomihari and Sato, 2024). Similarly, our analysis
demonstrates that Propulsion closely approximates
the NTK of full fine-tuning by updating only a di-
agonal subset of the model’s parameters. This theo-
retical grounding ensures that Propulsion achieves
similar performance to full fine-tuning, despite its
significantly reduced computational requirements.

We evaluate the effectiveness of our approach
across several benchmarks on different language
models. Our experimental results show that Propul-
sion outperforms current PEFT techniques while
requiring fewer trainable parameters. For instance,
Propulsion uses about 12 times fewer parameters
than AdaLoRA and achieves higher accuracy (de-
tails in Section 4).

2 Propulsion

We introduce a clear outline of the Propulsion con-
cept and its practical benefits. Consider that we
have a pre-trained language model M with N lay-
ers, such as L = {L1,L2, . . . ,LN}, where we freeze
all parameters. We represent any given input as
x ∈ Rs×din , where s denotes the sequence length of
tokens, d represents the dimension of each token,

and x can be any hidden layer’s output or input of
next following layer of the neural networks, Key,
Queries, and Values, and so on. Given x as the
input, we extract Vi = Li(x;W ) ∈ Rs×dout with pre-
trained frozen weight W ∈ Rdin×dout .

To introduce task-specific modifications, we ini-
tialize a trainable Propulsion matrix Z ∈ RN×dout ,
where zi = {z1,z2, . . . ,zdout} ∈ Z . Each zi per-
forms an element-wise scalar transformation to
each corresponding element vj ∈ Vi to steer the
output projection of Li, where vj = {v1,v2 . . .vdout}
represents the j− th token representation of output
Vi from layer Li.

We train zi by calculating the element-wise mul-
tiplication vj ⊙ zi to generate vj

′, where ⊙ de-
notes the element-wise multiplication operation
performed between zdout and every element vdout

within the output vector vj. We can define this
operation as :

vj
′ = [v1 · z1,v2 · z2, ...,vdout · zdout ] (1)

Similarly, by following Equation 1; for all s to-
kens, we can steer the output of Vi by training the
Propulsion zi, which can be defined as :

V ′i = [v1⊙ zi,v2⊙ zi, ...,vs⊙ zi] (2)

Once V ′i has been calculated, it is used as the
next input to extract the output of the next layer. So
the transformed output V ′i of layer Li is used as the
input x to layer Li+1

We enhance the Propulsion concept by incorpo-
rating polynomial scaling to the Propulsion param-
eter zi. By raising zi to the power of k, termed as
polynomial scaling, we allow for a more flexible
and dynamic adjustment of the model’s responses
to input features. This scaling adjusts the magni-
tude of the propulsion effect, providing a method
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Figure 2: Propulsion in Transformer Block. Within
the figure, the red cells represent trainable parameters
while the blue cells represent the frozen parameters. The
Propulsion layers above shows where our method exe-
cutes during model fine-tuning. All layers use the same
Propulsion matrix, but are modified by their correspond-
ing vector zi.

to vary the influence of the propulsion parameters
across different stages of learning or different parts
of the data. We can define this operation as :

V ′i = [v1⊙ zi
k,v2⊙ zi

k, . . . ,vs⊙ zi
k] (3)

In Figure 2, we illustrate the general structure of
our Propulsion method in the Transformer block
that modifies the output of K, Q, V, and MLP matrix
through element-wise multiplication with Propul-
sion trainable parameters to fine-tune the LLMs
efficiently.

3 Neural Tangent Kernel (NTK) Analysis

The NTK, introduced by Jacot et al. (2018), charac-
terizes how small changes in a network’s parame-
ters affect its output. In the NTK regime, where the
width of the network becomes very large, the train-
ing dynamics of neural networks are determined
by the NTK, which remains nearly constant during
training (Afzal et al.).

In this section, we analyze the Propulsion
method in the NTK regime and show that the NTK

of Propulsion approximates the NTK of full fine-
tuning.

Theorem 1 Let φP(x;θt) be the output of the
Propulsion model at time step t, where the base ma-
trix θ0 is pre-trained and fixed, and the Propulsion
matrix zt is updated during training. Let φF(x;θt)
be the output of the fully fine-tuned model at time
step t. Under the NTK regime, where the width
d of the network is sufficiently large, the NTK for
Propulsion fine-tuning approximates the NTK for
full fine-tuning with high probability. Formally, for
inputs x,x′ ∈ Rd , the NTK for Propulsion satisfies:

KF (x,x′
)
≈KP (θ0xi,θ0x j)

Furthermore, the error between the NTK for
Propulsion and the NTK for full fine-tuning can be
bounded using the Johnson-Lindenstrauss Lemma.
Specifically, for any ε > 0 and constant c, with high
probability:

Pr
[∣∣∣(θ0xi)

⊤(θ0x j)−xi
⊤xj

∣∣∣]≥ 1−4exp
(
− (ε2− ε3)d

4

)
The full theoretical proof of this theorem is pro-
vided in Appendix A. Additionally, in Appendix
B, we present the empirical results supporting this
theory, and in Appendix C, we provide a detailed
analysis of the NTK regime of Propulsion.

4 Experiments

We evaluate our methods on NLP tasks, including
the General Language Understanding Evaluation
(GLUE) benchmark, question answering, text sum-
marization, common sense reasoning, and arith-
metic reasoning. The details of the training and
algorithm are described in Appendix E.

4.1 Baselines
We use well-known PEFT methods for our baseline
comparisons, including Adapter (Houlsby et al.,
2019), Prompt Tuning (Lester et al., 2021), Prefix-
Tuning (Li and Liang, 2021), (IA)3 (Liu et al.,
2022a), Bitfit (Zaken et al., 2021), LoRA (Hu
et al., 2021), AdaLoRA (Zhang et al., 2023), MAM
Adapter (He et al., 2021), PROPETL (Zeng et al.,
2023), LoKr (Edalati et al., 2022), and LoHa
(Hyeon-Woo et al., 2021). The implementations
used for these methods come from the Hugging
Face (Mangrulkar et al., 2022). The experimental
setup follows that of Xu et al. (2023) for the GLUE
benchmark; for the question answering and text
summarizing datasets, we have followed Zhang
et al. (2023).
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Model PEFT Method #TPs CoLA SST2 MRPC STS-B QQP MNLI QNLI RTE Avg.

RoBB

FT 124.6M 59.84 92.89 85.24/88.18 90.48/90.16 90.18/87.02 86.27 91.17 72.43 83.56 /88.45
AdapterS 7.41M 60.32 92.14 89.24/ 85.29 90.25/90.09 90.81/86.55 87.33 90.84 73.56 84.31/87.31

Prompt tuning 0.61M 49.37 91.09 74.83/72.72 82.44/83.11 82.99/78.35 80.57 80.03 58.12 74.93/78.06
Prefix-tuning 0.96M 55.31 92.17 87.25/83.24 88.48/88.32 87.75/84.09 85.21 90.77 54.51 80.18/85.21

(IA)3 0.66M 59.58 92.02 87.00/82.52 90.30/90.32 87.99/84.10 83.95 90.88 71.12 82.85/85.64
BitFit 0.086M 61.38 92.67 88.22/84.41 90.34/90.27 88.12/84.11 84.64 91.09 75.58 84.20/86.26
LoRA 0.89M 60.09 92.40 88.50/84.68 90.66/90.83 88.83/85.21 86.54 92.02 72.92 83.99/86.90

AdaLoRA 1.03M 59.82 91.69 88.99/85.03 90.83/90.73 88.58/84.98 86.26 91.43 70.04 83.45/86.91
MAM Adapter 46.78M 58.42 93.19 89.31 /85.21 90.74/90.42 88.31/83.20 86.63 90.19 72.62 83.67/86.27

PROPETL Adapter 1.87M 63.11 92.18 85.25/81.82 91.33 /91.04 89.22/85.79 86.49 92.56 75.54 84.46/86.21
PROPETL Prefix 10.49M 60.18 91.36 86.73/84.98 90.30/90.19 88.54/85.05 86.22 91.51 63.31 82.26/86.74
PROPETL LoRA 1.77M 61.72 92.54 87.42/83.87 90.76/90.55 88.90/85.55 86.84 92.04 67.39 83.45/86.65
Propulsion(All) 0.086M 61.76 93.18 89.34/ 85.99 91.37/90.92 89.11/86.53 86.41 92.79 75.66 84.95/87.81
Propulsion(Attn) 0.028M 58.51 92.03 89.01/85.14 89.36/89.96 86.73/84.80 85.13 89.89 75.02 83.21/86.63

RoBL

FT 355.3M 65.78 95.50 92.22/94.28 91.74/91.96 90.83/88.68 89.21 93.19 81.40 87.48/91.64
AdapterS 19.77M 62.03 94.65 90.19/87.94 92.58/92.42 92.19/88.50 91.00 94.31 81.25 87.27/89.62

Prompt-tuning 1.07M 60.22 93.61 79.04/76.29 78.51/78.99 80.74/75.16 68.15 89.13 60.29 76.21/76.81
Prefix-tuning 2.03M 59.01 93.76 88.24/86.37 90.92/91.07 88.88/85.45 89.30 93.32 74.01 84.68/87.63

(IA)3 1.22M 60.17 94.61 90.52/87.33 92.22/86.25 89.45/86.25 88.63 94.25 81.23 86.38/86.61
Bitfit 0.225M 66.72 95.10 90.70/88.38 91.93/93.38 89.48/86.43 89.98 94.47 85.73 88.01/89.39
LoRA 1.84M 64.47 95.67 90.50/86.19 91.66/91.44 90.15/86.91 90.76 95.00 79.78 87.24/88.18

AdaLoRA 2.23M 65.85 94.95 91.46/87.34 92.05/91.80 89.60/86.30 90.36 94.62 77.98 88.20/88.48
MAM Adapter 122.20M 64.39 95.08 90.12/87.77 92.44/92.18 90.87/86.65 90.62 94.31 86.62 88.05/88.86

PROPETL Adapter 5.40M 65.55 94.82 89.71/86.54 91.92/91.67 90.67/87.74 91.37 95.20 85.89 88.14/88.65
PROPETL Prefix 26.85M 62.24 94.17 90.04/87.92 90.70/90.49 89.30/86.30 90.33 94.73 79.71 86.40/88.23
PROPETL LoRA 4.19M 61.90 94.93 89.06/86.19 91.66/91.38 90.93/88.05 90.53 94.93 82.57 87.06/88.54
Propulsion(All) 0.225M 64.53 95.10 90.47/88.85 92.78/92.58 92.26/88.91 90.52 95.34 85.30 88.28/90.11
Propulsion(Attn) 0.073M 62.31 94.02 89.78/87.95 90.16/90.86 88.02/86.19 89.54 94.00 83.07 86.36/88.33

Table 1: Performance Comparison of RoBERTa Models on GLUE Tasks: Metrics include MCC for CoLA, Accuracy
for SST-2, Accuracy/F1-score for MRPC and QQP, Pearson/Spearman correlation for STS-B, and Accuracy for
MNLI, QNLI, and RTE. "Propulsion(All)" applies Propulsion to all layers (Embedding, MLP, Attention), while
"Propulsion(Attn)" applies it only to the Attention layer. Propulsion(All)3 refers to three Propulsion mechanisms in
each layer.

4.2 Language Model Performance

Datasets : For the GLUE Benchmark, we evaluate
our Propulsion method on CoLA, SST-2, MRPC,
STS-B, QQP, MNLI, QNLI, and RTE tasks of
the GLUE Benchmarks(Wang et al., 2018). We
also use SQuAD v1.1 (Rajpurkar et al., 2016) and
SQuAD v2.0 (Rajpurkar et al., 2018) datasets to
measure performance on question-answering tasks,
and we use the XSum (Narayan et al., 2018) and
CNN/DailyMail (Hermann et al., 2015) datasets to
measure text summarization performance.

Model Selection & Hyperparameter : For
the GLUE benchmark, the models we select for
fine-tuning are RoBERTa-base (RoBB) with 125M
parameters and RoBERTa-large (RoBL) with 355M
parameters from Liu et al. (2019). We set the
Propulsion degree to 15 as discussed in Section
2 for SST-2, QQP, RTE, and STS-B; 55 for QNLI
and MRPC; and 20 for the other GLUE datasets.

For the SQuAD v1.1 and SQuAD v2.0 datasets,
we employ DeBERTaV3-base (He et al., 2020).
For both SQuAD v1.1 and SQuAD v2.0, we set the
Propulsion degree to 35.

For the XSum and CNN/DailyMail datasets,

we chose the BART-large model (Lewis et al.,
2019) with 406M parameters. For XSum and
CNN/DailyMail, we set the Propulsion degrees to
35 and 25.

Results : Table 1 shows the GLUE task vali-
dation results of Propulsion, in comparison with
baselines, we can see that Propulsion can achieve
better or on-par performance compared with exist-
ing PEFT approaches on the GLUE dataset but with
much less trainable parameters. Overall, Propul-
sion exhibits enhancements of 2.48%, 3.15%, and
3.17% in accuracy over AdaLoRA, PROPETL Pre-
fix, and (IA)3, respectively, and 1.94%, 1.87%, and
8.92% improvements in the F1 score.

Table 2 compares the validation performance of
Propulsion and other PEFT methods on question-
answering and text summarization tasks. For ques-
tion answering tasks, Propulsion outperforms the
other PEFT methods on both the SQuAD datasets.
Propulsion beats AdaLoRA, the second highest
performing PEFT method, by 0.66 in EM and 0.51
in F1 score while being 7.89 times smaller in pa-
rameter size. Comparing to LoKr, which has the
least number of trainable parameters amongst the
baseline PEFT methods, Propulsion outperforms
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PEFT Method #TPs SQuADv1.1 SQuADv2.0 #TPs XSum CNN/DailyMail
FT 460M 82.83 / 88.14 82.92 / 83.75 460M 40.73 / 16.19 / 30.13 39.16 / 18.92 / 37.04
Prompt tuning 0.155M 74.52 / 78.42 73.59 / 76.72 0.524M 38.24 / 14.46 / 27.89 37.42 / 17.43 / 34.92
Prefix-tuning 2.683M 78.38 / 82.94 74.94 / 79.04 4.482M 38.24 / 15.16 / 28.84 38.32 / 17.72 / 35.76
LoKr 0.089M 80.64 / 86.45 80.14 / 81.96 0.194M 39.03 / 16.14 / 30.42 39.12 / 17.98 / 37.75
Bitfit 0.161M 80.53 / 86.25 79.06 / 83.75 0.885M 39.10 / 16.87 / 30.43 39.93 / 18.12 / 38.85
LoHa 0.885M 81.43 / 88.02 81.67 / 85.01 1.769M 39.12 / 17.08 / 31.39 39.98 / 18.84 / 38.01
LoRA 0.442M 81.64 / 87.16 82.76 / 85.75 1.763M 40.63 / 18.44 / 32.35 40.74 / 19.10 / 39.24
AdaLoRA 0.663M 81.16 / 87.75 82.63 / 85.82 2.655M 40.95 / 18.28 / 31.84 40.53 / 18.24 / 39.63
Propulsion(All) 0.161M 81.73 / 88.07 82.68/ 85.81 0.330M 40.98 / 18.18 / 31.42 40.56 / 19.28 / 38.76
Propulsion(Attn) 0.055M 80.95 / 87.20 81.02 / 85.50 0.110M 38.64 / 15.45 / 29.25 38.74 / 17.08 / 35.03

Table 2: Performance of DeBERTaV3-base and BART-large on SQuAD v1.1 and v2.0 benchmarks with EM/F1 and
ROUGE scores (ROUGE-1/ROUGE-2/ROUGE-L). Here, the bolded values indicate the best performance, while
the underlined values represent the second-best performance.

LoKr by 2.92 in EM and by 2.29 in F1-score while
having fewer parameters.

For text summarization, Propulsion has the high-
est ROUGE-1 score among the baseline PEFT
methods on both datasets. It also has the best
ROUGE-2 score and the second-best ROUGE-L
score on the CNN/DailyMail dataset. For XSum,
LoRA and AdaLoRA have higher ROUGE-2 and
ROUGE-L scores than Propulsion. This may
be due to the limitations Propulsion may have
by being constrained by the model’s dimension,
whereas LoRA and AdaLoRA have more flexi-
bility with more parameters, which is evident by
higher ROUGE-2/L scores. Despite this, Propul-
sion’s performance on CNN/DailyMail shows that
it achieves on-par performance with methods like
LoRA and AdaLoRA while having a significantly
smaller parameter size. For both tables, we used
the validation set to test the performance.

4.3 Large Language Models Performance

Datasets : We perform a thorough evaluation us-
ing thirteen benchmark datasets, covering common
sense reasoning and mathematical reasoning tasks.

For common sense reasoning, we employ a di-
verse range of datasets, including BoolQ (Clark
et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap
et al., 2019), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), ARC-easy
and ARC-challenge (Clark et al., 2018), and OBQA
(Mihaylov et al., 2018), to ensure a comprehensive
assessment of our model’s ability to handle various
facts of common sense reasoning.

For arithmetic reasoning tasks, we also use sev-
eral professional datasets, including MultiArith
(Roy and Roth, 2016), GSM8K (Cobbe et al.,
2021), AddSub (Hosseini et al., 2014), SingleEq
(Koncel-Kedziorski et al., 2015), and SVAMP (Pa-

tel et al., 2021) to evaluate the performance of
our model on solving various different arithmetic
reasoning-related problems.

Model Selection & Hyperparameters: For the
commonsense and mathematical reasoning tasks
described, we select several LLMs to fine-tune
using both standard baselines and our proposed
Propulsion methods for comparison.

The LLMs chosen include BLOOMz (7B pa-
rameters) (Muennighoff et al., 2022), GPT-J (6B
parameters), LLaMA (7B parameters, denoted as
LLaMA7B), and LLaMA (13B parameters, de-
noted as LLaMA13B). For BLOOMz, LLaMA7B,
LLaMA13B, and GPT-J6B, we set the Propulsion
degree to 15 for both reasoning tasks. Addition-
ally, we apply a dropout rate of 0.1 for both hidden
layers and attention mechanisms, along with L2
regularization. Each model layer is fine-tuned us-
ing 5 distinct Propulsion parameters to assess the
effectiveness of our approach.

Results : Table 3 shows the accuracy results
on all four LLMs across the thirteen benchmarks.
Across the board, Propulsion outperforms state-of-
the-art PEFT methods on both commonsense and
mathematical reasoning tasks. On average across
the four LLMs tested on these benchmarks, Propul-
sion shows competitive performance on all of the
benchmarks while maintaining the highest accu-
racy on benchmarks like GSM8K.Notably, fine-
tuning the BLOOMz and GPT-J models demon-
strates competitive performance against the base-
line methods. For datasets like SIQA, and Hel-
laSwag, our method achieves 1.33%, 0.97% im-
provement than the state-of-the-art PEFT method
on accuracy. And for LLaMA model fine-tuning
(LLaMA7B, LLaMA13B), Propulsion also reach
better performance than other baselines on most
datasets, e.g. on the AddSub and SVQMP datasets,
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LLM Method BoolQ PIQA SIQA H.Swag W.Grande ARC-e ARC-c OBQA MultiArith GSM8K AddSub SingleEq SVAMP

BLOOMz7B

Prefix 58.53 62.24 65.41 48.32 66.63 68.13 49.32 63.51 78.41 66.45 67.52 66.94 49.10
AdaLoRA 64.94 74.68 72.49 52.89 68.30 73.21 56.59 72.85 79.43 70.25 68.93 70.93 53.89

Parallel 63.30 73.33 71.01 52.50 71.60 69.45 54.14 68.60 78.90 70.17 70.33 70.84 53.95
LoRA 65.89 73.92 73.33 56.65 71.39 73.46 57.15 72.31 79.50 70.93 70.90 70.59 53.85

Propulsion 66.38 74.63 74.62 57.25 72.33 73.09 57.61 73.12 79.36 70.95 70.92 71.22 54.52

GPT-J6B

Prefix 62.28 65.04 67.72 44.15 63.71 63.59 46.47 58.31 83.12 67.44 75.25 78.46 49.12
AdaLoRA 65.19 67.58 71.22 45.16 66.03 64.10 47.75 63.92 88.51 72.45 80.21 82.03 56.14

Parallel 63.17 67.91 68.97 45.79 66.06 62.42 45.32 60.42 89.11 72.04 80.50 81.50 55.43
LoRA 65.50 67.63 69.46 45.60 66.37 63.56 46.81 63.82 88.30 72.22 80.60 81.24 56.63

Propulsion 65.97 68.05 69.96 45.99 66.18 64.45 46.95 64.56 89.19 72.82 81.41 81.42 56.68

LLaMA7B

Prefix 67.33 79.46 75.80 70.04 72.11 71.67 57.33 69.98 84.18 68.47 81.04 80.00 52.17
AdaLoRA 67.03 78.69 76.06 75.85 76.47 76.26 60.36 74.22 89.81 77.07 86.70 83.01 60.25

Parallel 65.02 78.10 77.52 75.57 76.78 75.48 60.54 74.02 90.20 76.13 86.55 83.70 59.16
LoRA 67.09 79.37 76.15 76.86 77.54 76.54 60.55 74.63 90.13 75.68 84.67 82.14 59.94

Propulsion 68.99 79.47 77.02 76.73 77.06 76.64 61.29 74.76 90.21 77.57 87.63 82.60 60.51

LLaMA13B

Prefix 68.38 80.99 77.80 75.00 76.35 77.62 61.32 72.94 87.22 71.09 84.09 81.28 58.25
AdaLoRA 71.71 82.55 78.88 90.60 83.01 83.04 67.33 81.76 90.55 80.19 87.00 87.10 66.03

Parallel 71.39 83.33 78.32 91.40 83.24 83.34 66.43 80.99 90.88 79.24 88.16 87.08 65.63
LoRA 71.19 83.99 79.15 90.86 83.24 83.35 67.05 81.37 90.27 78.90 86.89 86.07 65.85

Propulsion 71.93 84.12 79.01 90.73 83.60 83.44 67.64 81.38 90.91 78.71 87.64 87.11 66.67

Table 3: Accuracy comparison of Commonsense and Mathematical reasoning performance across different PEFTs
with 3% performance reduction.

Figure 3: Comparative Analysis of PEFT Methods on the SST-2 Dataset. On the right-side graph, we shortened the
following method names: AdaLoRA to AdaL., Prompt Tuning to Prom., Propulsion to Propul, and Prefix-Tuning to
Pref. In this graph, purple represents the percentage of parameters after applying these methods, the cyan represents
the total training time in hours, and the green represents the iteration time in seconds.

Figure 4: Memory Cost Comparison of PEFT Methods.
The blue bars represent the memory cost of the original
model weights, whereas the green bars represent the
optimization memory cost for each of these methods.

Propulsion shows enhancements of 0.97% and
0.66% in accuracy over the state-of-the-art PEFT
method. While maintaining or improving accuracy,
Propulsion also has a much smaller percentage of
total parameters. Additional experiments on LLMs
are described in Appendix K.

Methods Space Time #TPs
Propulsion O(d) O(d) d
FT O(d×d) O(d×d) d2

(IA)3 O(dk +dv +d f f ) O(dk +dv +d f f ) 3d
Prompt O(d× lp) O(d× lp) lp.d
Prefix O(L×d× lp) O(L×d× lp) L.lp.d
LoRA O((d +d)× r) O((d +d)× r) 2dr
LoRA-FA O((d +d)× r) O((d +d)× r) dr
AdaLoRA O((d +d + r)× r) O((d +d + r)× r) 2dr+ r2

LoHA O(2r× (d +d)) O(2r× (d +d)) 4dr

Table 4: Space/Time Complexity and Total Trainable
Parameters (#TPs) for Propulsion method and baseline
methods for single layer W ∈ Rd×d . Within this table,
we define dk,dv, and d f f as the dimensions of three
learned vectors in (IA)3; and lp as the length of the
prompt added to the input/layers in prompt tuning and
prefix-tuning. For LoRA-type methods, we use r to
represent the rank dimensions.

4.4 Efficiency Comparison

Our study evaluates diverse PEFT techniques on
their performance, training efficiency, and memory
usage. We conduct these experiments using the
SST-2 dataset, divided into 64 batches. We train
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Figure 5: Left: performance vs. degree for SST-2, QNLI, and MRPC. Right: training steps vs. accuracy for SST-2.

on a H100 with 80 GB of memory. The default
parameters include the learning rate of 1× 10−4,
the weight decay of 0.02, dropout 0.1.

Training efficiency: Figure 3 illustrates the
training convergence of our models and baselines.
On the left side of the figure, it shows that our
Propulsion model exhibits a fast convergence and
achieves a higher accuracy of 0.9 in just 50 itera-
tions, whereas the baseline AdaLoRA method re-
quires approximately 200 iterations to attain an
accuracy of 0.87, and the LoRA method requires
almost 75 iterations to reach an accuracy compara-
ble to that of Propulsion. Furthermore, the other
methods, including LoKr, (IA)3, and LoHa, require
more than 150 iterations to achieve an accuracy of
0.8.

Parameter Efficiency : In terms of parame-
ters, we present the efficiency of each method in
Tables 1 and 2, as well as a graphical representa-
tion in Figure 3 (Right). It is clear that Propulsion
demonstrates superior efficiency in terms of faster
training time, and reduced memory usage because
of its parameter reduction. Table 4 compares the
space/time complexities and total trainable param-
eters of our Propulsion method to other baseline
PEFT methods.

Memory Efficiency: In terms of memory ef-
ficiency of the GPU, as illustrated in Figure 4,
Propulsion consumes only approximately 17.2 GB
of GPU memory for training, including model
weights and optimization. In comparison, other
baseline methods consume more than 20.0 GB of
GPU memory, making Propulsion approximately
1.5 times more memory-efficient than other PEFT
methods. Additionally, in Appendix D (Table 6),
we present a comparison of delta weight reparam-
eterization methods for the backward pass during
optimization

Layer SST-2 MRPC QQP QNLI RTE Params
Embedding 73.45 70.32 75.28 79.38 66.3 0.0115M

MLP 92.42 86.42 82.38 89.35 72.43 0.0115M
Key 92.52 86.84 83.95 88.14 72.19 0.0115M

Value 92.68 86.59 83.05 88.76 73.93 0.0115M
Query 91.53 86.99 83.84 89.28 73.68 0.0115M

K+Q+V 92.72 89.01 85.82 89.89 75.02 0.0283M
All 93.18 89.34 89.11 92.79 75.66 0.0861M

Table 5: Accuracy [%] and the parameter size for differ-
ent layer configurations with Propulsion across datasets.

4.5 Ablation Study
Propulsion Degree Initialization: In this section,
we explore the impact of the Propulsion degree as
a hyperparameter on model performance across dif-
ferent datasets. Figure 5 (left) shows the accuracy
on SST-2, QNLI, and MRPC for degrees ranging
from 0 to 200. SST-2 achieves its highest accuracy
of 95% at a degree of 25, while QNLI peaks at 94%
between 50 and 75 degrees, and MRPC at 92%
around 25 degrees. After reaching peak accuracy,
both QNLI and MRPC show a decline, indicating
overfitting as the Propulsion degree increases.

Figure 5 (right) shows the training dynamics
on SST-2. Lower degrees (1 and 15) converge
faster, achieving high accuracy early, while higher
degrees (100 and 500) take longer. By 2000 steps,
all degrees converge, but lower degrees stabilize
faster, suggesting they are more effective for rapid
learning, with higher degrees needing more steps
for similar performance.

Positional Impact of Propulsion: Table 5
shows an ablation analysis of Propulsion config-
ured across various layers, including embedding,
MLP, Key (K), Query(Q), Value (V), and differ-
ent combinations of layers. Adding Propulsion to
the attention mechanism (K + V + Q) achieved an
accuracy of 93.72% on the SST-2 dataset. When
examined individually, we obtained accuracies of
91.52%, 92.52%, and 92.68% in the Query, and
Value, respectively. However, Propulsion in the
embedding layer does not yield performance com-
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parable to that of the other layers. Nonetheless,
Propulsion in all layers leads to substantial accu-
racy improvements of 94.89%, 90.52%, 90.86%,
92.79%, and 77.60% for the SST-2, MRPC, QQP,
QNLI, and RTE datasets, respectively.

Additional ablation studies are described in Ap-
pendix F.

5 Related Work

The development of parameter-efficient fine-tuning
(PEFT) techniques is essential in NLP due to
the increasing complexity of LLMs. These tech-
niques enhance performance while reducing com-
putational and memory requirements, as demon-
strated by recent studies (Liu et al., 2022a; Nguyen
et al., 2023; Chow et al., 2024). PEFT techniques
have been proven effective across a wide range of
NLP tasks, including (Fu et al., 2023; He et al.,
2021). Previous research (Liu et al., 2021b, 2023;
Zhang et al., 2023; Hu et al., 2021; Li and Liang,
2021; Zaken et al., 2021) has shown that PEFT tech-
niques can significantly improve the performance
of LLMs while utilizing low resources.

Prompt Tuning entails adding learnable parame-
ters as virtual tokens at the model’s input (Lester
et al., 2021) or within each layer (Li and Liang,
2021). Recent advancements have refined these
methods for NLU (Liu et al., 2021b) and NLG
(An et al., 2022), including adding residual con-
nections for stability (Razdaibiedina et al., 2023b)
and adapting to continual learning (Razdaibiedina
et al., 2023a). Innovative techniques like MixPAVE
(Yang et al., 2023a) and E2VPT (Han et al., 2023)
integrate input and value prompts to boost perfor-
mance. These methods have significantly enhanced
specific NLP tasks such as text classification, ma-
chine translation, and dialogue generation.

Low-Rank Adaptation (LoRA), introduced by
Hu et al. (2021), is a memory-efficient fine-tuning
technique extensively studied. Renduchintala et al.
(2023), Sheng et al. (2023), and Xia et al. (2024)
explored its multitask learning potential. Wang
et al. (2023) showed practical applications, while
Dettmers et al. (2024) optimized memory usage.
Lialin et al. (2023) proposed ReLoRA, requiring
a full-rank warm-up. Adaptive methods by Zhang
et al. (2023) dynamically adjust low-rank param-
eters. Edalati et al. (2022) introduced the Low-
Rank Kronecker Product (LoKr), and Shi et al.
(2024) developed ResLoRA with residual paths.
Hyeon-Woo et al. (2021) presented the Low-Rank

Hadamard Product (LoHa), while Qiu et al. (2024)
and Liu et al. (2024) introduced Orthogonal Fine-
tuning (OFT) and OFT with butterfly factorization
(BOFT), using orthogonal matrices to modify pre-
trained weights, enhancing fine-tuning efficiency
and performance.

Unlike previous PEFT approaches, we propose
a new concept of adaptive Propulsion that changes
the output direction of the model by Propulsion a
force to achieve task-specific goals. We adjust the
Propulsion parameter during the training process,
which decides how much push needs to change
the direction. (More details related work in Ap-
pendix J)

6 Conclusion

Fine-tuning extensive language models can be
costly in terms of hardware and storage switch-
ing expenses, and the financial investment required
to host separate instances of diverse tasks is often
substantial. We propose Propulsion, a parameter-
efficient fine-tuning method that adds trainable
Propulsion parameters to each layer while keep-
ing the original parameters frozen. The goal of
Propulsion is to achieve task-specific objectives
without modifying the original parameters of the
LLMs. Our experiments on natural language pro-
cessing, question answering, text summarization,
common sense reasoning, and mathematical rea-
soning show that Propulsion outperforms existing
methods in terms of accuracy, efficiency, faster con-
vergence, reduced training time, and lower mem-
ory usage. Our results demonstrate that Propul-
sion outperforms current PEFT techniques while
requiring fewer trainable parameters. For example,
Propulsion uses 37 times fewer parameters than
AdaLoRA and achieves 4.05% higher accuracy.

7 Limitations

The Propulsion method has a few limitations. First,
it offers limited control over the model compared to
other methods such as LoRA, which allows adjust-
ments through changes in rank. In Propulsion, the
ability to steer a model is constrained by the num-
ber of dimensions in each layer. Essentially, we can
only adjust the Propulsion parameters equal to the
number of dimensions of a layer, which restricts
the extent to which we can tweak the model’s be-
havior. Additionally, since each parameter in the
Propulsion method works independently without
influencing others, it may be harder to make coor-
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dinated changes across the model. Moreover, the
success of Propulsion depends on the quality of the
pre-trained language model.
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A Training Dynamics of Propulsion
Explained by NTK

Theorem 1 Let φP(x;θθθ t) be the output of the
Propulsion model at time step t, where the base
matrix θθθ 0 is pre-trained and fixed, and the diagonal
matrix Zt is updated during training. Let φF(x;θθθ t)
be the output of the fully fine-tuned model at time
step t.

Under the NTK regime, where the width d of the
network is sufficiently large, the NTK for Propul-
sion fine-tuning approximates the NTK for full
fine-tuning with high probability. Formally, for
inputs x,x′ ∈ Rd , the NTK for Propulsion satisfies:

KF (x,x′
)
≈KP (θθθ 0xi,θθθ 0x j)

Furthermore, the error between the NTK for Propul-
sion and the NTK for full fine-tuning can be
bounded using the Johnson-Lindenstrauss Lemma.
Specifically, for any ε > 0 and constant c, with
high probability:

Pr
[∣∣∣(θθθ 0xi)

⊤(θθθ 0x j)−xi
⊤xj

∣∣∣]≥ 1−4exp
(
− (ε2− ε3)d

4

)

To establish the proof of the theorem, we first
introduce the definitions of the NTK Kernel and the
Kernel Behavior specific to the Propulsion method.

Definition-1 (NTK Kernel): Let K(x,x′) repre-
sent the Neural Tangent Kernel (NTK) of a model.
The kernel is defined as the inner product of the
gradients of the model outputs with respect to the
parameters θθθ . Formally, for inputs x,x′ ∈ Rd , the
kernel is given by:

K(x,x′) = ∇θθθ φP(x;θθθ)⊤∇θθθ φP(x′;θθθ),

where ∇θθθ φP(x;θθθ) represents the gradient of the
model output φP(x;θθθ) with respect to the parame-
ters θθθ .

Definition-2 (Kernel Behavior): Let θθθ t represent
the parameters of a model at time step t, and let x
be an arbitrary fixed input. The Propulsion model
exhibits kernel behavior if the following properties
are satisfied:

1. Linearization: The change in the model’s
output can be well-approximated by the first-
order Taylor expansion. Specifically:

φP(x;θθθ t)−φP(x;θθθ t−1)≈ ⟨∇φP(x;θθθ t−1),θθθ t −θθθ t−1⟩ ,

where ∇φP(x;θθθ) is the gradient of the model’s
output with respect to the parameters θθθ .

2. Fixed Features: The gradient of the model at
time step t is approximately the same as the
gradient at initialization, i.e.,

∇φP(x;θθθ t)≈ ∇φP(x;θθθ 0),

where θθθ 0 refers to the parameters at initializa-
tion.

Proof: Let θθθ t represent the parameters of the
network at time step t, and φθθθ denote the output of
the pre-trained network. Under the NTK approxi-
mation, the change in the network’s output can be
expressed as a first-order Taylor expansion:

φθθθ t+1(x)≈ φθθθ t (x)+ ⟨∇θθθ t φθθθ t (x),θθθ t+1−θθθ t⟩ .

In this work, we aim to analyze the Propulsion
fine-tuning method in the context of NTK, and
show that the NTK of Propulsion closely approxi-
mates the NTK of full fine-tuning.

Kernel Behavior: In stochastic gradient descent
(SGD), the update to the parameters at step t is
given by:

θθθ t+1−θθθ t =−ηEx∼D [∇θθθ t L (φθθθ t (x))] (4)

=−ηEx∼D

[
∇θθθ t φθθθ t (x)L

′(φθθθ t (x))
]
(5)

where L (φθθθ t (x)) represents the loss function
and η is the learning rate.

The change in the output of the network at step t
can be expressed as:

∇θθθ(x′) = φθθθ t+1(x
′)−φθθθ t

(x′) (6)

=
〈
∇θθθ t

φθθθ t
(x′),θθθ t+1−θθθ t

〉
(7)

=−η∇θθθ t
φθθθ t

(x′)⊤Ex
[
∇θθθ t

φθθθ t
(x)L ′(φθθθ t

(x))
]

(8)

=−ηEx
[
∇θθθ t

φθθθ t
(x′)⊤∇θθθ t

φθθθ t
(x)L ′(φθθθ t

(x))
]

(9)

=−ηEx
[
K(x,x′)L ′(φθθθ t

(x))
]

(10)

where K(x,x′) = ∇θθθ t φθθθ t (x)
⊤∇θθθ t φθθθ t (x

′) is the
NTK matrix at time t.

We now proceed to prove by induction that the
NTK of the Propulsion method closely approxi-
mates the NTK of full fine-tuning. In theory, we
introduce a diagonal matrix Z, and we can write
the Propulsion model as:

φP(x;θθθ) = θθθ 0x⊙ z = θθθ 0xZ,

where Z is a diagonal matrix, and the diagonal
elements of Z correspond to the Propulsion param-
eters z.
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Base Case: Consider the model before training
at t = t0. The output of the Propulsion model can
be written as:

φP(x;θθθ t0) = θθθ 0xZ0,

where θθθ 0 is the pre-trained weight matrix and Z0 =
In is the identity matrix (i.e., initially, the diagonal
matrix Z is an identity matrix). In this case, the
gradient with respect to the parameters is:

∇φP(x;θθθ t0) = θθθ 0x.

Since Z0 = In, the gradient is identical to the gradi-
ent of the fully fine-tuned model:

∇φP(x;θθθ t0) = ∇φF(x;θθθ t0).

Thus, the NTK for Propulsion at initialization is
identical to the NTK for full fine-tuning:

KP(x,x′) = KF(x,x′).

Inductive Hypothesis: Assume that at step t, the
Propulsion model is of the form:

φP(x;θθθ t) = θθθ 0xZt ,

where Zt is the updated diagonal matrix at time t.
The gradient with respect to the diagonal parame-
ters is:

∇φP(x;θθθ t) = ∇φP(θθθ 0x;Zt).

We now compute the NTK for Propulsion at step
t:

∇φP (xi;θθθ t) ·∇φP(x j;θθθ t)
⊤ = ∇φP(θθθ 0xi;θθθ zt ) ·∇φP(θθθ 0x j;θθθ zt )

⊤

(11)

Now from the definition of NTK, we can write:

∇φP (xi;θθθ t) ·∇φP(x j;θθθ t)
⊤ = KP (θθθ 0xi,θθθ 0x j)

(12)

Inductive Step: We now show that the NTK
for Propulsion converges to the NTK for full fine-
tuning.

From the definition of kernel behavior in the
NTK regime, we know that for large d, the width
of the network, the change in the NTK over time is
small. Specifically, for large d, we have:

∇φP (x;θθθ t)−∇φP (x;θθθ t0)≈ ∇φF (x;θθθ t)−∇φF (x;θθθ t0) .

Since at t0, we have ∇φP(x;θθθ t0) = ∇φF(x;θθθ t0), it
follows that:

∇φP(x;θθθ t)≈ ∇φF(x;θθθ t). (13)

Thus we can write

∇φF (xi;θθθ t) ·∇φF(x j;θθθ t)
⊤ ≈KP (θθθ 0xi,θθθ 0x j)

(14)

Which is simply implies

KF (x,x′
)
≈KP (θθθ 0xi,θθθ 0x j) (15)

Thus, the NTK for Propulsion approximates the
NTK for full fine-tuning:

KF (x,x′
)
≈KP (θθθ 0xi,θθθ 0x j)

Error Bound: To formalize the error between
the NTK for Propulsion and full fine-tuning, we
apply the Johnson-Lindenstrauss Lemma.

Given vectors u,v ∈ Rd with ∥u∥,∥v∥ ≤ c, and
a random matrix A ∈ Rd×k with i.i.d. entries, the
lemma states:

Pr
[∣∣∣(Au)⊤(Av)−u⊤v

∣∣∣≥ cε

]
≤ 4exp

(
− (ε2− ε3)d

4

)
.

Using the Johnson-Lindenstrauss lemma, with a
probability of at least 1− 4exp

(
− (ε2−ε3)d

4

)
Ap-

plying this to our NTK matrices, we get:

Pr
[∣∣∣(θθθ 0xi)

⊤(θθθ 0x j)−xi
⊤xj

∣∣∣]≥ 1−4exp
(
− (ε2− ε3)d

4

)

B Empirical Validation of NTK
Approximation

In this section, we present empirical evidence to
support the theoretical claims made in Theorem 1.
We compare the NTK matrices of full fine-tuning
and Propulsion fine-tuning across four different
datasets: SST-2, RTE, CoLA, and STSB. The re-
sults, visualized in Figure 6, show that the NTK
for Propulsion approximates the NTK for full fine-
tuning with high accuracy across all datasets.

For each dataset, we compute the NTK ma-
trices using both full fine-tuning and Propulsion
fine-tuning. Specifically, the first NTK matrix,
denoted as KF(x,x′), corresponds to the NTK
computed from fully fine-tuned models. The sec-
ond NTK matrix, denoted KP(θθθ 0x,θθθ 0x′), corre-
sponds to the NTK obtained from the Propul-
sion method, where the base matrix θθθ 0 remains
frozen, and only the task-specific diagonal matrix
Z is updated. Finally, to quantify the difference
between these two NTK matrices, we compute
the absolute distance between them, denoted as
|KF(x,x′)−KP(θθθ 0x,θθθ 0x′)|. This measures how
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(a) SST-2

(b) RTE

(c) CoLA

(d) STSB

Figure 6: Heat map of NTK matrix on the SST-2, RTE, CoLA, and STSB datasets. For every dataset, the first NTK
matrix is from full fine-tuning. The second NTK matrix is from the Propulsion method. The third matrix shows the
absolute distance between them.
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closely the NTK of Propulsion approximates the
NTK of full fine-tuning.

Figure 6 presents the heatmaps of the NTK ma-
trices across the SST-2, RTE, CoLA, and STSB
datasets. The heatmaps are organized as follows:
The first column corresponds to KF(x,x′), the NTK
matrix computed from full fine-tuning. The second
column corresponds to KP(θθθ 0x,θθθ 0x′), the NTK
matrix computed from Propulsion fine-tuning. The
third column shows |KF(x,x′)−KP(θθθ 0x,θθθ 0x′)|,
the absolute difference between the two NTK ma-
trices. The heatmaps demonstrate that the NTK
matrices for Propulsion fine-tuning closely resem-
ble those for full fine-tuning across all four datasets.
The third column, which shows the absolute dif-
ference, indicates that the discrepancies between
the two methods are minimal. This supports our
theoretical findings in Section 1, which claim that
Propulsion approximates full fine-tuning under the
NTK regime with high probability.

These empirical results validate the claim that
Propulsion, despite updating only a diagonal matrix
Z, can closely approximate the behavior of full
fine-tuning in the NTK regime. This is particularly
significant given that Propulsion fine-tunes a far
smaller number of parameters than full fine-tuning,
leading to more efficient training while maintaining
comparable performance. The minimal difference
observed in the third column of Figure 6 confirms
that the theoretical bound on the NTK difference,
as stated in Theorem 1, holds in practice.

C Kernel Behavior in the NTK Regime

In this section, we provide empirical validation of
the kernel behavior in the NTK regime. As the
width of the neural network tends to infinity, the
gradient of the network’s output with respect to its
parameters stabilizes, and the network exhibits lin-
ear behavior in the parameter space. This property
of NTK is crucial for understanding the training
dynamics of neural networks, particularly in fine-
tuning scenarios such as Propulsion.

We evaluate the kernel behavior by analyzing
the Jacobian matrix of the network’s output with
respect to the parameters θθθ 0 before and after sev-
eral steps of training. Specifically, we compute the
gradient of the model output φθθθ (x) with respect
to the initial parameters θθθ 0, and compare it to the
gradient after t steps of training, denoted by θθθ t . For
each dataset, the Jacobian matrices are computed as
∇θθθ 0φ(x) (the initial Jacobian matrix) and ∇θθθ t φ(x)

(the Jacobian matrix after t steps of training). To
quantify the change in the gradients, we compute
the absolute difference between the two Jacobian
matrices,

∣∣∇θθθ t φ(x)−∇θθθ 0φ(x)
∣∣, which measures

the stability of the gradients in the NTK regime
and indicates whether the network remains in the
kernel regime as training progresses.

Figure 7 presents the heatmaps of the Jaco-
bian matrices across the SST-2, RTE, CoLA, and
STSB datasets. Each row corresponds to one
of the datasets and includes three columns: the
first column shows ∇θθθ 0φ(x), the Jacobian matrix
computed from the initial model parameters be-
fore training. The second column shows ∇θθθ t φ(x),
the Jacobian matrix computed after t steps of
training. The third column shows the absolute
difference between the two Jacobian matrices,∣∣∇θθθ t φ(x)−∇θθθ 0φ(x)

∣∣. The heatmaps demonstrate
that the Jacobian matrices remain relatively stable
after t steps of training across all datasets. This sug-
gests that the gradients are largely unchanged, con-
firming that the network is operating in the NTK
regime, where the parameters exhibit kernel be-
havior, and the network’s output becomes a linear
function of the parameters.

The kernel behavior observed in the Jacobian
matrices across different datasets aligns with the
theoretical understanding of the NTK regime. In
this regime, the network’s output becomes a func-
tion of the NTK matrix, and the gradients with re-
spect to the parameters stabilize as the width of the
network increases. The results in Figure 7 provide
empirical evidence that, even after several steps of
training, the gradients remain close to their initial
values, indicating that the network has not deviated
significantly from the kernel regime. This behavior
is particularly relevant for fine-tuning methods like
Propulsion, where the stability of gradients ensures
that the model can be fine-tuned efficiently without
large deviations from the pre-trained parameters.
The minimal differences observed in the third col-
umn of the heatmaps confirm that the kernel behav-
ior holds in practice, and the network remains in
the NTK regime as training progresses.

D Comparison of Delta Weight
Reparameterization in PEFT Methods

Table 6 provides a comprehensive comparison of
various PEFT methods based on their reparame-
terization of the delta weight matrix ∆W . Each
method uses different strategies for adjusting the
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(a) SST-2

(b) RTE

(c) CoLA

(d) STSB

Figure 7: Heat map of Jacobian matrix on the SST-2, RTE, CoLA, and STSB datasets. For every dataset, the first
Jacobian matrix is from the initial steps before training. The second Jacobian matrix is from the t-steps of training.
The third matrix shows the absolute distance between them.
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Method ∆W Reparameterization Notes
Intrinsic SAID ∆W = F(W r) F : Rr→Rd , W r ∈Rr are parameters to be optimized, and r≪ d.
LoRA ∆W =WdownWup Wdown ∈ Rd×r, Wup ∈ Rr×d , and r≪{k,d}.
KronA ∆W =Wdown⊗Wup rank(Wdown⊗Wup) = rank(Wdown) × rank(Wup).
DyLoRA ∆W =Wdown↓bWup↓b Wdown↓b = Wdown[: b, :], Wup↓b = Wup[:, : b], b ∈

{rmin, . . . ,rmax}.
AdaLoRA ∆W = PAQ PP⊤ = P⊤P ̸= I = QQ⊤ = Q⊤Q, Λ = diag(σ1,σ2, . . . ,σr).
IncreLoRA ∆W =WdownΛWup Λ = [λ1,λ2, . . . ,λr] with λi being an arbitrary constant.
DeltaLoRA ∆W =WdownWup W (t+1)←W (t)+

(
W (t+1)

down W (t+1)
up −W (t)

downW (t)
up

)
.

LoRAPrune ∆W =WdownWup⊙M δ = (W + WdownWup) ⊙ M, M ∈
{0,1}1×G, G is group number.

QLoRA ∆W =W BF16
down W BF16

up Y BF16 = XBF16 · doubleDequant(cFP32
1 ,cFP8

2 ,W NF4) +
XBF16W BF16

down W BF16
up .

QA-LoRA ∆W =WdownWup Wdown ∈ Rd×r, Wup ∈ Rr×L, L is the quantization group number of
W.

LoFTQ ∆W = SV D(W −Qt) Qt = qN
(
W −W t−1

downW t−1
up

)
, qN is N-bit quantization function.

Kernel-mix ∆W h =
(
BLoRA,Bh

)(Ah
LoRA
Ah

)
BLoRA is shared across all heads, Bh,Ah provide rank-r update in each head..

LoRA-FA ∆W =WdownWup = QRWup Wdown is frozen, and only Wup is updated.
Propulsion ∆W =W ⊙Z W is frozen, and only Z is updated.

Table 6: Comparison of delta weight reparameterization across various PEFT methods. Representations of the
baseline methods are taken from Xu et al. (2023).

weight updates during fine-tuning, optimizing pa-
rameter efficiency while maintaining performance.

For example, methods like LoRA and KronA em-
ploy low-rank decompositions, while methods like
Propulsion, introduced in this work, use element-
wise updates, where the base weights W remain
frozen and only the task-specific matrix Z is up-
dated. This comparison highlights the diverse ap-
proaches used across methods, showing how the
trade-off between memory efficiency and computa-
tional complexity is handled.

E Training

Algorithm 1 describes the training process of the
Propulsion method. We begin with an input x and
a pre-trained language model M(.) consisting of
L layers, where all parameters of M(.) are frozen.
The Propulsion parameters Z are initialized at the
beginning of training. During each training epoch,
the output V is extracted from a given layer Li.
Output V is then updated to V ′ through element-
wise multiplication with zi

k. This new transformed
output of a given layer Li is then sent through the
rest of the model, where it is used as the input x for
the subsequent layer Li+1, where i ranges from 1
to N. After processing the input through all layers,
the loss specific to the task is calculated, and the
Propulsion parameters Z are updated based on this
loss.

After we employ the Propulsion method to mod-
ify the outputs at all layers and fine-tune the model,
we calculate the loss. We update only the Propul-

Algorithm 1 Propulsion PEFT training

Require: input x, a retrained LM model M(.) with
L layers

Ensure: Freeze all parameters of M(.)
Ensure: Initialization Propulsion parameters Z

while epoch < epochs do
for i← 1 to N do

V = Li(x) ▷ Output of layer Li

V ′ = [vj⊙ zk
i ]

s
j=1 ▷ Updating output

x←V ′

end for
Calculating loss for task specific goal
update parameters Z

end while

sion parameters Z , based on the task-specific loss
- the other parameters within the model remain
frozen. For STS-B dataset, we have used Mean
Squared Error and rest of all experiments in this
study, we utilize cross-entropy loss as our objective
function, which is defined below:

L (y, ŷ) =− 1
T

T

∑
t=1

yt log(ŷt) (16)

where, T represents the total number of data sam-
ples, y is the ground truth, and ŷ are the predicted
labels. Although we focused on Transformer-based
pre-trained language models to test the Propulsion
method, it can be applied to any pre-trained Neural
Network for PEFT fine-tuning because it modifies
the output of each layer, independent of the model
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Figure 8: Performance comparison of Propulsion pa-
rameter initialization techniques

structure.

F More Ablation Study

Propulsion Parameter Initialization: Setting
Propulsion parameters correctly is important for
the model to operate accurately and efficiently. As
shown in Figure 8, we tested different methods to
set these parameters on the SST-2 dataset. The re-
sults clearly show that initializing the Propulsion
parameter to 1 gives the best performance. This
superior performance can be explained by the be-
havior of the model during the first forward pass.
Specifically, when the Propulsion parameter is set
to 1, it ensures that the output of each layer in the
initial forward pass remains identical to that with-
out any Propulsion modification. This approach
allows the model to operate from a well-understood
and predictable starting point. It uses the original
output projection, which is a familiar projection
of the behavior of the model, thereby facilitating
smoother subsequent updates and adjustments to
the Propulsion parameters.

Propulsion Weights After Training: In Fig-
ure 9, we observe that the Propulsion parameter
weightings across different dimensions and layers
are a crucial aspect of our analysis. Initially, the
Propulsion weights are set to 1, and after training,
they range between 0.98 and 1.02. This variation
suggests that a small adjustment to the projection
of the layer output is necessary to achieve a task-
specific goal. The left side of the figure depicts the
distribution of the Propulsion weights across all
dimensions and layers at the start of the training,
which shows uniformly set weights of 1. The right
side of the figure, which focuses on a subset of
dimensions, illustrates the distribution of Propul-
sion weights after training, displaying the variation
in the weights. This variation indicates that the
model fine-tunes the Propulsion parameter to opti-

mize performance, reflecting the specific require-
ments of the task. These observations highlight
the significance of allowing small adjustments to
the Propulsion parameter. Even minor changes in
weight can significantly impact the model’s ability
to meet task-specific goals. Hence, the Propulsion
parameter plays an important role in the fine-tuning
process and contributes to the overall performance
of the model.

F.1 Multi-Propulsion

Instead of utilizing a single Propulsion vector in a
layer, we can employ multiple Propulsion vectors
to gain more control over the model’s adjustments
by following a pooling operation. This pooling
operation dynamically synthesizes the influence of
these vectors, effectively combining their effects
into a single output matrix V ′i . If we use the total
p numbers of Propulsion, then we can define the
pooling operation as:

V ′i = Pooling(V 1′
i ,V 2′

i , . . . ,V p′
i )

The pooled output V ′i is then processed as the input
for the subsequent layer Li+1, or can be adjusted
according to specific model requirements or task-
based needs.

Number of Propulsion Layers: We evaluate
our model’s performance on five prominent NLP
benchmarks: SST2, QNLI, MRPC, MNLI, and RTE.
As shown in Figure 10, our model maintains high
accuracy across varying Propulsion layer counts
(1 to 20.0). SST2 achieves the highest accuracy,
consistently near 95%, while RTE remains stable
at around 80%. Across datasets, performance does
not significantly fluctuate with more Propulsion
layers, indicating that this method delivers robust
performance across diverse tasks.

Pooling Comparison : We evaluate the impact
of four pooling strategies—Average, Max, Min,
and L2—on model accuracy across five benchmark
datasets: SST-2, MRPC, MNLI, QNLI, and RTE.
Figure 11 compares the different pooling methods
across datasets, with Average Pooling consistently
delivering the highest accuracy, achieving 96.83%
on SST-2 and 92.79% on QNLI, outperforming Max,
Min, and L2 Pooling by up to 1.06%. On MRPC
and MNLI, all pooling methods perform similarly,
though Average Pooling maintains a slight edge. In
the more challenging RTE dataset, differences are
minimal, with Average Pooling at 77.64% and L2
Pooling at 76.83%. These results demonstrate that
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Figure 9: Visualization of trained Propulsion parameters across the attention query layers after fine-tuning on the
SST-2 dataset. Each layer and dimension is represented, indicating the diversity of weight adjustments necessary for
task-specific performance optimization.

Figure 10: Model performance across five NLP bench-
marks (SST2, QNLI, MRPC, MNLI, RTE) with SST2
at 95% accuracy and RTE steady at 80% across Propul-
sion units (1 to 20.0)

Figure 11: Accuracy comparison of pooling strategies
(Average, Max, Min, L2) across five NLP datasets (SST-
2, MRPC, MNLI, QNLI, RTE). Average Pooling consis-
tently achieves the highest accuracy, while L2 Pooling
tends to underperform.

Average Pooling provides the best generalization
across various text classification tasks.

G Baseline Methods

Full Finetuning (FT): (Zhang et al., 2022) Full
fine-tuning entails updating all pre-trained weights
of a language model with task-specific data. This
enables the model to learn intricate patterns, par-

ticularly specific tasks, although it requires sub-
stantial computational resources and labeled data.
However, this process can result in overfitting, par-
ticularly when the task-specific dataset is limited or
the model is already well suited for the target task.
AdapterS: (Houlsby et al., 2019) is a fine-tuning
method that involves incorporating task-specific
adapter modules into a pretrained model. This ap-
proach allows parameter-efficient tuning without
requiring extensive modifications to the weights of
the original model. These adapters are often char-
acterized by their low-rank properties and include
a non-linear activation function that facilitates task-
specific adjustments while preserving a significant
portion of the pre-trained parameters.

Prompt tuning: (Lester et al., 2021) Prompt-
tuning entails appending trainable prompt tokens
to the input of a language model, thereby updating
only the prompt parameters through gradient de-
scent while leaving the pretrained model’s param-
eters frozen, which makes it a memory-efficient
approach for fine-tuning. The success of prompt
tuning is highly contingent upon the length and
training of prompt tokens.

Prefix-tuning: (Li and Liang, 2021) Prefix-
tuning is an extension of prompt tuning that intro-
duces task-specific vectors into the activations of
the multi-head attention layers of the model. These
prefixes are optimized independently and do not
modify the original pretrained parameters. Prefix-
tuning achieves fine-tuning efficiency and stability
through a parameterized feed-forward network that
parameterizes prefixes.

(IA)3: (Liu et al., 2022a) The (IA)3 approach,
which signifies Infused Adapter through Inhibit-
ing and Amplifying Inner Activations, involves
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element-wise multiplication of model activations
with task-specific vectors that have been learned.
This strategy facilitates effective adaptation to
mixed-task batches without necessitating substan-
tial alterations to the architectural structure of the
model, thereby preserving its efficiency and retain-
ing its original form.

Bitfit: (Zaken et al., 2021) Bitfit employs
a highly parameter-efficient method during fine-
tuning, because it selectively updates only the bias
parameters of a model. This technique capitalizes
on the minimal number of parameters necessary
to modify the model outputs, thereby minimizing
the memory and computational resources required
for full model training. LoRA: (Hu et al., 2021)
Low-Rank Adaptation (LoRA) is a technique that
fine-tunes a model by making low-rank updates to
the weight matrices, enabling efficient adaptation
with minimal alterations to the original parameters.
This approach effectively combines the efficiency
of parameter utilization and performance in subse-
quent tasks.

AdaLoRA: (Zhang et al., 2023) AdaLoRA is
built upon LoRA and enhances its capabilities
by adaptively allocating the rank and budget of
updates among different weight matrices based
on their importance. This approach improves
both fine-tuning efficiency and task-specific perfor-
mance. By dynamically adjusting the rank of the
updates and concentrating on the most impactful
parameters, AdaLoRA achieves a more effective
outcome.

MAM Adapter: (He et al., 2021) The MAM
Adapter integrates the principles of parallel adapter
and prefix-tuning into a cohesive structure. Its ob-
jective is to improve model adaptation through op-
timized parameter allocation, and it is designed to
refine various aspects of the model outputs by ad-
justing a combination of parameters across multiple
layers.

ProPETL: (Zeng et al., 2023) These techniques
are a set of hybrid fine-tuning methods that com-
bine the aspects of adapters, prefix-tuning, and
LoRA to optimize the performance across multiple
tasks. By integrating multiple strategies into a co-
hesive approach, these methods aim to leverage the
strengths of each technique, while mitigating their
weaknesses.

H Evaluation Metric

In this section, we detail the evaluation metrics
used to assess the performance of our models
across various tasks in the GLUE benchmark suite.
Each task is evaluated using specific metrics tai-
lored to its characteristics.

For the CoLA task, we use the Matthews corre-
lation coefficient (MCC) as the evaluation metric.
MCC is particularly useful for evaluating binary
classification tasks, as it considers into account
true and false positives and negatives, providing a
balanced measure even with imbalanced datasets.

MCC =
TP× TN− FP× FN√

(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)
where:

• T P = True Positives
• T N = True Negatives
• FP = False Positives
• FN = False Negatives

The MRPC and QQP tasks are both designed to
assess the ability of a model to determine whether
two sentences are semantically equivalent. To eval-
uate the performance of a model on these tasks,
two metrics are used: accuracy and F1 score. Accu-
racy measures the percentage of correctly identified
paraphrase pairs, while the F1 score provides a bal-
ance between precision and recall, offering a more
nuanced view of the model’s performance in iden-
tifying paraphrases.

However, the MNLI task requires the model to
classify sentence pairs into one of three categories:
entailment, contradiction, or neutral. To evaluate
the model’s performance on this task, the Average
Matched Accuracy is reported, which measures the
model’s accuracy on the matched validation set
(in-domain data). This metric reflects the model’s
ability to generalize across different genres, provid-
ing insights into its robustness and versatility.

Accuracy

Accuracy =
TP+ TN

TP+ TN+ FP+ FN

F1 Score

F1 = 2× Precision× Recall

Precision+ Recallwhere:

• Precision = TP
TP+FP

• Recall = TP
TP+FN
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For the STS-B task, which involves predicting
the degree of semantic similarity between sentence
pairs, we use both Pearson and Spearman correla-
tion coefficients to evaluate performance. These
metrics measure the linear and rank correlations
between the predicted and actual similarity scores,
respectively.

Pearson Correlation

r =
∑(xi− x̄)(yi− ȳ)√

∑(xi− x̄)2 ∑(yi− ȳ)2

Spearman Correlation

ρ = 1− 6∑d2
i

n(n2−1)

where di is the difference between the ranks of
corresponding values and n is the number of pairs.

I Dataset Description

The datasets used in this study are listed in Table 8
and 7.

Dataset Domain Train Test
MultiArith Math – 600
AddSub Math – 395
GSM8K Math 8.8K 1,319
AQuA Math 100K 254
SingleEq Math – 508
SVAMP Math – 1,000
BoolQ CS 9.4K 3,270
PIQA CS 16.1K 1,830
SIQA CS 33.4K 1,954
HellaSwag CS 39.9K 10,042
WinoGrande CS 63.2K 1,267
ARC-e CS 1.1K 2,376
ARC-c CS 2.3K 1,172
OBQA CS 5.0K 500

Table 7: Details of datasets being evaluated. Math:
arithmetic reasoning. CS: commonsense reasoning.

J Details Related Work

The development of parameter-efficient fine-tuning
methods is crucial in the NLP field due to the
increasing complexity of LLMs. These proce-
dures aim to improve LM performance while reduc-
ing computational and memory requirements, as
demonstrated by (Liu et al., 2022a; Nguyen et al.,
2023; Chow et al., 2024). The effectiveness of
PEFT techniques extends to various NLP tasks, as

Dataset Train Validation Test

SQuAD v1.1 87.6k 10.6k -
SQuAD v2.0 130k 11.9k -

XSum 204k 11.3k 11.3k
DailyMail 287k 13.4k 11.5k

CoLA 8.55k 1.04k 1.06k
SST2 67.3k 872 1.82k

MRPC 3.67k 408 1.73k
STS-B 5.75k 1.5k 1.38k
QQP 364k 40.4k 391k

MNLI 393k 9.8k 9.8k
QNLI 105k 5.46k 5.46k
RTE 2.49k 277 3k

Table 8: Data Description of Glue, Question Answering,
Text Summarizing

shown by (Fu et al., 2023; He et al., 2021). Sev-
eral researchers, including Liu et al. (2021b, 2023);
Zhang et al. (2023); Hu et al. (2021); Li and Liang
(2021); Zaken et al. (2021) have proposed methods
targeting the challenge of increasing LLM perfor-
mance with reduced computational and memory
demands. Studies have found these methods highly
effective for NLP tasks, highlighting their potential
for practical applications.

Prompt Tuning is a technique used to improve
natural language understanding and generation
tasks by adjusting learnable parameters (Lester
et al., 2021). Researchers have added residual con-
nections to improve performance and stability, and
have extended it to continual learning (Razdaibied-
ina et al., 2023b,a). Recent studies have explored
real-time transformation with dynamic prompt tun-
ing (Yang et al., 2023b) and multilevel control
(Wang et al., 2022) through hierarchical prompt
tuning. Additionally, multimodal prompt tuning
has been developed to integrate multiple data types
and improve model performance. Techniques such
as MixPrompt (Yang et al., 2023a) and E2VPT
(Han et al., 2023) have been employed to combine
input and key-value prompts, while prefix-tuning
(Li and Liang, 2021) has been used to add learnable
parameters to a pre-trained model’s input for vari-
ous NLP tasks. Hierarchical prefix-tuning has been
implemented to provide better control over model
behavior (Chen et al., 2022a) , and dynamic prefix-
tuning has been developed for real-time adaptation
based on context (Liu et al., 2022b).

Low-Rank Adaptation (LoRA) is a memory-
efficient method for fine tuning pre-trained models
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that was introduced in a study conducted by Hu
et al. (2021). In subsequent research, Renduchin-
tala et al. (2023); Sheng et al. (2023); Xia et al.
(2024) proposed extensions for multitask learning
that were applied to practical scenarios by Wang
et al. (2023). In addition, Dettmers et al. (2024)
investigated memory optimization. Lialin et al.
(2023) introduced ReLoRA, a variant designed
for Pre-training that requires a full-rank warm-
up phase. Notable contributions in this field in-
clude (Zhang et al., 2023), which dynamically ad-
justs low-rank adaptation during training, and the
Low-Rank Kronecker Product (LoKr) proposed
by Edalati et al. (2022), which focuses on knowl-
edge retention across tasks. ResLoRA, by Shi et al.
(2024), includes the use of residual paths during
the training and merging techniques to eliminate
these paths during the inference process. Finally,
Hyeon-Woo et al. (2021) introduced the Low-Rank
Hadamard Product (LoHa), that utilizes hierarchi-
cal adaptation strategies.

Subspace learning focuses on the learning pro-
cesses that can be successfully conducted within a
lower-dimensional parameter space (Larsen et al.,
2021; Gur-Ari et al., 2018). This approach involves
optimizing model weights within a low-rank sub-
space and has been widely implemented in var-
ious machine-learning domains, including meta-
learning and continual learning (Lee and Choi,
2018; Chaudhry et al., 2020). Recent advance-
ments have investigated the potential of subspace
learning to improve the model generalization and
robustness. For instance, Nunez et al. (2023) in-
troduced adaptive subspace learning methods that
dynamically adjust the subspace during training,
resulting in an improved performance across vari-
ous tasks. Furthermore, the integration of subspace
learning with neural architecture search has shown
promising results in identifying efficient model ar-
chitectures (Chen et al., 2022b).

Projected Gradient Descent (PGD) has been
improved by the GaLore method, which specifi-
cally targets gradient shapes in multilayer neural
networks rather than treating the objective func-
tion as an arbitrary nonlinear black-box function
Zhao et al. (2024); Chen and Wainwright (2015);
Chen et al. (2019). Recent research has empha-
sized the effectiveness of the GaLore method Zhao
et al. (2024) in addressing the intricacies of neu-
ral network training, making it a valuable tool for
optimizing training procedures. Moreover, addi-
tional research has indicated that GaLore presents

a benefit in obtaining more rapid convergence rates
and stability for high-dimensional datasets Zhang
and Fan (2024). Recent developments comprise
of methods for addressing sparsity and redundancy
in neural network gradients, which contribute to
increasing training efficiency Zhao et al. (2024),
representing a substantial advancement in neural
network optimization.

Memory-efficient optimization a vital aspect of
adaptive optimization algorithms , aims to decrease
memory requirements. Studies such as those con-
ducted by Shazeer and Stern (2018) emphasize the
importance of this principle. In addition, quantiza-
tion methods were employed to decrease the mem-
ory costs of the optimizer state, and a fused gradient
computation was proposed to minimize the weight
gradient memory during training Li et al. (2024).
Furthermore, recent advancements include hierar-
chical memory management for dynamic memory
allocation during training and sparse gradient up-
dates to selectively reduce memory usage (Li et al.,
2024).

K LLM Performance

K.1 Sequence Classification

In the field of classification, we conducted a com-
prehensive evaluation of various LLMs, including
Bloom (Le Scao et al., 2023), Llama2 (Touvron
et al., 2023), Falcon (Almazrouei et al., 2023), Mis-
tral (Jiang et al., 2023), and Phi-2 (Ranjit et al.,
2024), employing different fine-tuning techniques.
For each model, we examined the effectiveness of
traditional approaches such as Finetuning, Prefix-
Tuning, Prompt Tuning, PTuning, LoRA Rank 1,
and LoRA Rank 2, and compared them to our
proposed Propulsion methods, both for Propul-
sion(All) and Propulsion(Attn). Notably, Propul-
sion consistently outperforms traditional methods
across different datasets, showcasing its superior
efficiency and effectiveness. The performances
of various models on different datasets are docu-
mented in Table 9, 10, 11, 12, and 13.

Across the "Fake News Filipino" dataset, Propul-
sion, especially when applied as Propulsion(All),
demonstrates remarkable performance improve-
ments compared to traditional approaches. It
achieves the highest accuracy and F1-score, em-
phasizing its capability to efficiently adapt LLMs
to specific tasks while minimizing trainable pa-
rameters. In the "Emotion" dataset, Propulsion
consistently outperforms other methods, indicating
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its robustness across different classification tasks.
The same trend is observed in the "SST-2" dataset,
where Propulsion invariably achieves superior re-
sults. Lastly, in the "Cola" dataset, Propulsion(All)
and Propulsion(Attn) perpetually outperform other
approaches, underscoring their potential for en-
hancing sequence classification tasks.

Comparatively, traditional methods like Propul-
sion(All) and Propulsion(Attn), although efficient
in terms of parameters compared to fine-tuning,
tend to lag behind Propulsion in terms of accuracy
and F1-score. Furthermore, Propulsion requires
fewer trainable parameters, making it an attractive
choice for practitioners aiming to optimize perfor-
mance while maintaining efficiency.

Dataset Type Parameters (%) Accuracy (%) F1-score (%)

Fake News Filipino

Full Fine-tuning 100.000 95.02 93.83
Prefix-Tuning 0.03493 70.99 68.18
Prompt Tuning 0.00701 74.31 72.23

P-Tuning 0.01582 72.97 70.19
LoRA Rank 1 0.01413 90.13 88.87
LoRA Rank 2 0.05794 93.56 90.05

Propulsion(All) 0.00032 92.98 90.75
Propulsion(Attn) 0.00014 91.14 89.26

Emotion

Full Fine-tuning 100.000 90.31 87.52
Prefix-Tuning 0.03521 74.75 68.11
Prompt Tuning 0.00813 79.12 71.07

P-Tuning 0.01593 69.45 70.23
LoRA Rank 1 0.02413 86.76 80.23
LoRA Rank 2 0.06831 87.52 82.01

Propulsion(All) 0.00159 88.32 82.75
Propulsion(Attn) 0.00102 86.93 82.26

SST2

Full Fine-tuning 100.000 97.93 97.81
Prefix-Tuning 0.03493 85.78 86.31
Prompt Tuning 0.00715 92.45 92.78

P-Tuning 0.01653 91.34 91.75
LoRA Rank 1 0.01456 92.27 92.77
LoRA Rank 2 0.02831 94.36 94.83

Propulsion(All) 0.00080 96.95 96.74
Propulsion(Attn) 0.00031 96.64 96.27

Cola

Full Fine-tuning 100.000 87.05 89.93
Prefix-Tuning 0.03495 73.72 83.69
Prompt Tuning 0.00723 82.74 87.70

P-Tuning 0.01615 70.32 81.12
LoRA Rank 1 0.01415 81.13 83.03
LoRA Rank 2 0.02797 84.33 85.21

Propulsion(All) 0.00079 84.99 86.22
Propulsion(Attn) 0.00048 84.62 85.98

Table 9: Sequence Classification Results for the Bloom
Model. The best results are highlighted in bold, and the
second-best result is underlined for clarity.

K.2 Token Classification

Tables 14, 15, 16, 17, and 18 compare the results of
Propulsion and other PEFT methods on token clas-
sification. The majority of experiments on token
classification show Propulsion having higher ac-
curacy and F1-scores compared to the other PEFT
methods tested. The accuracy under Propulsion is
still less than full fine-tuning, but remains higher
amongst the other PEFT methods.

Amongst the two Propulsion applications, there
seems to be a mix as to which Propulsion method
provides the best improvement. Within the conl103

Dataset Type Parameters (%) Accuracy (%) F1-score (%)

Fake News Filipino

Full Fine-tuning 100.000 95.22 93.90
Prefix-Tuning 0.03983 70.06 68.57
Prompt Tuning 0.00743 73.72 72.07

P-Tuning 0.01731 71.54 70.63
LoRA Rank 1 0.01601 90.38 87.62
LoRA Rank 2 0.03213 92.14 90.86

Propulsion(All) 0.00021 92.37 89.98
Propulsion(Attn) 0.00032 90.95 88.32

Emotion

Full Fine-tuning 100.000 91.11 87.92
Prefix-Tuning 0.03994 84.31 82.78
Prompt Tuning 0.00864 85.37 82.50

P-Tuning 0.01781 83.05 81.88
LoRA Rank 1 0.01624 86.49 82.86
LoRA Rank 2 0.03233 88.56 84.18

Propulsion(All) 0.00171 88.82 83.63
Propulsion(Attn) 0.00120 85.97 82.91

SST2

Full Fine-tuning 100.000 97.32 97.69
Prefix-Tuning 0.04855 85.78 86.31
Prompt Tuning 0.00712 94.24 97.26

P-Tuning 0.01753 95.55 96.62
LoRA Rank 1 0.01607 86.97 81.93
LoRA Rank 2 0.03191 87.11 82.03

Propulsion(All) 0.00083 96.62 96.56
Propulsion(Attn) 0.00034 96.60 96.45

Cola

Full Fine-tuning 100.000 88.22 89.64
Prefix-Tuning 0.03984 71.18 83.29
Prompt Tuning 0.00757 73.27 85.26

P-Tuning 0.01751 69.12 81.74
LoRA Rank 1 0.01603 82.25 83.43
LoRA Rank 2 0.03213 84.18 83.88

Propulsion(All) 0.00090 85.21 86.33
Propulsion(Attn) 0.00058 84.46 85.95

Table 10: Sequence Classification Results for the
Llama2 Model. The best results are highlighted in bold,
and the second-best result is underlined for clarity ex-
cept full fine-tuning.

Dataset Type Parameters (%) Accuracy (%) F1-score (%)

Fake News Filipino

Full Fine-tuning 100.000 94.05 92.93
Prefix-Tuning 0.03821 69.57 68.19
Prompt Tuning 0.00732 72.35 70.78

P-Tuning 0.01797 70.23 69.15
LoRA Rank 1 0.00972 88.31 85.14
LoRA Rank 2 0.05784 91.89 89.44

Propulsion(All) 0.00072 90.21 88.97
Propulsion(Attn) 0.00027 90.32 87.35

Emotion

Full Fine-tuning 100.000 88.53 85.94
Prefix-Tuning 0.03836 81.14 80.61
Prompt Tuning 0.00841 87.25 84.19

P-Tuning 0.01803 81.76 79.14
LoRA Rank 1 0.01194 84.17 82.34
LoRA Rank 2 0.05781 88.79 86.13

Propulsion(All) 0.00201 87.01 82.22
Propulsion(Attn) 0.00111 86.39 82.14

SST2

Full Fine-tuning 100.000 96.23 95.76
Prefix-Tuning 0.03818 90.18 91.36
Prompt Tuning 0.00605 93.56 93.75

P-Tuning 0.01781 90.33 91.26
LoRA Rank 1 0.01193 91.13 92.07
LoRA Rank 2 0.05789 91.72 92.17

Propulsion(All) 0.00090 94.83 94.21
Propulsion(Attn) 0.00035 95.23 95.18

Cola

Full Fine-tuning 100.000 85.22 87.39
Prefix-Tuning 0.03826 70.03 82.23
Prompt Tuning 0.00711 71.45 84.47

P-Tuning 0.01792 68.07 81.73
LoRA Rank 1 0.00973 82.14 82.38
LoRA Rank 2 0.05741 84.66 85.33

Propulsion(All) 0.00091 83.84 85.13
Propulsion(Attn) 0.00062 84.21 85.33

Table 11: Sequence Classification Results for the Falcon
Model. The best results are highlighted in bold, and the
second-best result is underlined for clarity except full
fine-tuning.
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Dataset Type Parameters Accuracy (%) F1-score (%)

Fake News Filipino

Full Fine-tuning 100.000 97.92 94.72
Prefix-Tuning 0.03651 71.26 70.91
Prompt Tuning 0.00169 74.12 72.27

P-Tuning 0.01753 71.37 71.95
LoRA Rank 1 0.07502 91.28 90.05
LoRA Rank 2 0.17129 92.19 89.18

Propulsion(All) 0.00017 94.15 91.96
Propulsion(Attn) 0.00024 92.54 90.16

Emotion

Full Fine-tuning 100.000 93.53 89.09
Prefix-Tuning 0.03683 82.19 79.24
Prompt Tuning 0.00736 86.17 81.77

P-Tuning 0.01783 83.14 80.01
LoRA Rank 1 0.01539 84.37 80.08
LoRA Rank 2 0.01731 88.45 84.23

Propulsion(All) 0.00160 88.83 82.61
Propulsion(Attn) 0.00112 89.23 84.99

SST2

Full Fine-tuning 100.000 98.09 98.98
Prefix-Tuning 0.03673 91.20 92.28
Prompt Tuning 0.00618 93.14 93.47

P-Tuning 0.01764 90.76 91.15
LoRA Rank 1 0.01512 92.65 93.03
LoRA Rank 2 0.01726 94.53 94.67

Propulsion(All) 0.00078 97.01 96.07
Propulsion(Attn) 0.00029 96.82 97.25

Cola

Full Fine-tuning 100.000 87.75 89.90
Prefix-Tuning 0.03652 72.21 80.43
Prompt Tuning 0.00639 74.13 81.66

P-Tuning 0.01754 71.23 79.76
LoRA Rank 1 0.01505 83.44 84.65
LoRA Rank 2 0.01712 85.32 86.04

Propulsion(All) 0.00080 86.07 86.32
Propulsion(Attn) 0.00042 85.01 86.36

Table 12: Sequence Classification Results for the Mis-
tral Model. The best results are highlighted in bold, and
the second-best result is underlined for clarity except
full fine-tuning.

Dataset Type Parameters (%) Accuracy (%) F1-score (%)

Fake News Filipino

Full Fine-tuning 100.000 92.43 90.71
Prefix-Tuning 0.83914 66.28 66.31
Prompt Tuning 0.14124 68.15 67.22

P-Tuning 0.15824 67.33 66.87
LoRA Rank 1 0.13741 83.35 81.46
LoRA Rank 2 0.71651 86.67 84.29

Propulsion(All) 0.04261 89.46 88.73
Propulsion(Attn) 0.04921 88.74 87.21

Emotion

Full Fine-tuning 100.000 87.95 84.78
Prefix-Tuning 0.86523 77.27 76.25
Prompt Tuning 0.14234 82.16 80.43

P-Tuning 0.15845 77.36 75.81
LoRA Rank 1 0.13748 82.67 80.25
LoRA Rank 2 0.71656 85.03 82.66

Propulsion(All) 0.06269 82.72 80.71
Propulsion(Attn) 0.02419 85.94 83.24

SST2

Full Fine-tuning 100.000 94.63 94.24
Prefix-Tuning 0.83721 86.24 87.13
Prompt Tuning 0.14231 88.19 88.04

P-Tuning 0.15851 85.43 87.68
LoRA Rank 1 0.13753 86.21 87.18
LoRA Rank 2 0.71668 86.75 88.28

Propulsion(All) 0.02740 96.95 96.75
Propulsion(Attn) 0.01470 96.63 96.29

Cola

Full Fine-tuning 100.000 84.23 85.13
Prefix-Tuning 0.82621 66.24 70.16
Prompt Tuning 0.14123 67.47 70.81

P-Tuning 0.15833 64.36 68.38
LoRA Rank 1 0.13744 78.55 80.26
LoRA Rank 2 0.71654 80.39 82.43

Propulsion(All) 0.03671 80.97 82.21
Propulsion(Attn) 0.05140 81.41 82.74

Table 13: Sequence Classification Results for the Phi-2
Model. The best results are highlighted in bold, and the
second-best result is underlined for clarity except full
fine-tuning.

dataset, Propulsion(Attn) provided the highest ac-
curacy and F1-scores on four of the five LLMs
tested. In contrast, Propulsion(All) had higher ac-
curacy and F1-scores than Propulsion(Attn) on the
WikiAnn dataset. This may indicate that the lay-
ers Propulsion may depend on the use case. Re-
gardless of dataset, however, Propulsion applied
to any combination of layers showed either similar
or improved metrics while significantly reducing
parameter size.

Dataset Type Parameters (%) Accuracy (%) F1-score (%)

conll03

Full Fine-tuning 100.000 98.53 82.47
Prefix-Tuning 0.03534 83.55 24.86
Prompt Tuning 0.00843 85.23 28.73

P-Tuning 0.01583 83.22 26.34
LoRA Rank 1 0.01403 91.12 68.24
LoRA Rank 2 0.06795 93.23 71.33

Propulsion(All) 0.00068 94.18 71.69
Propulsion(Attn) 0.00049 94.21 71.70

NCBI disease

Full Fine-tuning 100.000 98.53 92.46
Prefix-Tuning 0.03492 89.09 60.06
Prompt Tuning 0.00742 91.17 75.34

P-Tuning 0.01572 90.22 81.23
LoRA Rank 1 0.01417 92.86 80.00
LoRA Rank 2 0.06797 96.12 83.49

Propulsion(All) 0.00091 96.27 84.95
Propulsion(Attn) 0.00066 95.42 82.28

WikiAnn

Full Fine-tuning 100.000 90.50 60.14
Prefix-Tuning 0.03527 71.67 22.18
Prompt Tuning 0.00732 76.23 31.78

P-Tuning 0.01577 70.65 24.33
LoRA Rank 1 0.01408 82.23 41.23
LoRA Rank 2 0.06791 85.13 45.14

Propulsion(All) 0.00081 83.29 42.23
Propulsion(Attn) 0.00042 82.69 42.21

Table 14: Token Classification Results for the Bloom
Model. The best results are highlighted in bold, and the
second-best result is underlined for clarity except full
fine-tuning.

Dataset Type Parameters (%) Accuracy (%) F1-score (%)

conll03

Full Fine-tuning 100.000 98.75 80.77
Prefix-Tuning 0.03964 82.28 66.56
Prompt Tuning 0.00638 86.65 69.91

P-Tuning 0.01731 80.11 65.11
LoRA Rank 1 0.01426 88.67 63.34
LoRA Rank 2 0.07122 91.32 69.03

Propulsion(All) 0.00040 93.73 70.93
Propulsion(Attn) 0.00069 93.12 70.29

NCBI disease

Full Fine-tuning 100.000 98.32 93.38
Prefix-Tuning 0.03976 88.23 68.23
Prompt Tuning 0.00712 91.22 78.24

P-Tuning 0.01733 90.15 77.23
LoRA Rank 1 0.01424 92.48 80.18
LoRA Rank 2 0.07125 95.34 82.87

Propulsion(All) 0.00081 96.33 84.84
Propulsion(Attn) 0.00060 96.28 84.89

WikiAnn

Full Fine-tuning 100.000 91.49 63.21
Prefix-Tuning 0.03986 81.15 35.17
Prompt Tuning 0.00712 83.23 44.19

P-Tuning 0.01743 81.29 38.11
LoRA Rank 1 0.01434 84.82 47.90
LoRA Rank 2 0.07125 86.56 49.39

Propulsion(All) 0.00079 86.89 50.71
Propulsion(Attn) 0.00048 86.79 49.64

Table 15: Token Classification Results for the Llama2
Model. The best results are highlighted in bold, and the
second-best result is underlined for clarity except full
fine-tuning.
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Dataset Type Parameters (%) Accuracy (%) F1-score (%)

conll03

Full Fine-tuning 100.000 97.82 79.03
Prefix-Tuning 0.03772 90.57 67.62
Prompt Tuning 0.00832 91.26 70.15

P-Tuning 0.01762 89.23 66.02
LoRA Rank 1 0.01942 90.21 68.96
LoRA Rank 2 0.09752 93.25 71.19

Propulsion(All) 0.00068 94.31 71.83
Propulsion(Attn) 0.00051 94.87 72.08

NCBI disease

Full Fine-tuning 100.000 97.93 90.88
Prefix-Tuning 0.03763 89.23 69.33
Prompt Tuning 0.00721 92.05 82.28

P-Tuning 0.01752 88.15 70.36
LoRA Rank 1 0.01936 90.55 80.25
LoRA Rank 2 0.09754 94.41 83.19

Propulsion(All) 0.00082 95.73 82.08
Propulsion(Attn) 0.00053 96.12 84.38

WikiAnn

Full Fine-tuning 100.000 89.23 62.09
Prefix-Tuning 0.03772 82.67 36.55
Prompt Tuning 0.00836 83.33 43.32

P-Tuning 0.01768 81.14 35.21
LoRA Rank 1 0.01983 80.47 41.58
LoRA Rank 2 0.09752 86.61 48.03

Propulsion(All) 0.00060 82.89 42.61
Propulsion(Attn)) 0.00041 82.86 42.39

Table 16: Token Classification Results for the Falcon
Model. The best results are highlighted in bold, and the
second-best result is underlined for clarity except full
fine-tuning.

Dataset Type Parameters (%) Accuracy (%) F1-score (%)

conll03

Full Fine-tuning 100.000 98.89 84.60
Prefix-Tuning 0.03634 83.31 58.54
Prompt Tuning 0.00741 87.77 62.19

P-Tuning 0.01743 81.15 67.59
LoRA Rank 1 0.01494 88.32 68.14
LoRA Rank 2 0.08694 92.05 70.66

Propulsion(All) 0.00060 95.39 72.80
Propulsion(Attn) 0.00040 95.99 72.13

NCBI disease

Full Fine-tuning 100.000 98.52 93.39
Prefix-Tuning 0.03627 88.49 74.25
Prompt Tuning 0.00696 92.03 80.11

P-Tuning 0.01735 87.13 63.29
LoRA Rank 1 0.01483 94.58 82.37
LoRA Rank 2 0.08698 96.88 83.15

Propulsion(All) 0.00078 96.81 85.16
Propulsion(Attn) 0.00049 97.09 85.13

WikiAnn

Full Fine-tuning 100.000 92.15 63.09
Prefix-Tuning 0.03633 81.91 36.03
Prompt Tuning 0.00752 84.48 45.31

P-Tuning 0.01733 81.04 35.02
LoRA Rank 1 0.01495 82.08 42.22
LoRA Rank 2 0.08692 85.33 45.95

Propulsion(All) 0.00090 86.63 46.29
Propulsion(Attn) 0.00048 85.19 45.62

Table 17: Token Classification Results for the Mistral
Model. The best results are highlighted in bold, and the
second-best result is underlined for clarity except full
fine-tuning.

Dataset Type Parameters (%) Accuracy (%) F1-score (%)

conll03

Full Fine-tuning 100.000 98.13 79.02
Prefix-Tuning 0.83844 78.27 56.63
Prompt Tuning 0.14124 80.38 58.27

P-Tuning 0.15814 76.54 56.07
LoRA Rank 1 0.13746 84.44 62.15
LoRA Rank 2 0.71649 86.56 65.43

Propulsion(All) 0.00949 90.52 71.83
Propulsion(Attn) 0.00835 91.18 71.88

NCBI disease

Full Fine-tuning 100.000 95.82 91.19
Prefix-Tuning 0.83823 82.42 63.38
Prompt Tuning 0.13939 85.61 65.44

P-Tuning 0.15794 81.17 67.63
LoRA Rank 1 0.13748 86.23 78.45
LoRA Rank 2 0.71493 87.34 78.26

Propulsion(All) 0.00990 89.32 80.74
Propulsion(Attn) 0.00434 90.93 81.87

WikiAnn

Full Fine-tuning 100.000 88.92 58.21
Prefix-Tuning 0.83832 74.37 31.57
Prompt Tuning 0.01416 78.86 38.32

P-Tuning 0.15812 75.23 32.26
LoRA Rank 1 0.13748 79.04 39.88
LoRA Rank 2 0.71649 81.53 44.47

Propulsion(All) 0.00847 82.08 42.97
Propulsion(Attn) 0.00690 83.28 43.01

Table 18: Token Classification Results for the Phi-2
Model. The best results are highlighted in bold, and the
second-best result is underlined for clarity except full
fine-tuning.

K.3 Entailment Detection

The results of entailment detection using various
models, including Bloom, Llama2, Falcon, Mistral,
and Phi-2, are presented in Tables 19, 20, 21, 22,
and 23. Across all three datasets (RTE, MRPC,
SNLI), full fine-tuning consistently achieves the
highest accuracy and F1-score, with Bloom and
Mistral models demonstrating remarkable results.
This underscores the value of fine-tuning the entire
model’s parameters to adapt to specific entailment
tasks, as it allows the model to capture intricate
patterns and nuances in the data.

In contrast, Propulsion(All) and Propul-
sion(Attn) techniques, which involve fine-tuning
only a small fraction of the model’s parameters,
tend to yield significantly lower accuracy and
F1-scores. This suggests that limiting parameter
updates to specific Propulsion(All) or Propul-
sion(Attn) may not be sufficient for optimal
entailment classification performance, as these
methods may struggle to capture the diverse and
complex relationships present in the data.

The LoRA Rank 1 and LoRA Rank 2 models
deliver competitive results, particularly evident in
the RTE dataset, where they outperform other tech-
niques. This indicates that techniques like LoRA
Rank, which involve a moderate amount of pa-
rameter modification, can strike a balance between
model adaptation and computational efficiency.

However, Propulsion, whether applied to Propul-
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sion(All) or Propulsion(Attn), consistently per-
forms well across datasets, demonstrating its ef-
fectiveness as an alternative fine-tuning strategy.
Propulsion achieves strong results with a minimal
increase in the number of parameters, making it
a promising approach for entailment classification
tasks where computational resources are a concern.

Dataset Type Parameters (%) Accuracy (%) F1-score (%)

RTE

Full Fine-tuning 100.000 92.31 87.19
Prefix-Tuning 0.03493 70.03 64.06
Prompt Tuning 0.00714 65.34 62.20

P-Tuning 0.01584 71.11 69.23
LoRA Rank 1 0.01402 80.25 80.01
LoRA Rank 2 0.05804 84.45 83.26

Propulsion(All) 0.00070 83.98 82.86
Propulsion(Attn) 0.00049 84.98 83.97

MRPC

Full Fine-tuning 100.000 90.01 91.13
Prefix-Tuning 0.03494 73.56 81.70
Prompt Tuning 0.00773 81.39 86.01

P-Tuning 0.01562 78.08 84.38
LoRA Rank 1 0.01393 80.21 82.29
LoRA Rank 2 0.05799 83.88 84.84

Propulsion(All) 0.00080 88.99 86.28
Propulsion(Attn) 0.00050 89.13 86.47

SNLI

Full Fine-tuning 100.000 95.62 95.78
Prefix-Tuning 0.03492 87.32 87.26
Prompt Tuning 0.00803 88.88 88.87

P-Tuning 0.01594 86.22 86.54
LoRA Rank 1 0.01412 91.37 91.36
LoRA Rank 2 0.05813 93.23 93.68

Propulsion(All) 0.0008- 92.64 92.88
Propulsion(Attn) 0.00056 93.75 94.02

Table 19: Entailment Classification Results for the
Bloom Model. The best results are highlighted in bold,
and the second-best result is underlined for clarity ex-
cept full fine-tuning.

Dataset Type Parameters (%) Accuracy (%) F1-score (%)

RTE

Full Fine-tuning 100.000 93.51 88.92
Prefix-Tuning 0.03982 70.15 65.23
Prompt Tuning 0.00737 62.81 66.00

P-Tuning 0.01753 67.24 66.21
LoRA Rank 1 0.01612 81.04 80.67
LoRA Rank 2 0.03224 83.43 81.44

Propulsion(All) 0.00071 85.83 84.12
Propulsion(Attn) 0.00048 83.82 83.53

MRPC

Full Fine-tuning 100.000 92.25 92.95
Prefix-Tuning 0.03973 79.41 80.01
Prompt Tuning 0.00724 80.18 80.37

P-Tuning 0.01745 74.56 82.67
LoRA Rank 1 0.01601 80.48 82.02
LoRA Rank 2 0.03218 81.89 83.11

Propulsion(All) 0.00079 85.97 86.37
Propulsion(Attn) 0.00047 85.13 85.47

SNLI

Full Fine-tuning 100.000 93.31 94.03
Prefix-Tuning 0.03986 86.34 86.33
Prompt Tuning 0.00736 87.02 87.41

P-Tuning 0.01752 85.17 86.27
LoRA Rank 1 0.01613 90.21 90.87
LoRA Rank 2 0.03228 91.15 91.85

Propulsion(All) 0.00090 91.53 91.91
Propulsion(Attn) 0.00064 90.89 91.14

Table 20: Entailment Classification Results for the
Llama2 Model. The best results are highlighted in bold,
and the second-best result is underlined for clarity ex-
cept full fine-tuning.

Dataset Type Parameters (%) Accuracy (%) F1-score (%)

RTE

Full Fine-tuning 100.000 93.22 87.67
Prefix-Tuning 0.03822 64.23 63.38
Prompt Tuning 0.00813 66.51 66.02

P-Tuning 0.01794 53.42 53.09
LoRA Rank 1 0.01138 73.28 70.15
LoRA Rank 2 0.01774 78.33 73.42

Propulsion(All)) 0.00080 80.22 79.83
Propulsion(Attn) 0.00064 80.35 79.88

MRPC Full Fine-tuning 100.000 90.21 90.83
Prefix-Tuning 0.03813 74.13 78.22
Prompt Tuning 0.00715 80.04 80.19

P-Tuning 0.01783 80.43 79.59
LoRA Rank 1 0.00983 80.82 82.21
LoRA Rank 2 0.01763 82.52 83.01

Propulsion(All) 0.00072 82.78 83.60
Propulsion(Attn) 0.00050 83.13 85.27

SNLI Full Fine-tuning 100.000 92.53 92.97
Prefix-Tuning 0.03822 84.33 84.98
Prompt Tuning 0.00843 86.13 86.93

P-Tuning 0.01782 83.31 83.66
LoRA Rank 1 0.01163 87.05 87.29
LoRA Rank 2 0.06773 89.21 89.88

Propulsion(All) 0.00068 90.80 91.02
Propulsion(Attn) 0.00049 90.81 91.03

Table 21: Entailment Classification Results for the Fal-
con Model. The best results are highlighted in bold, and
the second-best result is underlined for clarity except
full fine-tuning.

Dataset Type Parameters (%) Accuracy (%) F1-score (%)

RTE

Full Fine-tuning 100.000 94.67 89.82
Prefix-Tuning 0.03663 76.22 74.45
Prompt Tuning 0.00732 80.34 80.17

P-Tuning 0.01778 75.12 75.86
LoRA Rank 1 0.01521 83.39 82.25
LoRA Rank 2 0.06739 85.65 83.12

Propulsion(All) 0.00080 84.83 83.77
Propulsion(Attn) 0.00061 85.84 84.77

MRPC

Full Fine-tuning 100.000 93.02 94.21
Prefix-Tuning 0.03654 75.28 77.03
Prompt Tuning 0.00722 80.34 82.17

P-Tuning 0.01715 76.19 80.31
LoRA Rank 1 0.01513 82.83 83.41
LoRA Rank 2 0.06724 86.47 87.02

Propulsion(All) 0.00078 85.73 85.27
Propulsion(Attn) 0.00050 86.41 87.88

SNLI

Full Fine-tuning 100.000 94.21 95.32
Prefix-Tuning 0.03666 85.55 85.78
Prompt Tuning 0.00744 86.35 86.21

P-Tuning 0.01774 85.37 86.05
LoRA Rank 1 0.01524 84.12 84.76
LoRA Rank 2 0.06736 89.11 89.77

Propulsion(All) 0.00085 91.72 91.41
Propulsion(Attn) 0.00063 92.66 91.80

Table 22: Entailment Classification Results for the Mis-
tral Model. The best results are highlighted in bold, and
the second-best result is underlined for clarity except
full fine-tuning.
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Dataset Type Parameters (%) Accuracy (%) F1-score (%)

RTE

Full Fine-tuning 100.000 90.37 85.74
Prefix-Tuning 0.83872 59.54 58.27
Prompt Tuning 0.14234 61.18 61.84

P-Tuning 0.15834 58.61 56.38
LoRA Rank 1 0.13746 66.52 65.82
LoRA Rank 2 0.71658 72.25 70.45

Propulsion(All) 0.00421 76.54 75.89
Propulsion(Attn) 0.00250 76.63 76.21

MRPC

Full Fine-tuning 100.000 89.31 90.21
Prefix-Tuning 0.83822 71.15 72.78
Prompt Tuning 0.14345 73.16 75.28

P-Tuning 0.15842 70.48 71.21
LoRA Rank 1 0.13747 80.53 81.33
LoRA Rank 2 0.71659 83.19 84.23

Propulsion(All) 0.00739 83.73 84.82
Propulsion(Attn) 0.00345 82.64 83.52

SNLI

Full Fine-tuning 100.00 90.54 91.02
Prefix-Tuning 0.83844 79.27 79.82
Prompt Tuning 0.14149 81.30 81.80

P-Tuning 0.15823 78.56 77.96
LoRA Rank 1 0.13745 82.45 82.67
LoRA Rank 2 0.71656 84.36 84.89

Propulsion(All) 0.00605 89.31 90.61
Propulsion(Attn) 0.00580 88.59 88.86

Table 23: Entailment Classification Results for the Phi-2
Model. The best results are highlighted in bold, and the
second-best result is underlined for clarity except full
fine-tuning.

L Variable Description:
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Variable Description
M(.) Pre-trained language model with frozen parameters

N Number of layers in the model
Li(x) Output of the i-th layer given input x

x Input representation
s Sequence length of tokens
d Dimension of each token
V Output of layer Li

Z Trainable Propulsion matrix
zi Element-wise scalar transformation vector
⊙ Element-wise multiplication operation
vj
′ Transformed output after Propulsion

k Propulsion degree for nonlinear transformation
V ′ New output after Propulsion and Propulsion
L Cross-entropy loss function
T Total number of data samples
y Ground truth labels
ŷ Predicted labels

Table 24: Table of Variables and Descriptions
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