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Abstract

The study of classroom discourse is essential
for enhancing child development and educa-
tional outcomes in academic settings. Prior
research has focused on the annotation of con-
versational talk-turns within the classroom, of-
fering a statistical analysis of the various types
of discourse prevalent in these environments. In
this work, we explore the generalizability and
transferability of text classifiers trained to pre-
dict these discourse codes across educational
domains. We examine two distinct English-
language classroom datasets from the domains:
literacy and math. Our results show that mod-
els exhibit high accuracy and generalizability
when the training and test datasets originate
from the same or similar domains. In situations
where limited training data is available in new
domains, few shot and zero shot exhibit more
resiliency and are less effected than their super-
vised counterparts. We also observe that accom-
panying each talk turn with dialog-level context
improves the accuracy of generative models.
We conclude by offering suggestions on how to
enhance the generalization of these methods to
novel domains, proposing directions for future
studies to investigate new methods for boosting
model adaptability across domains.

1 Introduction

In recent years, computational approaches have
increasingly demonstrated their potential to cap-
ture and analyze discourse-level features within
educational settings (Ganesh et al., 2021). Previ-
ous research in this domain has provided valuable
insights, particularly in the context of specific ed-
ucational domains or settings (Wang et al., 2023).
However, these studies often limit their focus to
a single domain, and the adaptability and effec-
tiveness of these models across varied educational
contexts is less well understood. In many cases, it
is challenging to obtain large amounts of training
data for the exact educational setting in which a

Figure 1: Cross Domain Training in an educational
context where model trained on classroom discourse
from the literacy domain is applied to the math domain
to predict talk moves in a new context.

system is intended to be deployed. Hence, it is cru-
cial to explore how different approaches perform in
scenarios with limited or mismatched training data,
to better assess their robustness and transferability
across educational domains and contexts.

Addressing this gap, we investigate a range of
models, from fine-tuned classifiers to in-context
learning approaches with generative language mod-
els. Our focus is to evaluate how the performance
of these models varies as the distance between the
contexts of the training and test domains increases.
By ‘distance,’ we refer not only to the difference
in academic domains (e.g., English vs. Mathemat-
ics) but also to differences in educational materials
such as textbooks used and instructional variations
among teachers. We explore the generalizability
of various computational methods across diverse
educational settings as illustrated in Figure 1.

Our primary contributions are (1) an analysis
of the generalizability of language models across
educational domains, providing insights into the
adaptability and limitations of these models when
applied in different educational contexts, espe-
cially in low-resource settings; (2) experiments
evaluating two classes of models, i.e., fine-tuned
transformer-based encoder models and in-context
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learning approaches, for classifying educational
talk-turns with discourse codes; and (3) the cre-
ation of a new evaluation set for testing the general-
izability and accuracy of various language models
for cross-domain classification of discourse codes.

Using data ranging from read-aloud discussions
in early education classrooms to interactions from
mathematics classes, we investigate how model per-
formance varies across contexts. We aim to shed
light on the strengths and limitations of current
computational approaches in educational discourse
analysis. Our results demonstrate that models ex-
hibit accurate discourse code classification when
the training and test datasets originate from the
same domains, but as expected, the effectiveness of
these models begins to decrease as the training and
testing scenarios become more dissimilar. Further-
more, in low-resource settings within new domains,
in-context learning models exhibit a degree of re-
silience, with the performance gap between them
and their supervised counterparts being less drastic.

Despite this decline in performance, exploration
of fine-tuned and in-context learning models in
cross-domain scenarios remains crucial in this area
of study in order to precisely quantify the extent
of this performance dip, especially given recent
advancements in large language models (LLMs).
Further, we investigate how the choice of model or
the inclusion of additional information such as con-
versational context might help mitigate this drop-
off, seeking to highlight which computational ap-
proaches might exhibit greater resilience against
the challenges posed by domain variance, thereby
contributing to the generalizability of these models
across diverse educational settings.

2 Related Work

The dynamics of student-teacher classroom dis-
course play a pivotal role in shaping the experience
and outcomes of students. Several papers have stud-
ied this phenomenon, particularly in the context of
K-12 mathematics education and other childhood
learning environments. For example, Suresh et al.
(2022a) found that sustained classroom discourse
is a critical component of equitable and a rich learn-
ing environment. Towards that goal, they built an
extensive collection of human-annotated transcripts
from K-12 classroom mathematics lessons as they
can be effective tools for understanding discourse
patterns in classroom instructions. Furthermore,
Demszky et al. (2021) argue that teachers’ acknowl-

edgement, repetition and reformulation of students’
responses has been linked to higher student engage-
ment and achievement. The impact of building
upon student contributions in the classroom is ex-
plored in studies by Brophy and Good (1984) and
Faculty and Michaels (1993). They demonstrate
that acknowledgment, repetition, and elaboration
of student inputs can significantly enhance student
learning and academic achievement. Wright (2019)
delves into the significance of read-aloud activities
in nurturing children’s reading skills and knowl-
edge. They deduce that engaging in interactive
read-alouds is beneficial for children in acquiring
new vocabulary, understanding textual functions,
and developing a diverse set of skills essential for
independent reading. Giroir et al. (2015) explore ef-
fective methodologies for implementing read-aloud
programs. Their research particularly focuses on
integrating aspects of second language acquisition
and culturally responsive teaching methods, outlin-
ing critical steps and applications for an effective
read-aloud strategy.

In the context of early childhood education,
Christ et al. (2023) study the interactions between
teacher and child talk-turns during read-aloud ses-
sions. The statistical discourse analysis conducted
in this study provides insights into how certain
talk-turns can influence children’s comprehension
responses, thereby emphasizing the critical role of
teacher mediation in shaping learning outcomes.
Their findings also demonstrate that when chil-
dren’s talk-turns mediate other children’s actions,
they act as a predictor for those children’s subse-
quent responses in terms of comprehension.

Given the breadth of actionable findings in this
area, a promising direction is to develop tools that
assist teachers in refining their instructional strate-
gies. Suresh et al. (2022b) outline the development
of the TalkBack application. Their tool leverages
deep learning capabilities to provide teachers with
automated feedback on their discourse strategies,
highlighting the importance of automated feedback
to enhance and enrich teacher learning. Specif-
ically, it aids in refining instructional strategies,
thereby enhancing the learning environment.

In recent years, advancements in NLP have
opened new and effective means of analyzing and
enhancing classroom discourse. Ganesh et al.
(2021) aims to enhance classroom learning and
engagement by developing a system to predict the
next talk move (an utterance strategy) in a class-
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room discussion, based on the academically pro-
ductive talk (APT) framework. They present a
neural network model aimed at predicting the next
talk move in a conversation based on its history and
associated talk moves potentially leading to more
interactive and personalized learning experiences.
In this study (Suresh et al.) incorporate enriched
contextual cues from previous and subsequent ut-
terances using a RoBERTa model to improve the
automated classification of “talk moves" in edu-
cational settings. Similarly, (Alic et al., 2022) ad-
dress the task of creating specific types of questions
that promote responsive teaching. The authors cre-
ated an annotated dataset and employed various
supervised and unsupervised learning methods to
demonstrate the importance of incorporating com-
putational tools to assist teachers in refining their
instructional techniques. Tran et al. (2024) explore
how task formulation, context length, and few-shot
examples impact the performance of two large lan-
guage models (LLMs) in assessing classroom dis-
cussion quality.

While existing work demonstrated the effective-
ness of computational tools to assist in classroom
settings, these have typically focused on a single do-
main. However, in order to use these tools broadly,
they must generalize across topical areas and class-
room contexts. Therefore, we set out to evaluate
the extent to which current methods are able to ac-
curately transfer to new contexts, in terms of both
classrooms and teaching domains.

3 Data

In this study, we leveraged existing classroom
discourse datasets comprising turn-level student-
teacher interactions that were annotated by educa-
tional experts. To investigate the generalizability of
these codes across different academic domains, we
re-annotated a small subset from each dataset using
the discourse codes that were originally developed
for the other datasets.

3.1 Datasets Used

We used four existing English-language datasets:
The MuMo Talk moves dataset (Christ et al.,
2023), the National Center for Teacher Effective-
ness (NCTE) Transcripts dataset (Demszky and
Hill, 2023), and two additional datasets referred to
by the names of pseudonymous teachers of their re-
spective classrooms: Mason (Christ and Cho, 2023)
and Newman (Cho and Christ, 2022).

The MuMo Talk moves dataset includes three
kindergarten teachers’ interactive read-alouds com-
prising of 736 talk-turns across six video recorded
and transcribed sessions. The talk-turns were coded
using a priori and emergent codes. The authors
grouped these codes into higher level categories of
the talk-turns. We utilize these high level categories
as output labels for our experiments.

In the Mason dataset (Christ and Cho, 2023), the
authors investigated the engagement of four second-
grade emergent bilingual students and their teacher
with listening comprehension during interactive
read-aloud sessions. These sessions used books
with varying levels of cultural relevance. The study
aimed to understand how this engagement related
to the teacher’s implementation of culturally rele-
vant and sustaining pedagogical practices. To con-
duct the analysis, the researchers collected data
through cultural relevance ratings of the books,
video recordings, and transcripts of nine 20-minute
lessons, resulting in a total of 2781 talk-turns.

The Newman dataset investigates how two emer-
gent bilingual student groups from refugee families
interacted with the same culturally relevant book
as used in the Mason dataset, though with a dif-
ferent teacher and students, in a third-grade class
in the Midwest U.S. Using video recordings and
transcripts of 12 read-aloud discussions, interviews,
and cultural relevance ratings, this study analyzed
the students’ inference-making processes and ex-
amined their use of text information, background
knowledge, and the coherence of their inferences.
This dataset had a total of 2470 talk-turns.

The NCTE transcripts are the largest dataset of
mathematics classroom transcripts available. The
dataset consists of 580408 anonymous transcripts
of whole lessons collected as part of the National
Center for Teacher Effectiveness, NCTE study,
spanning across the K-12 math classrooms across
four districts serving largely historically marginal-
ized students. However, 2348 transcripts were an-
notated for the classification experiments and anal-
ysis.

Initially, we had three distinct codebooks that
had been used to annotate the source datasets: one
for MuMo (Christ et al., 2023), and second that
was used for both Newman and Mason, and NCTE,
being a math dataset, had a third. In assembling our
datasets for this study, we adopted the codebook
which was developed for MuMo to use for both
Newman and Mason after recognizing the similar-
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Variable MuMo Mason Newman
Response Evaluation 67 345 656

Providing Information 115 290 344
Revoicing 113 330 335

Strategy Related 62 206 302
Questioning 219 563 503

Behavior Management 55 326 354
Turn Management 207 283 325

Total 736 2550 2467

Table 1: Number of talk turns with each label across
MuMo, Mason, and Newman datasets. Total indicates
the number of talk turns in the dataset. Note that each
talk turn may have more than one label.

ity in the codes across the three datasets. While the
datasets have distinct sets of fine-grained codes,
in this work, we experiment only with higher-
level categories rather than these fine-grained codes.
This makes the process of matching the high-level
categories across codebooks fesible, and allows for
a comprehensive cross-dataset analysis. Refer Ta-
ble 20 for details on how the MuMo codebook was
adopted and aligned to the Mason and Newman
datasets. Table 1 shows the class distribution of
variables belonging to Class 1 across the MuMo,
Mason, and Newman datasets using our merged
codebook, and Table 2 shows the class distribution
of variables belonging to Class 1 across the NCTE
dataset.

3.2 Annotation Process

To investigate the cross-domain generalizability of
our classifiers, we sampled data from each domain
to re-annotate according to the codebook from the
other domain as a new evaluation set. Specifically,
we chose 140 data points from the MuMo, Ma-
son, and Newman datasets combined, selecting 10
talk-turns from each session. MuMo contributed
data from 6 sessions, while Mason and Newman
each had 4 sessions, collectively providing the 140
data points. From the NCTE dataset, which is com-
prised of a single extensive session, we sampled
a total of 100 data points. Once the annotation
guidelines (see Appendix A) were established, five
trained annotators, including the first two authors,
re-annotated these subsets. With the goal of cre-
ating a ground truth for evaluating the language
models, the annotators applied the discourse codes
from the math domain dataset (i.e., NCTE) to the
literacy domain datasets (i.e., MuMo, Mason, and
Newman) and vice versa. Each talk-turn was an-
notated by at least three annotators to ensure reli-
able accuracy and consistency. The inter-annotator

Variable Count
Student on Task 1964
Teacher on Task 2004

High Uptake 813
Focusing Question 359

Total 2348

Table 2: Number of talk turns with each label in the
NCTE dataset. Total indicates the number of talk turns
in the dataset. Note that each talk turn may have more
than one label.

agreement was quantitatively measured using Krip-
pendorff’s alpha (Krippendorff, 2011). Annotators
had high agreement (average Krippendorff’s alpha
= 0.883, per category results in Appendix D). In
case of discrepancies among annotators, the label
that received the majority consensus among the
three annotators was chosen as the final label for
each talk-turn in our test set.

4 Experimental Methodology

For in-domain experiments, the NCTE dataset was
partitioned using an 80-10-10 split for training, val-
idation, and test data. In the case of the MuMo,
Mason, and Newman datasets (those from the lit-
eracy domain), our experimental design included
two setups, both of which relied on splitting across
entire sessions rather than utterances. First, for
within-dataset experiments, we held out one entire
session to function as the test set. Secondly, for
experiments within the same domain but across
different datasets, the same held-out session from
the target domain was used as the test set. This
approach allowed us to examine both the domain-
specific and cross-domain efficacy of our models.

For cross-domain experiments, we use one
dataset as both the training and validation set, while
a dataset from a different domain is designated as
the test set. This strategy was applied to explore the
adaptability of models across varied educational
contexts without any prior data available in the
target context.

We investigated both fine-tuned transformer en-
coder models and auto-regressive generative mod-
els focusing on in-context learning.1 The model
hyperparameters are specified in Appendix C.

For transformer-based deep learning models, we
chose BERT (Devlin et al., 2019) and RoBERTa

1We also explored classical machine learning approaches
using bag-of-words features, but found these to always under-
perform the transformer-based approaches.
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Figure 2: Prompt components for generative models for
the math setting (used for NCTE). From top to bottom,
the blocks display the background information (green),
labels (blue), few-shot examples (yellow).

(Liu et al., 2019), using pre-trained weights and
fine-tuning code from the HuggingFace transform-
ers Wolf et al. (2019) library. We utilized the
bert-base-uncased and roberta-base check-
points along with their default tokenizers. The
output from the [CLS] input token was then used
as the input for a trainable classification layer.

For the generative models, we opted to use the
Llama2-7B (Touvron et al., 2023) and Mistral-7B-
Instruct-v0.2 (Jiang et al., 2023)2 models specifi-
cally due to their open weights3 availability. We
use open-weights models to increase transparency
and reproducibility, and also to avoid leakage of
datasets via the use of online APIs without the
consent of the participants of the original studies
whose interactions led to the creation of the datasets
(Balloccu et al., 2024). The generative models op-
erate by receiving an instruction or a prompt as
input and generating a response that aligns with

2Henceforth referred to simply as “Mixtral.”
3We distinguish between “open source” and “open

weights”, where the former includes cases where all code to
fully reproduce the model is available, while the latter refers
to the open availability of the trained model’s parameters.

the given context or question. By using in-context
learning, we investiage whether these models are
capable of predicting talk-turn labels, particularly
in scenarios where there is limited data availability.

The experimental setup for the auto-regressive
models was conducted in both a zero-shot and a
few-shot learning context. In the zero-shot setup,
the background information and label description
are prepended to the prompt followed by a section
of the transcript to be classified. Finally we ask
the model if the given label is appropriate for the
transcript. The model is constrained to answer only
in a Yes or No format for calculating accuracy, F1
score and other metrics. We repeated the experi-
ments with same prompt three times to check for
any variability in the model’s outputs.

In the few-shot setup, several example interac-
tions between teachers and students, along with
their correct labels, were prepended to the prompt
in a question-answer format, along with the back-
ground information and label description. Similar
to the zero-shot setup, experiments were conducted
using three different prompts for both Llama2 7B
and Mixtral 8x7B. In case of the generative models,
the average of the three turns of the best performing
prompt was reported. A summary of the various
components utilized in this setup can be found in
Figures 2. Also refer to Figure 5 in Appendix F.

We also experimented with varying the num-
ber of prior talk turns provided as context. This
setup was only applied to the generative models
due to the input size limitations of 512 tokens for
the BERT-based models, which was typically not
large enough to include additional context. When
incorporating context, each talk turn was accom-
panied by the preceding one, three, or five interac-
tion(s) and the speaker tag (whether the talk turn
was uttered by a teacher or a student).

5 Results

Figure 3 and Tables 16, 17, 18, and 19 present the
performance of different classes of models aver-
aged across all output labels for the domains of
literacy and mathematics. Please refer to appendix
G for a detailed breakdown of results for each label
and each model. Among these, fine-tuned mod-
els, i.e., BERT and RoBERTa, demonstrated better
performance in most of the experiments over gen-
erative models with in-context learning. But the
generative models outperformed supervised mod-
els when added context for certain variables.
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Figure 3: F1 scores for Llama2 (top) and Mixtral
(bottom) models averaged across different training sets
for the various test sets Mason, Newman, MuMo and
NCTE. c denotes the number of prior interactions pro-
vided as context to the generative models as part of
in-context learning during classification.

Test Set Model
Student

on
Task

Teacher
on

Task

High
Uptake

Focusing
Question

NCTE Mixtral 0.702 0.545 0.241 0.584
Llama2 0.666 0.524 0.217 0.492

Table 3: Zero-shot performance of Mixtral and Llama2
models on the NCTE test set across four categories.

Among the generative models, Mixtral outper-
formed Llama2 in most scenarios. Interestingly,
Mixtral, when prompted with prior interactions,
outperformed BERT and RoBERTa models for cer-
tain variables in the binary classification tasks, re-
fer 16. Despite their overall lower performance
compared to fine-tuned models, the fact that these
generative models utilized far fewer training data
(few shots with n = 3 and context c = {3, 5})
while learning highlights their potential in specific
contexts. Tables 5 and 6 show a decline in model
performance when tested on a new domain how-
ever, generative models showed resilience.

Another takeaway is within the generative mod-
els, when it comes to variables like turn manage-
ment, behavior management and questioning, the
zero-shot experiments achieved closer results to
that of the few shot models indicating that the mod-
els do not need much data for classification. The
performance metrics, i.e., the F1 scores, showcased

Figure 4: Cross-Dataset Performance Heatmap between
MuMo, Mason, and Newman Datasets. The heatmap vi-
sualizes the performance (F1 scores) of models trained
and tested across different datasets. The diagonal shows
the results of models evaluated on the same dataset
used for training, while the off-diagonal elements repre-
sent the transfer performance between different datasets.
red indicates a higher average transfer learning perfor-
mance.

a common trend across all models: a higher degree
of accuracy when both the training and test sets
originated from the same domain. However, we ob-
served a decline as the contextual distance between
training and testing data increased. This reflects
the challenge of applying machine learning models
to diverse educational content due to their varying
subject matter and teaching methodology.

A critical observation from our experiments is
the distribution of classes within our datasets. No-
tably, several variables have only a very small num-
ber of positive examples in the data. The lack of
sufficient support for the majority class in these
datasets likely contributed to the lower F1 scores
observed for those variables in many scenarios.

5.1 Error Analysis

In this section we investigate the discrepancies be-
tween the ground truth labels and the model predic-
tions on the test set. We used the best performing
model, i.e. BERT out of all the various experi-
ments on a specific test set for this analysis. Table 7
shows paraphrased examples of interactions where
the model failed to accurately predict the output
label. We found that the model’s predictions were
mostly incorrect due to the lack of prior interac-
tions as context. Classroom discourse is inherently
continuous and time-series, meaning that under-
standing any given talk-turn often depends on the
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Test set Model Questioning Response
Evaluation

Providing
Information Revoicing Strategy

Related
Behavior

Management
Turn

Management

MuMo Mixtral 0.713 0.274 0.201 0.373 0.284 0.267 0.424
Llama2 0.628 0.253 0.266 0.341 0.223 0.248 0.395

Mason Mixtral 0.497 0.327 0.263 0.364 0.301 0.304 0.375
Llama2 0.504 0.281 0.247 0.333 0.278 0.279 0.363

Newman Mixtral 0.471 0.344 0.321 0.362 0.285 0.321 0.364
Llama2 0.443 0.333 0.299 0.313 0.275 0.299 0.354

Table 4: Zero-shot results from MuMo, Mason, and Newman datasets across various categories.

Train set Model Questioning Response
Evaluation

Providing
Information Revoicing Strategy

Related
Behavior

Management
Turn

Management

Mu+Nw+Ms

BERT 0.547 0.346 0.322 0.323 0.281 0.304 0.344
RoBERTa 0.539 0.323 0.334 0.312 0.267 0.319 0.331

Mixtral 0.478 0.271 0.256 0.224 0.222 0.235 0.258
Mixtral(c=1) 0.501 0.272 0.238 0.233 0.238 0.245 0.267
Mixtral(c=3) 0.514 0.287 0.299 0.256 0.248 0.251 0.243
Mixtral(c=5) 0.509 0.282 0.297 0.264 0.233 0.278 0.241

Llama2 0.475 0.258 0.230 0.236 0.201 0.214 0.231
Llama2(c=1) 0.491 0.268 0.242 0.241 0.215 0.219 0.242
Llama2(c=3) 0.499 0.274 0.274 0.247 0.233 0.223 0.237
Llama2(c=5) 0.504 0.285 0.263 0.251 0.238 0.246 0.233

Table 5: Transfer learning when the training set is MuMo, Newman, and Mason, but the test set is NCTE labeled
with MuMo, Mason, Newman labels.

Train Data Model
Student

on
Task

Teacher
on

Task

High
Uptake

Focusing
Question

NCTE

BERT 0.568 0.499 0.264 0.392
RoBERTa 0.569 0.523 0.263 0.371

Mixtral 0.439 0.411 0.198 0.236
Mixtral(c=1) 0.444 0.435 0.206 0.264
Mixtral(c=3) 0.469 0.448 0.231 0.273
Mixtral(c=5) 0.470 0.442 0.256 0.251

Llama2 0.421 0.376 0.163 0.202
Llama2(c=1) 0.437 0.391 0.167 0.227
Llama2(c=3) 0.472 0.427 0.199 0.239
Llama2(c=5) 0.465 0.436 0.208 0.242

Table 6: Transfer learning when the train set is from
NCTE and the test set is from MuMo, Mason, and New-
man annotated with NCTE labels.

preceding turns, and the output labels rely heavily
on the interactional context to be accurately clas-
sified. For example, in the table below under the
MuMo test set, the model mislabels the talk turn
“Rocks?" as Class 1 (Questioning) because the con-
text was insufficient and the ground truth wasn’t
Class 1 in this specific scenario. The students were
supposed to simply repeat the utterance and the
question mark doesn’t indicate a question being
asked. Similarly, according to the codebook used
for this paper, a compliment given by a teacher
can be considered Providing Information, but the
model struggled to label some of those interactions
accurately and providing context could have elimi-
nated that confusion.

Furthermore, in the Mason dataset, we noticed

that the model failed to label the talk turn “I un-
derstand, I get that you are sleepy, but that also
means you need to go to bed earlier" as Revoicing.
In the interaction prior to the above talk turn, the
student told the teacher that they were sleepy, and
missing this context led to a misclassification. An-
other issue arose when the teacher’s instructions
were mixed with reading sections of a book. For
example, the teacher’s phrase “Can you sit down
please?" accompanied by the teacher reading a
small paragraph from the textbook in the same in-
teraction led to prediction errors. This problem was
observed in both the Mason and Newman datasets.
Additionally, quite a few errors in the student’s talk
turns were a result of short sentences and the lack
of context provided to the models. These short, iso-
lated statements were often misclassified because
the model couldn’t access the surrounding inter-
actions that would clarify their meaning. While
the fine-tuned models gave the best performance,
they are limited in their ability to incorporate the
necessary context for precise predictions in certain
scenarios. Therefore future work might explore the
fine-tuning of models with large context windows
to reap the benefits of both additional context and
fine-tuning.
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Test Set Category Speaker Transcript Actual Label Pred Label

MuMo

Questioning Student Rocks? 0 1
Turn
Management Teacher Very good. And let me see what this is down here. A mallow. 1 0

Questioning Teacher Rocks? 1 0
Providing
Information Teacher Very good. And a home for everyone. 1 0

Mason

Providing
Information Teacher We’re going to listen to that story now, talk to each other if we notice

certain things. We can discuss more tomorrow as well. 1 0

Revoicing Teacher I understand, I get that you are sleepy. But that also means you need
to go to bed earlier. 1 0

Literal
Responses Student Then we can have two weddings 0 1

Behavior
Management Teacher

Can you sit down please?
[T reading: After the cake was served... We are doing the flower girl]
They are pretending to be a flower girl while dancing.

1 0

Questioning Teacher
Can you sit down please?
[T reading: After the cake was served... We are doing the flower girl]
They are pretending to be a flower girl while dancing.

0 1

Newman

Literal
Responses Student I was attached last winter, everybody hit me. James is their boss. I was

very upset. I threw Quincy on accident. 0 1

Questioning Student You know the paper? I mixed the two up. I was gonna write sad
and the word said how they feel and then how they feel. How they feel 0 1

Reading Teacher [reads from the book]. So was it okay for Jack to go to the library since
there was no book to read from? 1 0

Questioning Student Can I see? I cannot see the book. 0 1

NCTE

Focusing
Question Teacher Oops, I bet, you know what? I made something, you

know what happens? 0 1

Focusing
Question Teacher Where would you line up those Xs? 1 0

Student on
Task Student I am going to do a shout out. 0 1

Table 7: Error Analysis of Model Predictions Across Different Test Sets

6 Conclusion

Understanding classroom discourse is pivotal for
improving educational outcomes and child develop-
ment. In this study, we assess the generalizability
of discourse codes across distinct educational do-
mains of literacy and mathematics using automatic
text classifiers such as transformer based models
and in context learning based open weights gen-
erative models. We utilized several datasets from
prior studies both from literacy and mathematics
disciplines; annotated a subset of those data sets to
generate ground truths for cross domain classifica-
tion of educational classifiers. Our findings suggest
show that transformer-based models, particularly
BERT, and RoBERTa were better at classifying
classroom discourse compared to open weights
generative models. However, in-context models
display resilience when tested on a new domain
with limited training data.

In addition to these findings, we conducted error
analysis using the best performing model, provid-
ing a fresh perspective on the model failures. We
also experimented with providing context to the
generative models in the form of prior interactions,
and found out that such context could significantly
impact the models’ ability to understand and clas-
sify discourse accurately. The cross-domain exper-
iments involving the Mason, Momo, and Newman

datasets, labeled with the NCTE labels, achieved
decent scores, except for the high uptake variable.
This indicates a potential for these models to under-
stand and classify discourse in educational settings
to some extent. However, the experiments relat-
ing to NCTE data labeled for the literacy discourse
codes did rather poorly, highlighting the difficul-
ties in accurately capturing and generalizing dis-
course patterns within this domain. Given these
challenges, we recommend future directions in this
area of study to enhance the effectiveness of these
models in the field of education. Enhancing the
collection and annotation of classroom discourse
data across a wider range of educational settings
could improve the representation within training
datasets. Implementing novel cross-domain tech-
niques could help with better transfer learning and
adaptation. Using better architectures and state-
of-the-art (SOTA) models to help generalize the
discourse codes across domains more effectively.

7 Implications and Future Work

While our research provides insights into the cross-
domain generalizability of educational classifier
models, future work could explore the applica-
tion of these models across other educational do-
mains such as social studies, science or other lan-
guages. Also, studying non-english classroom set-
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tings could help us understand unique challenges
of applying these models. Or work focused on the
higher level categories of discourse codes but ex-
amining the impact of fine grained labels on the
efficacy of these models could be a worthwhile re-
search direction. Our work considers the past few
classroom interactions as context, but a potential
next step wold be to embed information about the
textbook being taught, teacher’s instructional styles,
child’s background or prior academic performances
etc. Future work could explore how the broadened
contextual feature impact the generalizability or
performance of these models.

The direction of this research could have poten-
tial for the development of educational tools for
educators such as offering real time suggestions in
classroom discussions, helps teachers to come up
with better strategies to improve discourse codes
such as questioning or behavior management etc.
These models, especially the few shot and zero
shot could reduce the need for extensive data col-
lection and annotation, thus lower human labor.
This could help economically backward regions
and schools. The development of these educa-
tional classifier tools could also aid in the certain
of ai driven agents, such as classroom robots that
could actively participate in classroom discussions,
demonstrate effective learning behaviors, support
teachers as assistants.

Limitations

In case of generative models, we used only open
weights models and local data processing strictly
adhering to our data privacy and ethical standards.
While this approach aligns with our ethical stance
and ensures data confidentiality, it also narrows
our selection of computational tools. Potentially
more sophisticated and proprietary models with
higher performance metrics were not considered
in this study due to these constraints. The nature
of our datasets presents another potential limita-
tion. Some of the datasets utilized in our analysis
(i.e., Mason, Neuman, and MuMo) were shared
by the original authors of the work on the condi-
tion that we do not make them publicly available.
This restriction could impose a barrier to the re-
producibility of our study for future research. Our
research primarily concentrates on specific sub-
ject domains like mathematics and English literacy.
These subjects represent only a fraction of the di-
verse disciplines within the educational field, which

our current paper does not account for.

Ethics Statement

The study utilized existing datasets derived from
prior research that were shared with us by the au-
thors of that work. In alignment with our com-
mitment to confidentiality, we have anonymized
all personal information. Names and other iden-
tifying details of students and teachers have been
replaced with pseudonyms, thereby protecting their
identities. Furthermore, the tools and models ap-
plied in our research such as Mixtral and Llama2
7B are open-weights generative models. The de-
cision to use open-weights models supports trans-
parency of our methods and further protects pri-
vacy by eliminating the need to transfer sensitive
data to external servers. The use of open-weights
models can also facilitate reproducibility in the re-
search, allowing other researchers to validate and
build upon the findings in our paper. The primary
goal of the research was to investigate the efficacy
of cross domain classification of educational dis-
course, particularly doctors within the classroom
setting. We recognize the implications of applying
AI in analyzing children’s classroom interactions.
It is important to approach the application of our
research with the understanding of the potential im-
pacts of AI application, making sure that it serves
to enhance the educational experience rather than
compromising it.
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A Annotation Guidelines for the
Classroom interaction dataset

These guidelines are designed to assist coders to
accurately annotate classroom interactions between
students and the teacher based on four specific la-
bels from Demszky and Hill (2023). The output
labels are: student on task, teacher on task, high
uptake and focusing question.

The dataset consists of turn level utterances
(paired annotations) between students and the
teacher.

The table provided is set up to display a dia-
logue between students and their teacher, captured
as turn-level utterances. Each row in the table rep-
resents a pair of exchanges, with the left column
titled Student Transcript showing what the student
said, and the right column titled Teacher Transcript
presenting the teacher’s response.

When annotating, it’s important to note that the
student’s utterance comes first, followed by the
teacher’s response in the same row. So, this se-
quential flow indicates that the teacher’s comment
is a direct response to the student’s immediately
preceding utterance.

For example, if a student makes an observation
or asks a question, the corresponding teacher’s
utterance in the same row will be a response or
follow-up to that particular student’s input.

A.1 Labels and Definitions

1. Student on Task: This label indicates
whether a student’s utterance is relevant to
the current topic being discussed in the class-
room.

2. Teacher on Task: This label reflects whether
the teacher’s utterance pertains to the topic of
the current classroom session.

3. High Uptake: This label identifies instances
where a speaker (teacher or student) builds
upon what their interlocutor has said, demon-
strating an understanding and extension of the
conversation.

4. Focusing Question: This label is used when a
teacher asks a question that prompts students
to articulate, clarify, or reflect upon their own
thoughts or those of their classmates.

A.2 Labeling Process

1. Student on Task

(a) Label as 1 (On Task): If a student’s ut-
terance directly relates to the topic of
the lecture or session. For example, dis-
cussing a specific math problem when
the topic is math. Or if the classroom
session is discussing the NLP textbook,
then the topic would be NLP or anything
related to it.

(b) Label as 0 (Off Task): If a student’s utter-
ance is unrelated to the topic of the lec-
ture. Such as talking about the weather
or making a joke unrelated to the topic at
hand.

2. Teacher on Task

(a) Label as 1 (On Task): If the teacher’s
utterance is directly related to the subject
matter of the current session similar to
student on task label.

(b) Label as 0 (Off Task): If the teacher’s
utterance is not related to the topic of the
session.

3. High Uptake

(a) Label as 1 (High Uptake): When a
teacher acknowledges, repeats, or re-
formulates what the student has said,
thereby extending the conversation.

(b) Label as 0 (Low Uptake): When the re-
sponse does not build upon the previous
speaker’s (student’s) contribution.

4. Focusing Question

https://doi.org/10.1007/978-3-031-36272-9_53
https://doi.org/10.1007/978-3-031-36272-9_53
https://doi.org/10.48550/ARXIV.1910.03771
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(a) Label as 1 (Focusing Question): If a
teacher’s question prompts the student to
think deeply, articulate their understand-
ing, or engage in reflection about their
own thoughts or those of other students.

(b) Label as 0 (Funneling Question): If the
teacher’s question or teacher’s set of
questions to lead students to a desired
procedure or conclusion, while giving
limited attention to student responses
that veer from the desired path

A.3 Examples for Each Category
1. Student on Task / Teacher on Task

(a) Example (Label 1): Topic is English
textbook “My friend Jamal”. S: “It is
because Jamal was a friend of joseph
and they lived nearby.” T: “yes! They
were friends and what does that mean for
joseph??”

(b) Example (Label 0): Topic is English text-
book “My friend Jamal. S: “I played
soccer yesterday.” T: “Shhh! Sit down
quietly. We have 15 minutes left.”

2. High Uptake

(a) Example (Label 1): S: “Cause you took
away 10 and 70 minus 10 is 60”. T:
“Why did we take away 10?”.

(b) Example (Label 1): S: “There’s not
enough seeds”. T: “There’s not enough
seeds. How do you know right away that
128 or 132 or whatever it was you got
doesn’t make sense?”.

(c) Example (Label 0): S: “Because the base
of it is a hexagon”. T: “Student K?”.

3. Focusing Question

(a) Example (Label 1): S: “I disagree with
Student A because if you skip count by
100 ten times, that will get you to 1,000”.
T: “Let’s try it. You ready? Let’s start
right here with Student F”. S: “A hun-
dred.”

(b) Example (Label 1): S: I first got 32 and
then I got 48. T: And how did you find
that? S: “Because I did 16 times two is
32”.

(c) Example (Label 0): S: “Do we eat pizza
today”. T: “Student K? What are you
doing there???”.

B Annotation Guidelines to label NCTE
dataset

These guidelines are designed to assist annotators
in labeling the classroom interactions between stu-
dents and the teacher based on the categories de-
fined in the research conducted by Christ, T., et al
(2022). Note that this is a multi-label classification
task and each individual interaction can have one
or more possible output labels.

B.1 Labels and Definitions

1. Response Evaluation: When the teacher ei-
ther compliments a child or expresses uncer-
tainty about an incorrect response.

2. Providing Information: Extending or elabo-
rating what was said either by the teacher or
the student, building background knowledge,
defining, using target words that are utilized
in the context.

3. Misinformation: Either by providing misin-
formation or verifying an incorrect response.

4. Revoicing: When the teacher acknowledges
and repeats what the student has said earlier.

5. Strategy related: Teacher directs a child to
look at or think about text clues, or asks chil-
dren to check their prediction.

6. Questioning: When a teacher questions a
child to get a more detailed response, or elicit
noticing text clues, or to define a target vocab-
ulary etc.

7. Behavior Management: Gives children or a
particular child a behavioral directive.

8. Turn Management: Teacher calls on particu-
lar child to respond or acknowledges or rejects
a child’s initiative to talk.

B.2 Labeling Process

To annotate this dataset:

(a) We read a transcript, and identify the pos-
sible codes that apply to that utterance
using the codebook provided in the orig-
inal paper.

(b) Look up the category that those particu-
lar codes fall under, and label either 1 or
0 on the spreadsheet. NOTE: The idea is
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to map the codes back to their categories
and use them as labels instead.

(c) For example, when the teacher says “He
is mowing the grass. Good!! What will
the mower do to the flower if the dad
gets closer? What would the mower
do? Student K??”, the authors of the
paper identified that the teacher repeated
the student’s response. Then proceeded
to compliment the child, acknowledging
that the child has given the correct an-
swer. Then proceeds to ask a question
while directing that question to a particu-
lar child. Therefore we ended up with 4
possible codes for that one teacher utter-
ance. Now we map those codes back to
their categories.

C Model Hyperparameters

For the transformer-based deep learning models,
we initialize each from the model checkpoint and
fine-tune on our training data for 5 epochs with
a batch size of 16, weight decay of 0.01, and a
learning rate of 2e-5.

Details of the hyperparameter tuning for the gen-
erative models, Mixtral and Llama2:

1. Do sample: Set to false, this parameter en-
sures deterministic outputs by selecting tokens
based on their probability distribution rather
than introducing variability. This aligns with
the experiment’s objective of restricting out-
puts to only "yes" and "no" tokens.

2. Max new tokens: With a value of 1, this pa-
rameter confines the model to generate exactly
one token after the input prompt. Given our
experiment’s focus on producing either "yes"
or "no," a value of one facilitates the desired
output format of one token per response.

3. Temperature: Set to 0, indicating no ran-
domness in output selection. By eliminating
randomness, the model consistently chooses
the same sequence of tokens from the input
prompt, thereby ensuring deterministic out-
put.

4. Top k: Set to 2, this parameter limits consid-
eration to the top two tokens with the highest
probabilities. Since the objective of this exper-
iment is binary output ("yes" or "no"), setting

Top k to 2 effectively restricts the model’s
outputs to these two options.

5. Num_return_sequence: set to 1

D Krippendorf’s Alpha

Label Alpha Source Dataset Target Dataset
Response Evaluation 0.849

M
M

N

N
C

T
E

Providing Information 0.958
Revoicing 0.899
Strategy-related 0.818
Questioning 0.909
Behavior Management 0.801
Turn Management 0.936
Misinformation N/A
Student on Task 0.912

N
C

T
E

M
M

NTeacher on Task 0.943
High Uptake 0.847
Focusing Question 0.851

Table 8: Krippendorff’s α intercoder agreement scores
for the combined datasets of MuMo, Mason, and New-
man (MMN) using labels created for the NCTE dataset
and vice versa. The label “Misinformation” was never
assigned to any text.

E Dataset Statistics

In order to evaluate the generalization performance
of the models, we annotated new data as described
in subsection 3.2. The number of datapoints as-
signed each label are presented in Tables 9 and
10.

Variable Class 0 Class 1
Student on Task 21 119
Teacher on Task 13 127

High Uptake 74 66
Focusing Question 83 57

Table 9: Class distribution of MuMo/Mason/Newman
data annotated with NCTE labels. Class 0 indicates the
label does not apply and Class 1 indicates that it does.

F Prompt Components for Generative
Models

G Experimental Details

H Mapping the MuMo Codebook to
Mason and Newman Datasets
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Variable Class 0 Class 1
Response
Evaluation

55 45

Providing
Information

58 42

Revoicing 74 26
Strategy
Related

69 31

Questioning 32 68
Behavior

Management
90 10

Turn
Management

70 30

Table 10: Class distribution of NCTE data when anno-
tated with MuMo/Mason/Newman label set. Class 0
indicates the label does not apply and Class 1 indicates
that it does.

Figure 5: Prompt components for generative
models for the read-aloud setting (used for
MuMo/Mason/Newman). From top to bottom,
the blocks display the background information (green),
labels (blue), few-shot examples (yellow).
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Train Set Models Questioning Response
Evaluation

Providing
Information Revoicing Strategy

Related
Behavior

Management
Turn

Management
Baseline 0.241 0.414 0.151 0.178 0.230 0.194 0.198

MuMo

BERT 0.641 0.331 0.320 0.444 0.233 0.323 0.269
RoBERTa 0.612 0.266 0.319 0.415 0.279 0.303 0.253

Mixtral 0.450 0.285 0.294 0.371 0.320 0.307 0.250
Mixtral (c=1) 0.462 0.270 0.299 0.364 0.303 0.310 0.248
Mixtral (c=3) 0.525 0.299 0.316 0.386 0.288 0.313 0.252
Mixtral (c=5) 0.537 0.283 0.333 0.405 0.284 0.322 0.255

Llama2 0.438 0.276 0.239 0.310 0.244 0.279 0.259
Llama2 (c=1) 0.445 0.240 0.240 0.313 0.241 0.290 0.250
Llama2 (c=3) 0.484 0.279 0.282 0.333 0.274 0.300 0.251
Llama2 (c=5) 0.487 0.270 0.311 0.347 0.266 0.304 0.251

Mason

BERT 0.699 0.460 0.324 0.538 0.333 0.460 0.458
RoBERTa 0.699 0.422 0.315 0.530 0.329 0.459 0.457

Mixtral 0.535 0.340 0.330 0.397 0.332 0.350 0.420
Mixtral (c=1) 0.601 0.360 0.315 0.455 0.327 0.365 0.421
Mixtral (c=3) 0.637 0.407 0.315 0.473 0.331 0.384 0.443
Mixtral (c=5) 0.644 0.436 0.318 0.470 0.333 0.401 0.444

Llama2 0.488 0.281 0.284 0.395 0.275 0.334 0.351
Llama2 (c=1) 0.503 0.312 0.281 0.423 0.292 0.365 0.369
Llama2 (c=3) 0.585 0.303 0.293 0.488 0.307 0.372 0.397
Llama2 (c=5) 0.599 0.326 0.305 0.544 0.330 0.351 0.405

Newman

BERT 0.710 0.489 0.339 0.535 0.396 0.473 0.510
RoBERTa 0.702 0.460 0.325 0.530 0.383 0.472 0.497

Mixtral 0.472 0.384 0.349 0.420 0.313 0.370 0.400
Mixtral (c=1) 0.510 0.412 0.352 0.429 0.327 0.384 0.428
Mixtral (c=3) 0.666 0.440 0.343 0.481 0.367 0.386 0.459
Mixtral (c=5) 0.669 0.490 0.336 0.493 0.365 0.368 0.450

Llama2 0.444 0.340 0.287 0.359 0.304 0.344 0.401
Llama2 (c=1) 0.592 0.365 0.295 0.382 0.324 0.359 0.403
Llama2 (c=3) 0.594 0.425 0.316 0.436 0.315 0.387 0.418
Llama2 (c=5) 0.571 0.484 0.344 0.443 0.339 0.368 0.435

Ms+Nw

BERT 0.689 0.479 0.353 0.530 0.388 0.462 0.495
RoBERTa 0.676 0.472 0.353 0.492 0.364 0.444 0.453

Mixtral 0.478 0.367 0.311 0.400 0.345 0.369 0.381
Mixtral (c=1) 0.614 0.384 0.325 0.427 0.353 0.392 0.409
Mixtral (c=3) 0.617 0.427 0.335 0.438 0.370 0.429 0.403
Mixtral (c=5) 0.582 0.401 0.352 0.427 0.374 0.457 0.419

Llama2 0.413 0.352 0.279 0.333 0.326 0.388 0.325
Llama2 (c=1) 0.497 0.336 0.291 0.369 0.344 0.402 0.334
Llama2 (c=3) 0.500 0.361 0.330 0.437 0.360 0.440 0.353
Llama2 (c=5) 0.490 0.379 0.339 0.428 0.341 0.460 0.333

Mu+Ms

BERT 0.666 0.457 0.350 0.466 0.378 0.446 0.494
RoBERTa 0.641 0.446 0.327 0.428 0.354 0.429 0.507

Mixtral 0.430 0.360 0.241 0.279 0.292 0.314 0.377
Mixtral (c=1) 0.473 0.384 0.252 0.315 0.315 0.317 0.401
Mixtral (c=3) 0.577 0.412 0.304 0.379 0.345 0.344 0.402
Mixtral (c=5) 0.654 0.449 0.300 0.353 0.373 0.354 0.396

Llama2 0.414 0.345 0.248 0.245 0.250 0.279 0.383
Llama2 (c=1) 0.479 0.349 0.270 0.286 0.271 0.307 0.401
Llama2 (c=3) 0.567 0.404 0.308 0.379 0.327 0.336 0.444
Llama2 (c=5) 0.562 0.392 0.299 0.369 0.375 0.343 0.419

Mu+Nw

BERT 0.691 0.463 0.347 0.419 0.396 0.430 0.500
RoBERTa 0.676 0.460 0.324 0.412 0.376 0.423 0.471

Mixtral 0.468 0.301 0.350 0.344 0.319 0.355 0.306
Mixtral (c=1) 0.504 0.333 0.356 0.366 0.329 0.366 0.342
Mixtral (c=3) 0.612 0.404 0.353 0.387 0.360 0.405 0.346
Mixtral (c=5) 0.694 0.472 0.349 0.411 0.401 0.427 0.343

Llama2 0.384 0.300 0.275 0.286 0.325 0.287 0.295
Llama2 (c=1) 0.453 0.328 0.285 0.308 0.340 0.313 0.337
Llama2 (c=3) 0.573 0.393 0.320 0.362 0.367 0.379 0.324
Llama2 (c=5) 0.680 0.462 0.344 0.411 0.400 0.432 0.310

Table 11: F1-score when training on various train sets and evaluating on the test set from Newman. Bold indicates
the best score for each column for each training set, underline indicates the best overall score for each column.
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Train Set Model Questioning Response
Evaluation

Providing
Information Revoicing Strategy

Related
Behavior

Management
Turn

Management
Baseline 0.706 0.308 0.625 0.625 0.308 0.533 0.308

NCTE

BERT 0.821 0.480 0.525 0.000 0.333 0.000 0.800
RoBERTa 0.7724 0.666 0.649 0.000 0.495 0.000 0.813

Mixtral 0.692 0.389 0.363 0.241 0.337 0.000 0.525
Llama2 0.614 0.321 0.381 0.219 0.238 0.190 0.316

Mixtral c=1 0.686 0.359 0.370 0.258 0.322 0.200 0.569
Mixtral c=3 0.721 0.378 0.365 0.255 0.317 0.214 0.555
Mixtral c=5 0.714 0.377 0.333 0.263 0.309 0.179 0.565
Llama c=1 0.604 0.338 0.383 0.222 0.281 0.222 0.407
Llama c=3 0.628 0.334 0.385 0.246 0.325 0.222 0.411
Llama c=5 0.624 0.313 0.342 0.210 0.287 0.213 0.405

Table 12: Generalization performance on NCTE data labeled with MuMo, Mason and Newman dataset labels.
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Train Set Model
Student

on
Task

Teacher
on

Task

High
Uptake

Focusing
Question

Baseline 1.000 1.000 0.929 0.636

Mu+Ms+Nw

BERT 0.962 0.800 0.333 0.694
RoBERTa 0.941 0.785 0.369 0.656

Mixtral 0.784 0.601 0.303 0.666
Mixtral (c=1) 0.740 0.600 0.300 0.661
Mixtral (c=3) 0.767 0.637 0.297 0.628
Mixtral (c=5) 0.749 0.615 0.270 0.612

Llama2 0.678 0.610 0.263 0.537
Mixtral (c=1) 0.684 0.580 0.284 0.550
Mixtral (c=3) 0.647 0.613 0.289 0.523
Mixtral (c=5) 0.666 0.600 0.251 0.501

Table 13: Generalization performance on subset of
MuMo Data labeled using NCTE’s labels.
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Train Set Models Questioning Response
Evaluation

Providing
Information Revoicing Strategy

Related
Behavior

Management
Turn

Management
Baseline 0.470 0.230 0.200 0.364 0.105 0.036 0.364

MuMo

BERT 0.904 0.375 0.564 0.522 0.362 0.533 0.737
RoBERTa 0.871 0.344 0.555 0.501 0.370 0.555 0.747

Mixtral 0.790 0.318 0.231 0.444 0.333 0.378 0.478
Mixtral (c=1) 0.881 0.320 0.324 0.451 0.333 0.415 0.538
Mixtral (c=3) 0.888 0.337 0.362 0.484 0.345 0.467 0.594
Mixtral (c=5) 0.865 0.330 0.363 0.476 0.358 0.525 0.575

Llama2 0.643 0.275 0.286 0.310 0.219 0.344 0.404
Llama2 (c=1) 0.726 0.294 0.323 0.371 0.252 0.387 0.480
Llama2 (c=3) 0.810 0.297 0.404 0.375 0.303 0.465 0.511
Llama2 (c=5) 0.807 0.280 0.417 0.380 0.306 0.541 0.518

Mason

BERT 0.722 0.345 0.542 0.500 0.500 0.557 0.688
RoBERTa 0.718 0.333 0.514 0.500 0.500 0.548 0.680

Mixtral 0.523 0.327 0.289 0.346 0.334 0.694 0.675
Mixtral (c=1) 0.657 0.335 0.439 0.451 0.402 0.690 0.689
Mixtral (c=3) 0.685 0.335 0.447 0.447 0.430 0.734 0.680
Mixtral (c=5) 0.636 0.347 0.452 0.492 0.439 0.697 0.701

Llama2 0.551 0.287 0.282 0.322 0.321 0.474 0.595
Llama2 (c=1) 0.580 0.294 0.353 0.381 0.354 0.493 0.614
Llama2 (c=3) 0.651 0.323 0.434 0.422 0.420 0.533 0.652
Llama2 (c=5) 0.658 0.348 0.436 0.417 0.419 0.521 0.653

Newman

BERT 0.741 0.460 0.461 0.470 0.330 0.500 0.595
RoBERTa 0.742 0.440 0.562 0.476 0.388 0.528 0.555

Mixtral 0.464 0.349 0.387 0.341 0.307 0.444 0.463
Mixtral (c=1) 0.696 0.376 0.405 0.364 0.309 0.454 0.487
Mixtral (c=3) 0.695 0.409 0.430 0.426 0.323 0.485 0.545
Mixtral (c=5) 0.735 0.461 0.452 0.466 0.329 0.502 0.599

Llama2 0.400 0.350 0.378 0.330 0.240 0.295 0.301
Llama2 (c=1) 0.568 0.371 0.390 0.358 0.262 0.340 0.355
Llama2 (c=3) 0.655 0.416 0.430 0.411 0.298 0.422 0.481
Llama2 (c=5) 0.663 0.454 0.452 0.465 0.330 0.507 0.585

Ms+Nw

BERT 0.620 0.333 0.499 0.458 0.333 0.430 0.467
RoBERTa 0.611 0.333 0.504 0.443 0.327 0.442 0.476

Mixtral 0.525 0.298 0.395 0.354 0.311 0.380 0.294
Mixtral (c=1) 0.542 0.307 0.411 0.378 0.315 0.386 0.331
Mixtral (c=3) 0.570 0.322 0.462 0.410 0.323 0.405 0.405
Mixtral (c=5) 0.620 0.327 0.494 0.464 0.332 0.435 0.470

Llama2 0.485 0.290 0.371 0.350 0.279 0.320 0.344
Llama2 (c=1) 0.522 0.300 0.404 0.377 0.291 0.345 0.369
Llama2 (c=3) 0.573 0.316 0.455 0.419 0.311 0.382 0.414
Llama2 (c=5) 0.623 0.337 0.499 0.460 0.330 0.423 0.463

Mu+Ms

BERT 0.840 0.369 0.542 0.492 0.351 0.511 0.651
RoBERTa 0.822 0.338 0.530 0.464 0.351 0.500 0.666

Mixtral 0.622 0.295 0.389 0.400 0.317 0.381 0.471
Mixtral (c=1) 0.776 0.308 0.420 0.412 0.320 0.450 0.571
Mixtral (c=3) 0.750 0.378 0.422 0.474 0.333 0.458 0.588
Mixtral (c=5) 0.743 0.342 0.450 0.457 0.309 0.501 0.547

Llama2 0.595 0.244 0.352 0.373 0.308 0.331 0.386
Llama2 (c=1) 0.651 0.273 0.397 0.396 0.330 0.408 0.441
Llama2 (c=3) 0.734 0.295 0.465 0.436 0.332 0.442 0.443
Llama2 (c=5) 0.729 0.269 0.434 0.414 0.341 0.469 0.413

Mu+Nw

BERT 0.832 0.364 0.518 0.490 0.323 0.509 0.668
RoBERTa 0.833 0.349 0.516 0.489 0.330 0.510 0.640

Mixtral 0.643 0.313 0.334 0.387 0.307 0.363 0.444
Mixtral (c=1) 0.858 0.325 0.422 0.447 0.315 0.430 0.563
Mixtral (c=3) 0.801 0.347 0.442 0.493 0.321 0.515 0.609
Mixtral (c=5) 0.786 0.345 0.428 0.487 0.325 0.486 0.622

Llama2 0.594 0.238 0.248 0.278 0.231 0.321 0.367
Llama2 (c=1) 0.748 0.268 0.298 0.374 0.246 0.353 0.430
Llama2 (c=3) 0.739 0.360 0.413 0.410 0.282 0.436 0.473
Llama2 (c=5) 0.819 0.326 0.408 0.402 0.317 0.405 0.573

Table 14: F1-score when training on various train sets and evaluating on the test set from MuMo. Bold indicates the
best score for each column for each training set, underline indicates the best overall score for each column.
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Train Set Models Questioning Response
Evaluation

Providing
Information Revoicing Strategy

Related
Behavior

Management
Turn

Management
Baseline 0.420 0.120 0.033 0.275 0.160 0.065 0.128

MuMo

BERT 0.644 0.305 0.327 0.458 0.255 0.341 0.294
RoBERTa 0.638 0.284 0.306 0.443 0.306 0.322 0.273

Mixtral 0.472 0.295 0.277 0.380 0.303 0.288 0.269
Mixtral (c=1) 0.556 0.303 0.289 0.389 0.296 0.300 0.357
Mixtral (c=3) 0.581 0.344 0.308 0.420 0.280 0.323 0.370
Mixtral (c=5) 0.552 0.303 0.327 0.455 0.259 0.345 0.303

Llama2 0.444 0.300 0.264 0.339 0.263 0.306 0.279
Llama2 (c=1) 0.493 0.303 0.280 0.366 0.261 0.316 0.310
Llama2 (c=3) 0.477 0.327 0.302 0.450 0.258 0.330 0.324
Llama2 (c=5) 0.453 0.309 0.322 0.466 0.252 0.341 0.295

Mason

BERT 0.729 0.462 0.334 0.610 0.365 0.480 0.501
RoBERTa 0.700 0.445 0.337 0.608 0.325 0.434 0.478

Mixtral 0.560 0.380 0.309 0.399 0.316 0.367 0.400
Mixtral (c=1) 0.704 0.389 0.318 0.436 0.322 0.394 0.418
Mixtral (c=3) 0.748 0.433 0.321 0.515 0.352 0.428 0.465
Mixtral (c=5) 0.727 0.467 0.337 0.614 0.365 0.486 0.493

Llama2 0.562 0.291 0.275 0.401 0.269 0.318 0.383
Llama2 (c=1) 0.689 0.328 0.285 0.444 0.288 0.351 0.405
Llama2 (c=3) 0.669 0.391 0.313 0.522 0.323 0.409 0.448
Llama2 (c=5) 0.718 0.463 0.338 0.602 0.361 0.480 0.506

Newman

BERT 0.711 0.447 0.339 0.541 0.328 0.449 0.495
RoBERTa 0.693 0.444 0.309 0.517 0.326 0.461 0.512

Mixtral 0.500 0.422 0.300 0.381 0.279 0.344 0.425
Mixtral (c=1) 0.643 0.427 0.305 0.406 0.285 0.361 0.433
Mixtral (c=3) 0.714 0.438 0.320 0.486 0.309 0.410 0.460
Mixtral (c=5) 0.721 0.447 0.344 0.543 0.328 0.448 0.489

Llama2 0.469 0.375 0.238 0.366 0.278 0.343 0.366
Llama2 (c=1) 0.608 0.396 0.258 0.406 0.287 0.358 0.394
Llama2 (c=3) 0.633 0.412 0.299 0.467 0.314 0.400 0.448
Llama2 (c=5) 0.614 0.452 0.335 0.541 0.327 0.448 0.502

Ms+Nw

BERT 0.716 0.434 0.329 0.563 0.348 0.444 0.478
RoBERTa 0.707 0.432 0.313 0.520 0.341 0.400 0.463

Mixtral 0.475 0.353 0.279 0.342 0.268 0.332 0.384
Mixtral (c=1) 0.633 0.366 0.290 0.388 0.287 0.361 0.438
Mixtral (c=3) 0.692 0.404 0.305 0.468 0.311 0.391 0.440
Mixtral (c=5) 0.719 0.400 0.325 0.568 0.351 0.443 0.482

Llama2 0.527 0.301 0.233 0.344 0.287 0.300 0.348
Llama2 (c=1) 0.654 0.341 0.253 0.390 0.304 0.328 0.375
Llama2 (c=3) 0.718 0.337 0.294 0.467 0.319 0.383 0.430
Llama2 (c=5) 0.680 0.326 0.324 0.567 0.351 0.452 0.448

Mu+Ms

BERT 0.703 0.440 0.323 0.587 0.349 0.444 0.455
RoBERTa 0.694 0.438 0.319 0.560 0.347 0.429 0.454

Mixtral 0.512 0.373 0.304 0.331 0.296 0.259 0.382
Mixtral (c=1) 0.650 0.380 0.302 0.481 0.304 0.293 0.390
Mixtral (c=3) 0.698 0.419 0.316 0.493 0.334 0.273 0.422
Mixtral (c=5) 0.630 0.435 0.323 0.501 0.355 0.338 0.407

Llama2 0.499 0.334 0.292 0.306 0.297 0.251 0.340
Llama2 (c=1) 0.593 0.355 0.293 0.427 0.305 0.292 0.368
Llama2 (c=3) 0.617 0.401 0.308 0.453 0.332 0.368 0.408
Llama2 (c=5) 0.628 0.437 0.325 0.445 0.349 0.353 0.388

Mu+Nw

BERT 0.683 0.436 0.310 0.540 0.316 0.405 0.444
RoBERTa 0.665 0.428 0.307 0.527 0.300 0.421 0.421

Mixtral 0.489 0.366 0.264 0.460 0.247 0.301 0.399
Mixtral (c=1) 0.569 0.379 0.270 0.473 0.263 0.323 0.412
Mixtral (c=3) 0.598 0.409 0.297 0.547 0.268 0.380 0.434
Mixtral (c=5) 0.616 0.401 0.267 0.521 0.261 0.354 0.443

Llama2 0.420 0.341 0.251 0.414 0.233 0.258 0.384
Llama2 (c=1) 0.540 0.359 0.259 0.445 0.250 0.290 0.396
Llama2 (c=3) 0.573 0.403 0.292 0.485 0.283 0.345 0.427
Llama2 (c=5) 0.543 0.403 0.305 0.535 0.249 0.400 0.412

Table 15: F1-score when training on various train sets and evaluating on the test set from Mason. Bold indicates the
best score for each column for each training set, underline indicates the best overall score for each column.
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Train Set BERT RoBERTa Mixtral Llama2
c=0 c=1 c=3 c=5 c=0 c=1 c=3 c=5

MuMo 0.375 0.367 0.326 0.355 0.375 0.363 0.313 0.332 0.351 0.348
Mason 0.497 0.475 0.390 0.426 0.466 0.499 0.357 0.398 0.439 0.495
Newman 0.473 0.466 0.379 0.409 0.448 0.474 0.348 0.387 0.425 0.460
Ms+Nw 0.473 0.453 0.348 0.395 0.430 0.470 0.334 0.378 0.421 0.450
Mu+Ms 0.471 0.463 0.351 0.400 0.422 0.427 0.331 0.376 0.413 0.418
Mu+Nw 0.448 0.438 0.361 0.384 0.419 0.409 0.329 0.362 0.401 0.407

Table 16: Average F1-score for each model across different training sets for test set Mason. c denotes the number of
prior interactions provided as context to the generative models during classification.

Train Set BERT RoBERTa Mixtral Llama2
c=0 c=1 c=3 c=5 c=0 c=1 c=3 c=5

MuMo 0.350 0.336 0.325 0.321 0.341 0.345 0.306 0.306 0.326 0.316
Mason 0.527 0.471 0.384 0.407 0.423 0.435 0.337 0.364 0.392 0.400
Newman 0.494 0.462 0.387 0.407 0.439 0.447 0.341 0.373 0.399 0.415
Ms+Nw 0.486 0.468 0.379 0.401 0.420 0.421 0.337 0.368 0.392 0.386
Mu+Ms 0.464 0.453 0.342 0.361 0.399 0.395 0.320 0.351 0.378 0.371
Mu+Nw 0.469 0.431 0.343 0.357 0.388 0.407 0.318 0.338 0.388 0.401

Table 17: Average F1-score for each model across different training sets for test set Newman. c denotes the number
of prior interactions provided as context to the generative models during classification.

Train Set BERT RoBERTa Mixtral Llama2
c=0 c=1 c=3 c=5 c=0 c=1 c=3 c=5

MuMo 0.542 0.517 0.419 0.480 0.485 0.484 0.348 0.420 0.451 0.466
Mason 0.541 0.536 0.455 0.519 0.532 0.570 0.404 0.463 0.516 0.523
Newman 0.515 0.529 0.393 0.455 0.470 0.497 0.342 0.407 0.448 0.471
Ms+Nw 0.488 0.488 0.335 0.367 0.396 0.436 0.306 0.348 0.390 0.406
Mu+Ms 0.601 0.582 0.405 0.448 0.479 0.473 0.352 0.413 0.447 0.445
Mu+Nw 0.577 0.561 0.406 0.475 0.518 0.506 0.338 0.413 0.444 0.454

Table 18: Average F1-score for each model across different training sets for test set MuMo. c denotes the number of
prior interactions provided as context to the generative models during classification.

Train Set BERT RoBERTa Mixtral Llama2
c=0 c=1 c=3 c=5 c=0 c=1 c=3 c=5

NCTE 0.437 0.488 0.358 0.395 0.401 0.382 0.326 0.351 0.361 0.339

Table 19: Average F1-score for each model across different training sets for NCTE data. c denotes the number of
prior interactions provided as context to the generative models during classification.
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MuMo Mason/Newman
Questioning Questioning

Providing Information
Providing correct
definitions/examples

Response Evaluation Text based responses
Revoicing Restates
Strategy Related Interconnected thinking

Behavior Management
Cultural norms and
expectations for behavior

Turn Management
Identification of expected
behaviors/invitation to
participate

Table 20: Adoption of MuMo codebook for Mason
and Newman Datasets. The high-level categories from
MuMo were used as a standardized framework to main-
tain a consistent higher level labels and facilitate cross-
domain analysis


