Enhancing Reranking for Recommendation with LLLMs through User
Preference Retrieval

Haobo Zhang', Qiannan Zhu??*, Zhicheng Dou'*
!Gaoling School of Artificial Intelligence, Renmin University of China
2School of Artificial Intelligence, Beijing Normal University
3Engineering Research Center of Intelligent Technology and Educational Application, MOE, China
{zhanghb, dou}@ruc.edu.cn, zhugiannan@bnu.edu.cn

Abstract

Recently, large language models (LLMs) have
shown the potential to enhance recommenda-
tions due to their sufficient knowledge and re-
markable summarization ability. However, the
existing LLM-powered recommendation may
create redundant output, which generates ir-
relevant information about the user’s prefer-
ences on candidate items from user behavior
sequences. To address the issues, we propose
a framework UR4Rec that enhances reranking
for recommendation with large language mod-
els through user preference retrieval. Specif-
ically, UR4Rec develops a small transformer-
based user preference retriever towards candi-
date items to build the bridge between LLMs
and recommendation, which focuses on pro-
ducing the essential knowledge through LLMs
from user behavior sequences to enhance
reranking for recommendation. Our experimen-
tal results on three real-world public datasets
demonstrate the superiority of UR4Rec over
existing baseline models.

1 Introduction

Recommender systems play a pivotal role in mod-
ern online services and applications, which are
widely studied in both industry and academia (He
et al., 2017; Xiao et al., 2017; Guo et al., 2017).
Reranking is a crucial research direction in the rec-
ommendation field, which is mainly to rank a can-
didate set after initial retrieval. During the past
decade, various recommendation methods have
been presented to explore users’ personal prefer-
ences and provide them with recommendations
based on their historical interactions (Kang and
McAuley, 2018; Hidasi et al., 2016; Tang and
Wang, 2018; Zhou et al., 2020). Despite the success
of the conventional recommenders, there are some
inherent limitations and deficiencies. First, tradi-
tional methods are trained on limited datasets from

*Corresponding authors

a few domains, suffering from the general world
knowledge beyond user sequences and insufficient
item understanding (Wang et al., 2018; Liu et al.,
2023; Xi et al., 2023). Second, the traditional meth-
ods have inadequate analysis of user preferences,
as they typically explore user sequences with ID
features, rather than explicit user needs such as nat-
ural language (Lin et al., 2023b; Ren et al., 2023).

Recently, Large Language Models (LLMs) such
as ChatGPT (OpenAl, 2023) offer a vast repository
of world knowledge and have remarkable capabili-
ties in generation, summarization, and generaliza-
tion, providing a potential approach for powering
recommendation (Xi et al., 2023; Liu et al., 2023).
The existing LLM-powered recommendation can
be roughly classified into three categories: (1) LLM
directly acts as a recommender system (Hou et al.,
2023; Zhang et al., 2023c), which mainly designs
a prompt based on the user profile and candidates
to recommend an item or rerank the item list. (2)
LLM is leveraged to enhance traditional recom-
mendation methods (Ren et al., 2023) by analyzing
user preference from the historical interaction, or
generating some knowledge for items. It can also
generate some extra data for augmentation. (3)
LLM serves as a recommendation simulator in the
recommendation process (Ren et al., 2023), which
mainly stimulates a virtual environment for users
and items to interact. This paper primarily focuses
on the second scenario.

Although significant progress has been made in
enhancing recommendations with LLMs, there are
still some shortcomings. As shown in Figure 1,
LLM provides a large amount of information but
only part of them are relevant to candidate items.
Second, there exists a semantic gap between the
LLM-generated output and the vectors of tradi-
tional recommendation methods because LLMs
are not trained on recommendation datasets and
tasks. Based on this, there are challenges in in-
corporating LLMs into recommendation systems

658

Proceedings of the 31st International Conference on Computational Linguistics, pages 658—-671
January 19-24, 2025. ©2025 Association for Computational Linguistics

LLM-Generated preference :

1. Genre: the user seems to prefer dramas and comedies, as
these genres make up the majority of their watched movies.
2. Director/Actors: The user has watched movies directed
by famous directors such as John Lasseter, Martin Scorsese,
and Frank Capra. He has also watched movies starring
famous actors like Humphrey Bogart and Claudette Colbert.
3. Time Period/Country: The user has watched classic
movies from the 1930s to the 1950s and movies from
the 1980s to the 199@s. He has also watched movies from
different countries, including the US, the UK, and Japan.
4. Character: The user prefers movies with strong,
well-developed characters. They have watched movies with
iconic characters such as Rick Blaine from “Casablanca”
and Captain Virgil Hilts from “The Great Escape.”

Bo Mood/Tone: The user prefers movies with a
lighthearted, heartwarming tone. He watched many movies
that are classified as comedies, and he gave high ratings
to movies such as “Duck Soup” and “Young Frankenstein.”

Figure 1: An example of user preference generated by
LLM for recommending candidate items. Text in red
font denotes valuable information when recommending
item 1, while underlined text denotes valuable informa-
tion when recommending item 2. In these texts, the
fourth entry is the useless information.

while considering the efficacy and usefulness of the
LLM-generated content.

To address the above issues, we propose a frame-
work UR4Rec to enhance the traditional rerank-
ing recommendation models by harnessing the
rich world knowledge and superior summarization
and generation capabilities of LLMs. Specifically,
UR4Rec develops a transformer-based user prefer-
ence retriever to build the bridge between the LLMs
and traditional recommendation models, where the
generated user and item knowledge of LLMs from
user behavior sequences are retrieved as neces-
sary knowledge of user preference, and make them
LLM-to-recommendation alignment for enhancing
recommendation performance. For retrieval, we in-
troduce a cross-attention mechanism and leverage
the candidate item as a query to filter the generated
user preferences and retrieve accurate and neces-
sary information, which can be used as augmented
vectors for the recommender system. For align-
ment, we design two pre-training objectives includ-
ing contrastive learning and preference-item match-
ing. The objectives can make LLM-generated em-
beddings keep aligned with the embedding of the
recommender system. Extensive experiments on
three datasets show that our UR4Rec significantly
outperforms the state-of-the-art models.

Our main contributions are as follows:

(1) We propose a UR4Rec framework that re-
trieves the necessary information from the user and
item knowledge generated from LLM and aligns
the LLM with the recommenders to enhance the

reranking for recommendation.

(2) We design a retriever component to re-
trieve the LLM-generated user preference and item
knowledge using a candidate item as the query.

(3) We introduce two pre-training objectives to
bridge and align the LLM with traditional recom-
mendation models.

2 Related Work

The methods of employing LLMs to make recom-
mendations can be divided into three main cate-
gories: directly using LLMs as a recommender,
leveraging LL.Ms to enhance traditional recommen-
dation models, and using LLMs as the recommen-
dation simulator. We focus on the second route of
enhancing traditional recommenders using LLMs.

e LLM as a Recommender. Due to the power-
ful reasoning and analytical capabilities of LLM,
researchers initially attempted to use it directly as
recommenders to generate task results (Chen, 2023;
Zhiyuli et al., 2023). ChatRec(Gao et al., 2023) de-
signed prompts by straightforwardly concatenating
the user history and task description and input them
to ChatGPT for zero-shot recommendations, but it
cannot get satisfactory results. Consequently, sev-
eral studies (Zhang et al., 2023c; Wang and Lim,
2023; Hou et al., 2023) made an effort to convey
richer information to LLM by using techniques like
in-context learning in the prompts, facilitating more
detailed reasoning of LLM. Furthermore, some re-
searchers (Bao et al., 2023b,a; Li et al., 2023b)
tried another route of fine-tuning locally trainable
LLM to make it better fit for recommendation and
ranking tasks. Through the method of instruction
tuning (Lin et al., 2023a) or Q-Lora tuning(Yue
et al., 2023), the model can better apply its knowl-
edge and reasoning ability to recommendations.

e LILM-enhanced Recommender System.
Since LLMs are not trained on recommendation
and ranking datasets, using them directly as rec-
ommenders is difficult to generate item rankings
properly and accurately. To address the limitations,
researchers have explored another approach that uti-
lizes LLMs to enhance traditional recommenders.
LLM can be used as an encoder to generate textual
embeddings of users and items, which can enrich
the semantic information in the recommenders for
better performance (Qiu et al., 2021; Zhang et al.,
2023d). Moreover, LLM can also be used for data
augmentation by summarizing user information or
generating texts of item knowledge, which can be

659

utilized to enhance the semantic representation of
user and item or graph-based representation (Ren
et al., 2023; Wei et al., 2023; Du et al., 2023). For
example, KAR (Xi et al., 2023) leveraged LLM
to generate user preference and movie knowledge
and transform them into augment vectors for rec-
ommenders via a Hybrid-expert Adaptor.

e LLM as Recommendation Simulator. To
bridge the gap between online performance and
offline metrics, LLMs are also used to simulate vir-
tual users and interactions between users and the en-
vironment (Zhang et al., 2023b; Wang et al., 2023).
For example, Agent4rec (Zhang et al., 2023a) de-
veloped a movie simulator and leveraged user pro-
files, memory, and actions to construct agents to
interact with the environment. However, there are
still problems such as privacy and the gap between
virtual environments and real-world scenarios.

3 Method

We propose a framework to enhance reranking for
recommendations with LLMs through user pref-
erence retrieval, namely UR4Rec, which retrieves
the necessary information from LLM-generated
knowledge and makes LL.M-to-recommendation
alignment. As shown in Figure 2, our model mainly
consists of three components: LLM, user prefer-
ence retriever, and recommender system. The LLM
is used to generate item knowledge and user prefer-
ence. The retriever is to filter the generated knowl-
edge and retrieve accurate information on candi-
date items and align the LLM with recommenders.
The recommender system is augmented using the
retrieved information from the retriever.

3.1 LLM-based Generator

The generator summarizes user preferences and
gets rich item knowledge with LLM. The key is
to design prompts to make full use of the LLM’s
knowledge and ability of summarization. To better
analyze user preferences and enrich item knowl-
edge, we design two sets of prompts for user pref-
erence generation and item knowledge generation.

3.1.1 User Preference Generation

The user preference is the user’s interest in item
attributes, which can be inferred from his historical
interactions. Consequently, given the user u and his
historical interactions H = [i1, 2, ..., iy], We use
T(i;) to denote the title and category information
of the j-th historical item. We design a prompt

template f, to summarize u’s preference:

Py = fulu,T(i1),T(i2), ..., T(im)), (1)

where u denotes the user’s individual information.
Since the output of LLM is significantly influenced
by instructions in the prompt, to summarize user
preferences more accurately, we precisely design a
prompt template, and an example from the Steam
dataset is shown below:

N
Input:

Output: Based on the user’s history of playing games, we
can summarize the preferences as follows: 1. Genre: He
has played games with a mix of different genres, including
action, indie, RPG, adventure, and strategy. ...

J

We use Llama2-Chat (Touvron et al., 2023) to
generate user preferences with prompts that can
fully leverage the capabilities of LLMs:

Sy = LLM(py,). 2)

3.1.2 Item Knowledge Generation

The item knowledge contains various aspects of
open information about an item, including its cat-
egory, content, price, and other details. To effec-
tively extract the comprehensive knowledge of the
item contained in LLM, this component takes the
item’s basic information (title and brand) as input.
We design an item-specific prompt template f;, and
use Llama2-Chat to generate item knowledge:

pi = fi(T(1)),

si = LLM(p;). ©)

We design the prompt templates according to the
item attributes, some of which correspond to the
historical item attributes in the user preference
prompt to match each other better.

Input:

Output: Half-Life is a first-person shooter game developed
by Valve Corporation. It was released on November 19, 1998
for Microsoft Windows. 1. Genre: First-person shooter...

3.2 User Preference Retriever

There exists useless information in the user prefer-
ence and item knowledge generated by LLM, and
also exists a gap between LLM and recommenders.
Therefore, the user preference retriever aims to fil-
ter them and retrieve accurate information in the

660

Preference-ltem Matching]

Preference-ltem Contrastive Learning]

Recommendation Model

t

[e T] Retriever Block
x
Cross Attention
® ® o
u iy i v in
user behavior sequence
V?_I_ﬂ(Q
Large Language Model @9 @9--@9 (? Self Attention
I J
l 1 l l [Self Attention J T T T
t L T
User’s preference: 1. Genre: dramas and W
comedies. 2. Director: John Lasseter...
- = : Encoder VT K QT
i,’s knowledge: Toy Story is an animated T \Y TK T Q
comedy adventure film. Mood: humorous. ... |
user preference & item knowledge proxies target item “N

Figure 2: The architecture of our UR4Rec model.

LLM-generated preference and knowledge, and
align the LLM with recommenders to improve the
recommendation performance. As shown in Fig-
ure 2, the retriever is a transformer-based network
and each block is composed of a self-attention layer
(MHALt), a cross-attention layer (CrossAtt), and a
feed-forward layer (FFN), which is used to retrieve
useful information based on candidate items. The
retriever can be formulated as:

X" = MHAtt(WYXP, WEXP WVXP) 4 XP,
X2, = CrossAtt(WOX: WHKZ WV7Z) + X |

XPH = FEN(XY) + X7,

“4)
where p denotes the p-th block, XU is the direct in-
put of the first block which is different based on the
distinct training scenarios described in Sections 3.2
and 3.3, the self-attention layer has the same ar-
chitecture with that in Transformer (Vaswani et al.,
2017), the cross-attention layer has the same net-
work architecture with the self-attention while the
cross-attention takes X/, as query and Z as key and
value to calculate cross-attention between them, Z
in our method is the vectors obtained by encoding
the preferences and knowledge generated by LLM
using a freeze encoder:

e, = Encoder(s,,),
e;, = Encoder(s;,), (5)
ef8 = Agg(e,, e, ...,e;,,),

where Encoder is BERT, Agg is a concatenation.

For better interaction with LLM-generated pref-
erence and alignment, we create some proxy em-
beddings P = [py, ps, --., Px] as part of the direct
input of transformer, and also take the item rep-
resentation from the recommendation system as
the direct input. The proxy embeddings can in-
teract with the preferences through cross-attention
mechanisms to filter the information from the LLM-
generated preference, and the item representation
can be used to align the recommendation vectors
and LL.M-generated vectors when we input it and
the proxies into the transformer separately. It can
also be used as the query to retrieve necessary infor-
mation from LLM-generated preference when con-
catenating with the proxies as input. We initialize
the parameters of the self-attention and FFN layer
with BERT-base (Devlin et al., 2019) and randomly
initialize the parameters of the cross-attention layer.
To better retrieve the useful information and make
LLM-to-recommendation alignment, we design a
two-phase training method and two training ob-
jectives for the pre-training phase, including con-
trastive learning and preference-item matching.

Contrastive Learning. This training objective
aims to align the embedding of LLM-generated
preference and recommendation embedding by con-
trasting and distinguishing the positive and nega-
tive items. Contrastive learning mainly maximizes
the distance between positive and negative items
using their similarity matching with filtered prefer-
ence. For each sample consisting of history and a

661

proxy items

oroxy proxy item pmxyDD DD
il g 0000
D item DD D itemsDD D.

iy

(c) Special mask for
proxies and items

(a) Bidirectional mask (b) Bidirectional mask
for proxies for proxies and item

Figure 3: Masking strategies in our model.

candidate item, we first leverage the proxies, LLM-
generated preference, and item knowledge as input
to filter the accurate information:

Pl — Retriever(P, "), (6)

where P is the direct input (X = P), the aggre-
gated preference vector €;°° is the input of cross-
attention layer, and we use the bidirectional mask
as in Figure 3(a) to make them attend to each other.
We also input a positive item ¢P°® and M randomly
selected negative items irlleg, s i?&g to the trans-
former to get the information of items and calculate
the similarity scores with filtered preference. Noted
that there is no cross-attention layer in this opera-
tion and we only use the first and third formulas in

Equation (4):
eEOS/neg = Retriever(h;posies), (7)

where h;posinee 1s the representation of iPos/neg ip the
original trained recommendation model. Follow-
ing previous works (Zhu et al., 2021; Gao et al.,
2021; Wu et al., 2020), we utilize the widely used
InfoNCE loss as the contrastive learning loss for a
positive pair:

exp(sim(el™, €2 /7)

J 73

N
£CL = — Z log M : £
T ko exp(sim(e), €)) /7)

where NNV is the number of training samples, 7 is
a hyperparameter. The function sim(-) first cal-
culates the cosine similarity between the output
vector of the K proxies and eg oS¢ and then takes
the maximum of them as the similarity result.
Preference-Item Matching. This training
method leverages a binary classification task to
predict whether the filtered preference matches the
candidate item. It enables the model to learn to
discriminate the positive and negative items, fa-
cilitating better alignment and matching between
preferences and items. In this part, we concatenate
the proxies P and the item representation as the
direct input, and the LLM-generated knowledge as

9

the cross-attention input and get logits for classifi-
cation. Then we leverage a linear layer and average
the logits from the position of the K proxies as
input to get a matching score:

eiogit = Retriever([P; h;], ei%2"),

N . logit (8)
§ = Linear(avg(e; ")),
where h; is the representation of item 7 from rec-
ommendation model, [;] is the concatenation op-
eration. We also design a bi-directional masking
strategy as Figure 3(b) to ensure sufficient interac-
tion among items, proxies, and preferences. To im-
prove the model’s ability to discriminate negative
samples, we randomly selected a set of negative
examples for each positive instance for classifica-
tion. We use the binary cross entropy loss as the
objective function for classification:

N

Lop=—Y [yjlogy; + (1 —y;)log(1 — gj;)],
j=1

where y; = 1 when the item matches the prefer-
ence in sample j else y; = 0.

3.3 Augmentation for Recommender System

After the pre-training stage, the retriever can effec-
tively filter the information and retrieve accurate
preferences on each item from the preferences gen-
erated by LLM. We can leverage the filtered pref-
erence embeddings from the retriever as the aug-
mented vectors for recommender systems. Here
we focus on the reranking task and select several
traditional recommendation models as backbone
models, which generally can be formulated as:

e'® = Agg(Retriever([P; h;], e2%2")),
#; = RecSys(u, H, €;"%; 0), 9)

Lrs = Rec-Loss(7;,7;),

where Rec-Loss denotes the optimization objec-
tive of the recommender, 6 is the parameters of
the recommender, and the augmented vector e?ug is
the aggregation of the embeddings on the position
of K proxies. In our model, we concatenate €; '
with the candidate items’ embeddings in the back-
bone model’s input to augment recommendation.
To accelerate the process of generating augmented
vectors for all candidate/historical items in each
sample, we also develop another approach to ob-

tain augmented vectors by jointly taking proxies

662

Dataset #Users #ltems #Interactions
MovieLens-1M 6,040 3,883 1,000,209
Amazon-book 11,906 17,332 1,585,172
Steam 6,959 2,889 717,862

Table 1: Statistics of the three datasets

and multiple items as input, and leveraging the ag-
gregation of embeddings on the position of proxies
and each item as their output vectors:

e ¢ ..e ¢ = Retriever([P;h;,, ...

i1 0 v 7hil]7eaggr)a

u
where [is the number of items. Additionally, we
design a masking strategy to ensure that each item
cannot attend to each other and the proxies can
attend to all items, as shown in Figure 3(c).

3.4 Model Optimization

The process of our model UR4Rec is described as
Algorithm 1 in Appendix A. UR4Rec takes user u
and his historical interactions H as inputs and is
trained in three phases: (1) We leverage the LLM
to generate the user’s preference and item’s knowl-
edge without tuning its parameters. (2) We leverage
the two training objectives to pre-train the parame-
ters of the retriever and the optimization function
is: Lopretrain = LcL + o - Lcr, where « is a hyperpa-
rameter. (3) We jointly train the parameters of the
retriever and the recommender system to ensure
that the generated augmented vector adapts to the
rerank task better, and the optimization function is
£Lralin = ERS-

4 Experimental Setup

4.1 Dataset

We choose three public datasets as our evalua-
tion datasets, including MovieLens-1M, Amazon-
book, and Steam. We perform k-core filtering on
them and divide the datasets into the training, vali-
dation, and test sets with a ratio of 8:1:1. Statistics
of the datasets are shown in Table 1. More details
are in Appendix C.

4.2 Backbone Models and Baselines

We select three augmented methods BERT-aug (De-
vlin et al., 2019), Llama2-Chat-aug (Touvron et al.,
2023), KAR (Xi et al., 2023), and two state-of-the-
art recommenders Recformer (Li et al., 2023a) and
LRURec (Yue et al., 2024) as baselines. Detailed
descriptions are in Appendix D.

For the base model, we select 5 reranking meth-
ods DLCM (Ai et al., 2018), PRM(Pei et al., 2019),
SetRank (Pang et al., 2020), GRU4Rec (Hidasi
et al., 2016), and SASRec (Kang and McAuley,
2018) as backbones. Among them, the first three
(DLCM, PRM, SetRank) mainly encode the depen-
dencies among candidates and user-item interac-
tions, while the latter two (GRU4Rec, SASRec)
focus on modeling the user sequence to capture
user’s interests for more accurate predictions.

4.3 Evaluation Metrics

To validate the accuracy and effectiveness of the
models, we adopt MAP@N and NDCG@N as our
metrics, which are widely used in the previous
study (Pei et al., 2019; Kang and McAuley, 2018).

4.4 Implementation Details

We choose Llama2-Chat (Touvron et al., 2023) as
our LLM for generation and summarization. Fol-
lowing the baselines, the history length is set to 10
for the first three base models and 150 for the latter
two base models. The number of proxies is set to
8 for the first three base models and 16 for the lat-
ter two models. We use a BERT-base model with
110M parameters to initialize the Retriever. We
utilize AdamW (Loshchilov and Hutter, 2019) to
optimize the trainable parameters with batch size
32 and learning rate le-4 for the first three base
methods and 1e-3 for the latter two methods. The
dimension of the embeddings is set to 768. The
number of candidate items in the reranking process
is 100 and the number of negatives in the pretrain-
ing stage is 10. In our model, LLM generation and
pre-training can be completed offline, similar to the
pre-training and downstream task adaptation stages
in other fields. The main training component, the
Retriever, is a small Transformer network, resulting
in the training time of the augmented recommender
being close to the original recommender.

5 Experimental Results

5.1 Results

The results of all baseline methods are shown in Ta-
ble 2. The results of other metrics are shown in the
table 6 of Appendix. From the results, we can find:
(1) Our model outperforms all augmentation base-
lines on the three datasets. For example, the best
improvement of UR4Rec over KAR on NDCG@10
achieves 38.6%, 39.8%, and 19.3% when using
DLCM as the backbone model. This is mainly

663

Model MovieLens-1M Amazon-Book Steam
Backbone Variants M@1 M@5 N@1 N@5 M@l ME@5 N@l N@5 M@l M@5 N@l N@5
Base 0.158 0.235 0.158 0.271 0.024 0.047 0.024 0.058 0.139 0.206 0.139 0.238
+BERT 0.215 0.324 0.215 0371 0.108 0.185 0.108 0222 0.145 0216 0.145 0.249
DLCM +Llama2 0229 0.341 0229 0387 0.127 0207 0.127 0245 0.156 0.231 0.156 0.265
KAR 0.257 0.388 0.257 0424 0.176 0250 0.176 0286 0.180 0.253 0.180 0.287
UR4Rec 0.484* 0.588* 0.484* 0.631* 0.262* 0.379* 0.262* 0.428* 0.215* 0.307* 0.215* 0.348*
Base 0.156 0.242 0.156 0.283 0.025 0.048 0.025 0.060 0.141 0.209 0.141 0.241
+BERT 0.210 0.307 0.210 0349 0.078 0.144 0.078 0.175 0.145 0214 0.145 0.245
PRM +Llama2 0.223 0.328 0.223 0.374 0.101 0.169 0.101 0.202 0.156 0.224 0.156 0.256
KAR 0.269 0369 0.269 0424 0.141 0.201 0.141 0.245 0.177 0.255 0.177 0.276
UR4Rec 0.501* 0.606* 0.501* 0.649* 0.280* 0.387* 0.280* 0.433* 0.214* 0.304* 0.214* 0.345*
Base 0.154 0239 0.154 0279 0.024 0.047 0.024 0.059 0.128 0.203 0.128 0.236
+BERT 0.212 0305 0.212 0346 0.104 0.184 0.104 0.223 0.144 0.215 0.144 0.248
SetRank +Llama2 0.238 0.344 0.238 0.366 0.119 0.201 0.119 0.238 0.157 0.229 0.157 0.261
KAR 0.283 0.407 0.283 0425 0.172 0.241 0.172 0.276 0.173 0.250 0.173 0.284
UR4Rec 0.509* 0.614* 0.509* 0.655* 0.313* 0.425* 0.313* 0.471* 0.190* 0.286* 0.190* 0.329*
Base 0.345 0.505 0.345 0555 0428 0.539 0428 0.584 0.206 0.304 0.206 0.348
+BERT 0.348 0.510 0.348 0.557 0437 0545 0437 0593 0222 0318 0.222 0.361
SASRec +Llama2 0.354 0.517 0.354 0.565 0.454 0.552 0454 0.609 0.228 0.321 0.228 0.369
KAR 0.363 0.525 0.363 0.579 0.484 0584 0484 0.630 0.235 0.330 0.235 0.377
UR4Rec 0.400% 0.546* 0.400* 0.606* 0.537* 0.622* 0.537* 0.661* 0.259* 0.348 0.259* 0.388
Base 0.240 0.340 0.240 0.383 0.325 0407 0325 0441 0.180 0.267 0.180 0.306
+BERT 0.254 0355 0.254 0401 0351 0463 0351 0512 0.192 0280 0.192 0.320
GRU4Rec +Llama2 0.263 0.366 0.263 0410 0366 0481 0.366 0.530 0.213 0.305 0.213 0.346
KAR 0.302 0.381 0.302 0.439 0437 0538 0437 0580 0219 0312 0219 0.353
UR4Rec 0.335*% 0.417* 0.335*% 0.468* 0.476* 0.573* 0.476* 0.613* 0.242* 0.334* 0.242* (.375*

Table 2: The results of MAP@1,5 and NDCG@1,5 on five backbones and three datasets. The best results are shown
in bold. * indicate the model outperforms all baselines significantly with paired t-test for p<0.05.

because our retriever can retrieve necessary infor-
mation on items to enhance the recommender and
align it with LLM. (2) Our UR4Rec outperforms
the other LLM-based methods (Llama2-Chat-aug,
KAR). It proves our hypothesis of the inaccurate
information presented in the LLM-generated pref-
erences and demonstrates the effectiveness of our
retriever in preference retrieval and alignment. (3)
LLM-based methods achieve better performance
than BERT-augmented methods, which demon-
strates that the extra knowledge and user preference
generated by LLM can boost the recommenders for
more accurate predictions. (4) Our model can en-
hance the performance of all the backbone models,
which is mainly because our model can retrieve
valuable information on candidates from historical
items. (5) UR4Rec makes a greater improvement
in the first three backbone models compared to the
latter two. One likely reason is that the latter two
capture a portion of user interests based on histori-
cal sequences, while the first three models do not.
(6) We also compare UR4Rec with state-of-the-art
recommenders in Table 5 of Appendix. UR4Rec
achieves better performance than such two recom-
mendation models.

5.2 Ablation Study

We construct a series of ablation experiments to
demonstrate the effectiveness of our model: (1)
w/o. Retr. We remove the retriever in Equation (9)
and directly use the embedding generated by LLM
in Equation (5) as augment vectors. (2) w/o. proxy.
We remove the proxy embeddings in the retriever
and the contrastive learning task, and allow the
LLM-generated vectors to interact with the item
embedding in the transformer directly. (3) proxy
random. We initialize the proxy embeddings in
the stage of jointly training with recommenders
to verify the effectiveness of pre-trained proxies.
(4) w/o. LLM. We remove the LLM and replace it
with BERT to connect with the retriever and use the
BERT embedding as the input of cross-attention.
(5)w/o. pretrain. We remove the pertaining stage
and the two objectives in Section 3.2. (6) w/o.
CL. We remove the contrastive learning task in the
pre-training stage. (7) w/o. PIM. We remove the
preference-item matching in the pre-training stage.

The results with PRM and GRU4Rec as back-
bones are shown in Table 3. We find: (1) The model
w/o. Retr has degraded performance, which infers

664

PRM GRU4Rec
Model
M@10 N@10 M@10 Ne@l10
MovieLens-1M
UR4Rec 0.618 0.676 0.434 0.495
w/o Retr 0.348 0421 0.380 0.446
w/0 proxy 0.545 0.615 0.409 0.464
proxy random 0.570 0.632 0.422 0.481
w/o CL 0.554 0.616 0.418 0.472
w/o PIM 0.527 0.597 0.401 0.451
w/o LLM 0.521 0.590 0.380 0.448
w/o pretrain 0.524 0.592 0.396 0.449
Amazon-book
UR4Rec 0.404 0473 0.585 0.642
w/o Retr 0.189 0.250 0.508 0.564
w/0 proxy 0.284 0.368 0.570 0.627
proxy random 0.330 0416 0.579 0.635
w/o CL 0.364 0.437 0.572 0.630
w/o PIM 0.359 0428 0.567 0.624
w/o LLM 0.323 0.411 0.548 0.603
w/o pretrain 0.278 0.353 0.556 0.609
Steam
UR4Rec 0.324 0391 0.353 0.422
w/o Retr 0.242 0.300 0.323 0.391
w/o proxy 0.290 0.356 0.335 0.407
proxy random 0.305 0.361 0.343 0.411
w/o CL 0.306 0373 0.334 0.409
w/o PIM 0.301 0.366 0.329 0.398
w/o LLM 0.278 0.341 0.317 0.383
w/o pretrain 0.295 0.359 0.328 0.392

Table 3: Performance (MAP@ 10, NDCG @ 10) of abla-
tion models with PRM and GRU4Rec as backbones.

that the retriever can effectively retrieve important
information from LLM-generated preferences and
align LLM with the recommenders. (2) The low re-
sults of w/o. LLM shows that LLMs can effectively
analyze and summarize preferences and enrich the
item knowledge, which can significantly enhance
the recommenders. (3) UR4Rec achieves better
performance than w/o. proxy and proxy random.
It reveals that the proxies and pre-training objec-
tives make a difference in the process of retrieving
accurate information on the items. (4) UR4Rec
outperforms w/o. pretrain, demonstrating that
the pertaining stage and the pertaining objectives
can greatly improve the performance of retrieval
and alignment. (5) The model w/o. CL and w/o.
PIM both have degraded performance, which indi-
cates the importance of the two pertaining tasks for
knowledge retrieval and alignment. (6) The perfor-
mance of w/o. CL is higher than that of w/o. PIM,
demonstrating that the preference-item matching
task has a greater impact on improving model per-
formance. This is because the PIM task can train
the retrieval and the alignment process more effec-

0.68 PRM 0.65 GRUA4Rec
0.67 —— Movielends-1m | 0.64 T
066 SN 9.3 /
0.65(/ ——o0.61 —— Amazon Book
0.64 0.60
849 c32
G5 R /\
0:44 0.47 "

0.43] — Amazon Book 0.46 —— Movielends-1m
042 -~ - - . 2045

0.394 0.43

0.390 T —— Steam |(0.42 T

0.386| ./ 0.41 /

0.382 T 0.40 / —— Steam

0.378 0.39

"2 8 12 16 20 24 28 32
proxy number K

48 12 16 20 24 28 32
proxy number K

Figure 4: NDCG @10 results of UR4Rec with PRM and
GRU4Rec as backbones on different proxy numbers.

tively through the interaction of item vector and
LLM knowledge and concatenating with proxy.

5.3 Parameter Sensitivity

The important hyper-parameter in our model is the
number of proxies K, and we evaluate the results
on NDCG@10 under different K to analyze the
sensitivity of our model to the parameters. We fix
the other parameters and evaluate the performance
when K is in [2,4,8,16,32], respectively. The re-
sults using PRM and GRU4Rec as backbones are
shown in Figure 4. It shows that the performance
is best when the number of proxies is about 8 for
PRM and 16 for GRU4Rec on all datasets. The
different optimal number of proxies may be related
to the different history lengths for different models.
The shorter the historical records in each sample,
the less information is available for retrieval, which
allows a small number of proxies to retrieve accu-
rately, while too many proxies may lead to confu-
sion. If the historical length is long, there will be
massive preference information to retrieve, which
results in the need for more proxies when retrieval.

6 Conclusion

In this paper, we propose a framework UR4Rec,
which leverages the user preference and item
knowledge generated by LLM to enhance the
reranking for recommendations. We develop a
transformer-based user preference retriever to re-
trieve important information and filter the knowl-
edge generated from LLM. Correspondingly, we
design two pre-training objectives to make the em-
bedding of LLLM align with the recommendation
embedding. Experimental results demonstrate that
our model can significantly outperform existing
approaches on various backbone models.

665

Limitations

The large language model is a black-box model
and we mainly leverage the black-box model for
experiments without explanations on the recom-
mendation results. In the future, we can make an
effort to develop a component to improve the per-
formance and give an explanation for the result.

Acknowledgements

This work was supported by Beijing Natu-
ral Science Foundation No. L233008, Bei-
jing Municipal Science and Technology Project
No. Z231100010323009, National Natural Sci-
ence Foundation of China No. 62272467, No.
62472038, and No. 62437001, Fundamental Re-
search Funds for the Central Universities No.
2233100004. The work was partially done at the
Engineering Research Center of Next-Generation
Intelligent Search and Recommendation, MOE,
and the Engineering Research Center of Intelligent
Technology and Educational Application, MOE,
China.

References

Qingyao Ai, Keping Bi, Jiafeng Guo, and W. Bruce
Croft. 2018. Learning a deep listwise context model
for ranking refinement. In The 41st International
ACM SIGIR Conference on Research & Development
in Information Retrieval, SIGIR ’18, page 135-144,
New York, NY, USA. Association for Computing
Machinery.

Keqin Bao, Jizhi Zhang, Wenjie Wang, Yang Zhang,
Zhengyi Yang, Yancheng Luo, Fuli Feng, Xiang-
nan He, and Qi Tian. 2023a. A bi-step grounding
paradigm for large language models in recommenda-
tion systems. CoRR, abs/2308.08434.

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang,
Fuli Feng, and Xiangnan He. 2023b. Tallrec: An
effective and efficient tuning framework to align large
language model with recommendation. In RecSys,
pages 1007-1014. ACM.

Zheng Chen. 2023. PALR: personalization aware 1lms
for recommendation. CoRR, abs/2305.07622.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT (1), pages 4171-4186. As-
sociation for Computational Linguistics.

Yingpeng Du, Di Luo, Rui Yan, Hongzhi Liu, Yang
Song, Hengshu Zhu, and Jie Zhang. 2023. Enhancing
job recommendation through llm-based generative
adversarial networks. CoRR, abs/2307.10747.

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In EMNLP (1), pages 6894-6910. Associ-
ation for Computational Linguistics.

Yunfan Gao, Tao Sheng, Youlin Xiang, Yun Xiong,
Haofen Wang, and Jiawei Zhang. 2023. Chat-rec:
Towards interactive and explainable llms-augmented
recommender system. CoRR, abs/2303.14524.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li,
and Xiugiang He. 2017. Deepfm: A factorization-
machine based neural network for CTR prediction.
In IJCAI, pages 1725-1731. ijcai.org.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie,
Xia Hu, and Tat-Seng Chua. 2017. Neural collabo-
rative filtering. In Proceedings of the 26th Interna-
tional Conference on World Wide Web, WWW 17,
page 173-182, Republic and Canton of Geneva, CHE.
International World Wide Web Conferences Steering
Committee.

Baldzs Hidasi, Alexandros Karatzoglou, Linas Bal-
trunas, and Domonkos Tikk. 2016. Session-based
recommendations with recurrent neural networks. In
ICLR (Poster).

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu,
Ruobing Xie, Julian J. McAuley, and Wayne Xin
Zhao. 2023. Large language models are zero-
shot rankers for recommender systems. CoRR,
abs/2305.08845.

Wang-Cheng Kang and Julian J. McAuley. 2018. Self-
attentive sequential recommendation. In /CDM,
pages 197-206. IEEE Computer Society.

Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen,
Jingbo Shang, and Julian McAuley. 2023a. Text is
all you need: Learning language representations for
sequential recommendation. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, KDD ’23, page 1258-1267,
New York, NY, USA. Association for Computing
Machinery.

Xinhang Li, Chong Chen, Xiangyu Zhao, Yong Zhang,
and Chunxiao Xing. 2023b. Edsrec: An elegant
effective efficient extensible solution of large lan-
guage models for sequential recommendation. CoRR,
abs/2312.02443.

Jianghao Lin, Rong Shan, Chenxu Zhu, Kounianhua
Du, Bo Chen, Shigang Quan, Ruiming Tang, Yong
Yu, and Weinan Zhang. 2023a. Rella: Retrieval-
enhanced large language models for lifelong se-
quential behavior comprehension in recommendation.
CoRR, abs/2308.11131.

Xinyu Lin, Wenjie Wang, Yongqi Li, Fuli Feng, See-
Kiong Ng, and Tat-Seng Chua. 2023b. A multi-facet
paradigm to bridge large language model and recom-
mendation. CoRR, abs/2310.06491.

666

https://doi.org/10.1145/3209978.3209985
https://doi.org/10.1145/3209978.3209985
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3580305.3599519
https://doi.org/10.1145/3580305.3599519
https://doi.org/10.1145/3580305.3599519

Qijiong Liu, Nuo Chen, Tetsuya Sakai, and Xiao-Ming
Wu. 2023. A first look at llm-powered generative
news recommendation. CoRR, abs/2305.06566.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Liang Pang, Jun Xu, Qingyao Ai, Yanyan Lan, Xueqi
Cheng, and Jirong Wen. 2020. Setrank: Learning
a permutation-invariant ranking model for informa-
tion retrieval. In Proceedings of the 43rd Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR *20, page
499-508, New York, NY, USA. Association for Com-
puting Machinery.

Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun,
Xiao Lin, Hanxiao Sun, Jian Wu, Peng Jiang, Jun-
feng Ge, Wenwu Ou, and Dan Pei. 2019. Personal-
ized re-ranking for recommendation. In Proceedings
of the 13th ACM Conference on Recommender Sys-
tems, RecSys ’19, page 3—11, New York, NY, USA.
Association for Computing Machinery.

Zhaopeng Qiu, Xian Wu, Jingyue Gao, and Wei Fan.
2021. U-BERT: pre-training user representations for
improved recommendation. In AAAI, pages 4320—
4327. AAAI Press.

Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi
Cheng, Junfeng Wang, Dawei Yin, and Chao Huang.
2023. Representation learning with large language
models for recommendation. CoRR, abs/2310.15950.

Jiaxi Tang and Ke Wang. 2018. Personalized top-n se-
quential recommendation via convolutional sequence
embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data
Mining, WSDM 18, page 565-573, New York, NY,
USA. Association for Computing Machinery.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,

Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998—-6008.

Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi
Guo. 2018. DKN: deep knowledge-aware network
for news recommendation. In WWW, pages 1835—
1844. ACM.

Lei Wang and Ee-Peng Lim. 2023. Zero-shot next-item
recommendation using large pretrained language
models. CoRR, abs/2304.03153.

Lei Wang, Jingsen Zhang, Xu Chen, Yankai Lin, Rui-
hua Song, Wayne Xin Zhao, and Ji-Rong Wen. 2023.
Recagent: A novel simulation paradigm for recom-
mender systems. CoRR, abs/2306.02552.

Wei Wei, Xubin Ren, Jiabin Tang, Qinyong Wang, Lixin
Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and Chao
Huang. 2023. Llmrec: Large language models with
graph augmentation for recommendation. CoRR,
abs/2311.00423.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian
Khabsa, Fei Sun, and Hao Ma. 2020. CLEAR: con-
trastive learning for sentence representation. CoRR,
abs/2012.15466.

Yunjia Xi, Weiwen Liu, Jianghao Lin, Jieming Zhu,
Bo Chen, Ruiming Tang, Weinan Zhang, Rui Zhang,
and Yong Yu. 2023. Towards open-world recom-
mendation with knowledge augmentation from large
language models. CoRR, abs/2306.10933.

Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei
Wu, and Tat-Seng Chua. 2017. Attentional factor-
ization machines: Learning the weight of feature
interactions via attention networks. In IJCAI, pages
3119-3125. ijcai.org.

Zhenrui Yue, Sara Rabhi, Gabriel de Souza Pereira Mor-
eira, Dong Wang, and Even Oldridge. 2023. Lla-
marec: Two-stage recommendation using large lan-
guage models for ranking. CoRR, abs/2311.02089.

Zhenrui Yue, Yueqi Wang, Zhankui He, Huimin Zeng,
Julian Mcauley, and Dong Wang. 2024. Linear re-
current units for sequential recommendation. In Pro-
ceedings of the 17th ACM International Conference
on Web Search and Data Mining, WSDM 24, page
930-938, New York, NY, USA. Association for Com-
puting Machinery.

An Zhang, Leheng Sheng, Yuxin Chen, Hao Li, Yang
Deng, Xiang Wang, and Tat-Seng Chua. 2023a.
On generative agents in recommendation. CoRR,
abs/2310.10108.

667

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1145/3397271.3401104
https://doi.org/10.1145/3397271.3401104
https://doi.org/10.1145/3397271.3401104
https://doi.org/10.1145/3298689.3347000
https://doi.org/10.1145/3298689.3347000
https://doi.org/10.1145/3159652.3159656
https://doi.org/10.1145/3159652.3159656
https://doi.org/10.1145/3159652.3159656
https://doi.org/10.1145/3616855.3635760
https://doi.org/10.1145/3616855.3635760

Junjie Zhang, Yupeng Hou, Ruobing Xie, Wenqi Sun,
Julian J. McAuley, Wayne Xin Zhao, Leyu Lin, and
Ji-Rong Wen. 2023b. Agentcf: Collaborative learn-
ing with autonomous language agents for recom-
mender systems. CoRR, abs/2310.09233.

Junjie Zhang, Ruobing Xie, Yupeng Hou, Wayne Xin
Zhao, Leyu Lin, and Ji-Rong Wen. 2023c. Rec-
ommendation as instruction following: A large lan-
guage model empowered recommendation approach.
CoRR, abs/2305.07001.

Wenxuan Zhang, Hongzhi Liu, Yingpeng Du, Chen
Zhu, Yang Song, Hengshu Zhu, and Zhonghai Wu.
2023d. Bridging the information gap between
domain-specific model and general LLM for person-
alized recommendation. CoRR, abs/2311.03778.

Aakas Zhiyuli, Yanfang Chen, Xuan Zhang, and Xun
Liang. 2023. Bookgpt: A general framework for
book recommendation empowered by large language
model. CoRR, abs/2305.15673.

Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu,
Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, and
Ji-Rong Wen. 2020. S3-rec: Self-supervised learning
for sequential recommendation with mutual infor-
mation maximization. In CIKM, pages 1893—-1902.
ACM.

Yutao Zhu, Jian-Yun Nie, Zhicheng Dou, Zhengyi Ma,
Xinyu Zhang, Pan Du, Xiaochen Zuo, and Hao Jiang.
2021. Contrastive learning of user behavior sequence
for context-aware document ranking. In Proceedings
of the 30th ACM International Conference on Infor-
mation & Knowledge Management, CIKM 21, page
2780-2791, New York, NY, USA. Association for
Computing Machinery.

Appendix

A Notation Table and the Algorithm of
UR4Rec

We provide the notation table and the algorithm of
UR4Rec in Table 4 and Algorithm 1.

B Detailed Experimental Results

We provide detailed results of MAP@10,
MAP@20, NDCG@ 10, NDCG@20 in Table 6.

C Details of Datasets

We choose three public datasets as our evaluation
datasets, including (1) MovieLens-1M!. It is a
popular benchmark dataset for movie recommen-
dation and contains user ratings for the movies.
(2) Amazon-book?. It is a book recommendation
dataset that consists of user reviews and book meta

"https://grouplens.org/datasets/movielens/1m/
2https://nijianmo.github.io/amazon/index.html

information from Amazon, and we use its 5-core
subset. (3) Steam?. It is an electronic game dataset
and is composed of reviews and game information
on the Steam platform. We perform k-core filtering
on them and divide the datasets into the training,
validation, and test sets with a ratio of 8:1:1. Statis-
tics of the datasets are shown in Table 1.

D Detailed description of baselines

We select three augmented methods as our base-
lines:

BERT-aug (Devlin et al., 2019): In this model,
the BERT model is used to encode the user’s pref-
erence as augmented vectors for backbones.

Llama2-Chat-aug (Touvron et al., 2023): We
leverage Llama2-Chat to generate user preference
and encode it to augment the backbones.

KAR (Xietal., 2023) is an LLM-based approach
for augmenting recommenders, which leverages
a hybrid-expert adaptor to transform the LLM-
generated knowledge into augmented vectors.

We also compare our model with two state-of-
the-art traditional recommenders:

Recformer (Li et al., 2023a): It formulates items
as key-value attribute pairs and uses a bi-directional
Transformer to encode the item sequence.

LRURec (Yue et al., 2024): It captures user
transition patterns using linear recurrence with ma-
trix diagonalization and proposes a recursive paral-
lelization framework to accelerate training.

For the base model, we select 5 methods as back-
bone models:

DLCM(Ai et al., 2018): It is a rerank model and
feeds the candidates to an RNN model to encode
them and leverage the interaction between them to
improve the performance of ranking.

PRM(Pei et al., 2019): It is a personalized
reranking model and leverages a Transformer net-
work to encode the dependencies among items and
the interactions between users and items.

SetRank(Pang et al., 2020): It uses a self-
attention mechanism to capture local context in-
formation from interactions among candidates and
learn permutation equivariant representations for
candidates.

GRU4Rec(Hidasi et al., 2016): It captures the
session features using GRU and improves it by
introducing session-parallel mini-batches.

SASRec(Kang and McAuley, 2018): It mod-
els the entire user sequence with a stacked self-

Shttps://github.com/kang205/SASRec

668

https://doi.org/10.1145/3459637.3482243
https://doi.org/10.1145/3459637.3482243
https://grouplens.org/datasets/movielens/1m/
https://nijianmo.github.io/amazon/index.html
https://github.com/kang205/SASRec

Symbol Description

U A user

1 An item

H The historical interactions of user

m The length of the user history

K The number of the proxies

M The number of the negative items

P Embedding of the proxy

fus fi Prompt generator for user and item

Dus Pi The prompt for user and item

Su, Si The LLM-generated user preference and item knowledge

€y, €e; Embedding of the user preference and item knowledge generated from LLM
e Aggregated embedding of user preference and historical item knowledge
wWe WK wY Weight matrix in Retriever

Xp Input matrix of the p-th block of the retriever

h; Embedding of item i from recommendation model

epref ’ ePos 7 ened
ey

Embedding of user preference, positive item and negative item from Retriever
Augmented Vector for the recommendation system

y
y

The predicted probability for an item
Labels of an item

Table 4: Key notations and concepts

attention architecture to predict the next item.

669

MovieLens-1M Amazon Book Steam

M@l Me@l10 Ne@el Ne@el0 M@l Mel0 Ne@l Nel0 M@l Me@l0 Ne@l N@l0

Model

LRURec 0.378 0545 0378 0.612 0491 0589 0491 0.655 0209 0322 0209 0.391
Recformer 0.388 0.551 0388 0.624 0513 0.602 0513 0.663 0231 0346 0231 0.405
UR4Rec 0.400% 0.559* 0.400* 0.639* 0.537*% 0.634* 0.537* 0.678* 0.259* 0.367* 0.259* 0.434*

Table 5: Results of MAP and NDCG@ 10 compared to state-of-the-art recommenders. The best results are shown in
bold. * indicate the model outperforms all baselines significantly with paired t-test for p<0.05

Dataset MovieLen-1M Amazon-Book Steam
Backbone Variants M@10 M@20 N@10 N@20 M@10 M@20 N@10 N@20 M@10 M@20 N@10 N@20

Base 0.253 0.265 0315 0.359 0.056 0.063 0.080 0.106 0224 0.234 0.282 0.318

+BERT 0344 0.354 0421 0458 0.206 0.217 0271 0313 0234 0244 0.293 0.329

DLCM +Llama2 0.361 0371 0435 0473 0228 0.239 0295 0.338 0.248 0.258 0.307 0.346
KAR 0.404 0421 0477 0516 0284 0298 0.337 0384 0280 0.291 0332 0.378

UR4Rec 0.601* 0.606% 0.661* 0.678* 0.396* 0.405* 0.471* 0.502* 0.327* 0.336* 0.396* 0.431*

Base 0262 0.273 0330 0.372 0.057 0.064 0.081 0.109 0.227 0.237 0.284 0.322

+BERT 0.327 0337 0399 0435 0.164 0.177 0.224 0271 0231 0.241 0.289 0.327

PRM +Llama2 0348 0.368 0.421 0460 0.189 0.191 0.250 0.296 0.242 0.252 0.300 0.338
KAR 0.409 0.440 0462 0.509 0.231 0254 0.293 0332 0276 0.283 0310 0.358

UR4Rec 0.618* 0.622* 0.676* 0.692* 0.404* 0.415* 0.473* 0.501* 0.324* 0.334* 0.391* 0.430*

Base 0.258 0.270 0324 0.369 0.055 0.061 0.076 0.098 0.220 0.231 0.279 0.316

+BERT 0325 0.336 0396 0435 0206 0.218 0274 0317 0.233 0244 0.291 0.331

SetRank +Llama2 0364 0.374 0414 0452 0.221 0233 0.289 0334 0.245 0.256 0.300 0.341
KAR 0438 0458 0456 049 0.264 0277 0.324 0371 0276 0.288 0.325 0.365

UR4Rec 0.624* 0.629* 0.681* 0.697* 0.440* 0.447* 0.507* 0.532* 0.306* 0.317* 0.378* 0.417*

Base 0.525 0.532 0.588 0.608 0.551 0.556 0.613 0.630 0.324 0.334 0.397 0.435

+BERT 0529 0.537 0.591 0.613 0.560 0.568 0.623 0.648 0.337 0.348 0.408 0.447

SASRec +Llama2 0532 0.545 0.608 0.621 0.567 0.575 0.631 0.659 0342 0.355 0414 0452
KAR 0.543 0.556 0.618 0.638 0.593 0.609 0.653 0.681 0351 0.362 0.424 0.460

UR4Rec 0.559*% 0.564* 0.639* 0.658 0.634* 0.648* 0.678 0.714* 0.367 0.377* 0.434* 0.470

Base 0356 0.368 0421 0450 0421 0429 0475 0505 0285 0.296 0.350 0.389

+BERT 0371 0381 0.438 0467 0482 0490 0.545 0571 0299 0309 0.369 0.402

GRU4Rec +Llama2 0.380 0.388 0446 0475 0.508 0.517 0.564 0592 0323 0334 0391 0.429
KAR 0.398 0.409 0461 04838 0.551 0558 0.602 0.625 0331 0341 0399 0.437

UR4Rec 0.434* 0.442* 0.495* 0.515* 0.585* 0.591* 0.642* 0.662* 0.353* 0.363* 0.422* 0.456*

Table 6: The results of MAP@10,20 and NDCG@10,20 on five backbones and three datasets. The best results are
shown in bold. * indicate the model outperforms all baselines significantly with paired t-test for p <0.05

670

Algorithm 1 The Training Process of UR4Rec

1:

® >R

10:
11:
12:
13:

15:
16:
17:
18:

19:
20:
21:

22:
23:

Input: the user u, user’s behavior sequence H = {i1, 42, ..., i;, }, the item set I, the LLM 71157, the
optimized retriever component 7 r.; and the optimized recommendation component 7 gec.
Output: the optimized 7ge; and the optimized Tgec.
LLM-based Genertaion
Pu = fu(ua T(il)v T(i2)v SR T(Zm))
Py, = fl(T(Zk))v ke [17 m]
LLM-generated preference s,, = LLM(py,)
LLM-generated knowledge s;, = LLM(p;,),k € [1,m]
Preference embedding e,, = Encoder(s,,)
Knowledge embedding e;, = Encoder(s;,),k € [1,m)]
Pre-training of Retriever
fork=1, ... epoch do
Aggregated preference ;-8 = Agg(e,, e;,,...,€;,)
el = Retriever(P, ¢;°%")
fosmeg = Retriever (h;posmes)
Contrastive Loss Lcp, = InfoNCE(eP™f el e} !, ... e} “M)
Retrieved preference for item e, " = Retriever([P; h;], e22")
Predicted label § = Linear(avg(elioglt))
Preference-Item Matching loss Lcp = Cross_entropy(y, 9)
minimize the loss Lcp + aLcr to update 7w ret.
end for
Jointly Training of Retriever and Recommender
fork=1, ... epoch do
Augmented vector €; ¢ = Agg(Retriever([P; h;], €,£%))
7; = RecSys(u, H, e?ug; 0)
Recommendation loss Lrs = Rec-Loss(7;, 1)
minimize the loss Lgrs to update mge: and 7 rec
end for

671

	Introduction
	Related Work
	Method
	LLM-based Generator
	User Preference Generation
	Item Knowledge Generation

	User Preference Retriever
	Augmentation for Recommender System
	Model Optimization

	Experimental Setup
	Dataset
	Backbone Models and Baselines
	Evaluation Metrics
	Implementation Details

	Experimental Results
	Results
	Ablation Study
	Parameter Sensitivity

	Conclusion
	Notation Table and the Algorithm of UR4Rec
	Detailed Experimental Results
	Details of Datasets
	Detailed description of baselines

