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Abstract

Recent developments in Japanese large lan-
guage models (LLMs) primarily focus on gen-
eral domains, with fewer advancements in
Japanese biomedical LLMs. One obstacle is
the absence of a comprehensive, large-scale
benchmark for comparison. Furthermore, the
resources for evaluating Japanese biomedical
LLMs are insufficient. To advance this field,
we propose a new benchmark including eight
LLMs across four categories and 20 Japanese
biomedical datasets across five tasks. Exper-
imental results indicate that: (1) LLMs with
a better understanding of Japanese and richer
biomedical knowledge achieve better perfor-
mance in Japanese biomedical tasks, (2) LLMs
that are not mainly designed for Japanese
biomedical domains can still perform unexpect-
edly well, and (3) there is still much room
for improving the existing LLMs in certain
Japanese biomedical tasks. Moreover, we of-
fer insights that could further enhance develop-
ment in this field. Our evaluation tools tailored
to our benchmark as well as the datasets are
publicly available to facilitate future research.!'?

1 Introduction

Large language models (LLMs) show excellent
performances in various tasks in general domains
including Question Answering (QA) (Brown, 2020;
Taori et al., 2023), Machine Translation (MT) (He
et al., 2024), Summarization (Ravaut et al., 2024),
Machine Reading Comprehension (MRC) (Zhou
et al., 2023), Sentiment Analysis (Zhang et al.,
2024), and so on. Some researchers design proper
prompts for solving biomedical tasks (Singhal et al.,
2023; Liévin et al., 2024; Nori et al., 2023). How-
ever, most of the existing LLMs have been pre-
trained with texts in general domains, lacking

"https://huggingface.co/datasets/Coldog2333/
JMedBench

2https://github.com/nii-nlp/med-eval

domain-specific knowledge. To overcome this chal-
lenge, biomedical LLMs are proposed through pre-
training on biomedical corpora (Chen et al., 2023;
Wu et al., 2024), fine-tuning with instruction data
(Han et al., 2023), or reinforcement learning with
human feedback (Yang et al., 2024b).

With the chain-of-thought prompting technique,
Liévin et al. (2024) have achieved 60.2% accuracy
on USMLE-QA (Jin et al., 2021), passing the med-
ical licensing examination in the United States. In
the most recent work, with the help of multiple
agents, Nori et al. (2023) have achieved 93.06%
accuracy on the USMLE-QA dataset, similar to the
performance of a human expert. With this series of
techniques, biomedical LLMs are greatly promoted
in English biomedical tasks. However, biomedical
LLMs in other languages still have much room
for improvement (e.g., Japanese, Chinese, French,
etc.). Besides the relative unpopularity of existing
Japanese LLMs, another important obstacle is the
lack of a comprehensive benchmark for evaluation
and comparison. Therefore, in this paper, we fo-
cus on constructing a benchmark for evaluating
Japanese biomedical LLMs.

We selected five tasks that are widely used for
evaluating LLMs and real-world applications, in-
cluding multi-choice question-answering (MCQA),
named entity recognition (NER), machine transla-
tion (MT), document classification (DC), and se-
mantic text similarity (STS). Since there are only
a few Japanese biomedical datasets exist and they
are generally small (e.g., IgakuQA (Kasai et al.,
2023) only has 1,600 samples for testing), to reduce
the fluctuation of evaluation results, we translate
large-scale and high-quality datasets from other lan-
guages (e.g., English) to Japanese, augmenting the
scale of our benchmark. Furthermore, in the field
of Japanese biomedical LLM, a solid leaderboard is
missing. Therefore, we select eight representative
models to conduct extensive experiments, provid-
ing a standard for comparison. We hope our work
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can make future comparisons more convenient and
fair, promoting the development in this field.
In summary, our contributions are in three folds.

* We construct a large-scale benchmark includ-
ing 20 Japanese biomedical datasets across
five tasks for a comprehensive evaluation.

* We evaluate eight representative models
across four categories in our benchmark to
provide a standard for future comparison.

* We conduct extensive analysis from aspects of
the dataset, model, and prompt template, pro-
viding valuable insights for future researchers.

2 Related Works

Benchmarking is essential for the development of
a specific field. ImageNet Challenge (Deng et al.,
2009) is a famous benchmark in Computer Vision.
Many remarkable works on image recognition have
been proposed (Krizhevsky et al., 2012; He et al.,
2016; Tan, 2019) throughout history and the de-
velopment has increased rapidly. One reason for
this success is the convenience of comparison and
evaluation in this field. The GLUE (Wang, 2018)
is another famous benchmark for evaluating and
analyzing natural language understanding (NLU)
systems to promote research in developing general
and robust NLU systems. However, these works
mainly focus on English tasks, limiting the scope
of evaluating other languages like Japanese. Kuri-
hara et al. (2022) constructed the JGLUE from
scratch without using any translation, including six
datasets, which facilitates the research in Japanese
natural language processing (NLP) (Yano et al.,
2024; Enomoto et al., 2024; Aizawa et al., 2024).
Considering the wide applications of language
models (LMs), researchers are trying to explore
LMs’ power in biomedical tasks. Gu et al. (2021)
collected 13 biomedical NLP datasets in six tasks
from different isolated work to form a benchmark
called BLURB for evaluating biomedical models.
MMLU (Chang et al., 2024) is a benchmark con-
sisting of multiple topics. Specially, it contains
some biomedical questions like medical questions
at the college level. DrBenchmark (Labrak et al.,
2024) is an NLU benchmark for evaluating French
biomedical models. However, they are not appli-
cable in Japanese. JMMLU? is a translated ver-
sion of the MMLU. The researchers recruited hu-
man translators to check and remove those that

3https ://github.com/nlp-waseda/JMMLU

were difficult to translate, irrelevant, or inconsis-
tent with the Japanese culture. Recently, Qiu et al.
(2024) have proposed a multilingual benchmark
with six languages for evaluating medical LMs.
These benchmarks reflect some shortages of exist-
ing LLMs and provide insights into improving the
Japanese biomedical LLMs, but they only focus on
the MCQA tasks, which hinders the completeness
of the evaluation. Considering these shortages, in
this paper, we are dedicated to constructing a large-
scale benchmark with diverse tasks for evaluating
Japanese biomedical large language models. Table
1 shows a comparison of these benchmarks.

r
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Figure 1: Overview of JMedBench

3 JMedBench

Our benchmark construction consists of two parts.
The first part is the dataset collection, while another
part is the protocol for evaluation. Firstly, we intro-
duce the rationality of dataset selection and how we
augment our benchmark with datasets from other
languages. Then, we propose a protocol to obtain
robust evaluation results and discuss its necessity
for evaluating Japanese biomedical LLMs. Figure
1 is an overview of our benchmark.

3.1 Datasets

In the JMedBench, we include 20 datasets across
five tasks containing 38K testing samples. We col-
lect some human-manufactured Japanese datasets,
like IgakuQA (Kasai et al., 2023). We also trans-
late some high-quality large-scale English datasets
into Japanese to enhance the robustness of JMed-
Bench. Considering the convenience and perfor-
mance of using OpenAlI’s API, we use ChatGPT*
and GPT-4 (Achiam et al., 2023) to create our eval-
uation datasets when translation is needed. To
ensure the quality of the translated testing sets,
we use the most powerful model from OpenAl,

*https://openai.com/index/chatgpt/
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Benchmark Language Domain MC QriaSI(()thers #Dataset #Sample | Creator
BLURB (Gu et al., 2021) English Biomedical v v 13 65,146 Human
MMLU (Chang et al., 2024) English Mixed v X 1 14,042 Human
JMMLU Japanese Mixed v X 1 7,097 | Translation
DrBenchmark (Labrak et al., 2024) French Biomedical v v 20 10,519 Human
MMedBench (Qiu et al., 2024) Multilingual Biomedical v X 6 8,518 Human
JMedBench Japanese = Biomedical v v 20 38,130 Mixture

Table 1: Comparison of existing benchmarks.

the GPT-4°, to perform machine translation. In-
context learning is a common practice for adapting
an LLM to an unseen task. Therefore, we also
translate the training or validation sets to support
few-shot evaluation. Due to the limitation of our
budgets, we use the cheapest API® from OpenAl
to translate these samples. Though the translation
may not be perfect, producing unfaithful content
sometimes, it is good enough to provide informa-
tion like some domain-specific knowledge and task
format during the few-shot evaluation. Previous
works (Hendy et al., 2023; Sanz-Valdivieso and
Loépez-Arroyo, 2023; AlAfnan, 2024) also have
similar findings that ChatGPT has already had a
comparable MT performance with specialized Neu-
ral Machine Translation systems. Here listed are
the involved biomedical tasks and corresponding
datasets. Detailed statistics can be found in Table 5
in the Appendix.

* MCQA is one of the most commonly used
tasks for evaluating LL.Ms since other tasks
can be easily reformulated into the MCQA
task. We included IgakuQA (Kasai et al.,
2023), JMMLU-medical’, and translated
MedMCQA (Pal et al., 2022), MedQA (Jin
et al., 2021), USMLE-QA, PubMedQA (Jin
etal., 2019), and MMLU-medical (Hendrycks
et al., 2021b,a).

* MT is an important natural language gen-
eration (NLG) task. In the biomedical do-
main, researchers usually need to refer to
some English terminologies or communicate
with other researchers. Therefore, we expect
LLMSs can handle cross-lingual tasks besides
monolingual tasks. We included the EIMMT
(Hayakawa and Arase, 2020) dataset to evalu-
ate the cross-lingual ability of LLMs.

SWe used gpt-4-0613 checkpoint.
®We used gpt-3.5-turbo-1106 checkpoint.
"https://github.com/nlp-waseda/IMMLU

* NER is an NLU task aiming to extract
named entities like biomedical terminolo-
gies, medicines, etc. We included three
Japanese medical NER datasets from JMED-
LLM?: MRNER-disease, MRNER-medicine,
and NRNER. To improve the diversity of the
dataset, we also follow the BLURB bench-
mark and include translated BC2GM (Smith
et al., 2008), BC5Chem, BC5-Disease (Li
et al., 2016), INLPBA (Collier et al., 2004),
and NCBI Disease (Dogan et al., 2014).

* DC aims to classify documents into specific
categories. We include three datasets from
JMED-LLM: CRADE, RRTNM, and SMDIS.

* STS is a regression task to compute the se-
mantic similarity between two biomedical sen-
tences. We reformulate it as a classification
task to output the discrete level of similarity.
We include the JCSTS (Mutinda et al., 2021).

3.2 [Evaluation Dataset Augmentation

To enlarge the size of JMedBench for obtaining
robust evaluation results, we select several biomed-
ical datasets in English, because of its popularity.

3.2.1

Different from previous works that usually conduct
machine translation at the sentence level, we per-
form translation at the instance level. Specifically,
we translate questions and options meanwhile, so
that LLM can understand the scenario better to pro-
vide more correct translations. Detailed prompt
template can be found in Table 6 in the Appendix.

Multi-choice Question-Answering

3.2.2 Named Entity Recognition

We also translate the NER datasets from the
BLURB benchmark to improve the amount and
diversity of JMedBench. There are three fields in
the NER samples: entity type, text, and entities.

8https://github.com/sociocom/IMED-LLM
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To ensure the consistency of the translated entity
types, we manually translate them into Japanese
based on a dictionary (e.g., gene — & {7 ). As for
the text and entities, we also perform translation
at the instance level, as described in Section 3.2.1.
The prompt template for translating the biomedi-
cal NER datasets is also shown in Table 7 in the
Appendix.

One of the challenges is that the translated enti-
ties may not appear in the translated text. To solve
this issue, we conduct the translation in two phases:
machine translation and manual modification. We
first use ChatGPT and GPT-4 to translate the train-
ing and testing sets, respectively. We then collect
all the invalid samples, mainly due to JSON format
error and failure to include the translated entities,
and re-translate them using GPT-4. We increase the
temperature to 0.5 and call the GPT-4 API again
at most 5 times to seek a valid sample. After the
machine translation phase, 223 translated entries
(0.34%) still remain invalid and then we manually
modify these entries to make them valid.

During machine translation, we find that trans-
lating entities first instead of text first can reduce
about 10% of invalid samples. We speculate that
with the entity-first prompt, LLM can refer to the
already translated entities when translating the text,
thus, the translated entities are usually contained in
the following translated sentence. However, since
this is not the main focus of this paper, we did not
conduct further analysis to verify this hypothesis.
We hope this finding can inspire future researchers
when performing instance-level machine transla-
tion. Though there is arisk of the translation quality
from neural translation system (Naraki et al., 2024)
and we met a small number of failure cases during
the machine translation phase (some bad cases can
be found in the Appendix A.3), we realized that the
translation quality is still high when we conduct
the manual modification, which also reflects the
reliability of our data augmentation method.

3.3 Evaluation Protocols

LLMs are usually sensitive to the prompt templates,
especially in zero-shot evaluation (Gan and Mori,
2023). To obtain a robust and fair result, we sug-
gest reporting the maximal score of multiple runs
using diverse prompt templates for benchmarking.
We have also considered computing an average
score using different templates, whereas this re-
ported performance may be easily implicated by in-
appropriate prompts (e.g., using an English-centric

prompt for a Japanese-only LLM). In the following
evaluation, we use four types of prompt templates:

* Minimal: We include information as little
as possible in the prompt. For example, for
completing the MCQA task, we only input the
question, and compute the likelihood of each
possible option, namely, {question}\n.

» Standard: We use commonly used prompt
templates in each task. For example, we fol-
low (Robinson and Wingate, 2023) for evalu-
ating MCQA tasks.

* English-centric: Some of the existing
Japanese LLMs were continually pre-trained
from English-centric LLMs. Therefore, we
intend to explore whether an English-centric
prompt template is beneficial.

* Instructed: Besides the standard input, we
include a brief task instruction, evaluating the
instruction-following ability of LLMs.

As for the MCQA and DC tasks, it is difficult
to constrain the auto-regressive LLMs to generate
one of the given options or classes. Therefore, we
follow Gao et al. (2024) to compute the likelihood
perplexity of each possible answer and select the
one that has the highest generation possibility as
the final answer. We report accuracy on these two
tasks. As for the STS task, we also calculate the
likelihood perplexity of generating 0-5 and select
the one that has the highest generation possibility
as the final output. We use the Pearson Correla-
tion as the evaluation metric. As for the MT and
NER tasks, we generate the output and compute the
BLEU (Papineni et al., 2002) score and entity-level
F1 score, respectively.

4 Experiments

4.1 Comparison Methods

In our experiments, we included four categories
of popular and excellent LLMs to construct our
benchmark, including general LLMs in other lan-
guages: Llama2 (Touvron et al., 2023), Llama3
(Dubey et al., 2024), Qwen-2 (Yang et al., 2024a),
Mistral (Jiang et al., 2023); biomedical LLM in
other languages: Meditron (Chen et al., 2023);
Japanese general LLMs: llm-jp (Aizawa et al.,
2024), SwallowLM (Fujii et al., 2024); and
Japanese biomedical LLM: MMed-Llama3 (Qiu
et al., 2024). The specific checkpoints are listed
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| Accuracy (%) | IGA JMM  MedM  USM MedQ  MML Pub | Aver (Micro) |

| Zero-shot Evaluation \
Llama2-7B 22.69 26.20 30.31 27.81 23.17 29.77 63.50 30.91
Llama3-8B 26.19 35.09 31.94 32.21 26.00 36.77 62.30 34.51
Qwen2-7B 41.25 44.06 38.03 38.49 31.03 49.01 68.90 42.58
Mistral-7B 25.19 30.68 30.60 28.44 23.57 32.82 68.80 32.74
Meditron-7B 21.94 25.65 28.31 26.39 21.92 25.65 56.50 28.56
1Im-jp-13B 31.00 36.51 30.46 31.66 25.29 35.54 73.60 35.17
SwallowLM-7B 27.88 29.50 29.26 27.73 22.39 29.88 70.70 31.86
MMed-Llama3-8B 35.56 37.45 35.43 36.92 29.54 38.86 70.00 38.64

| Few-shot Evaluation \
Llama2-7B 23.56 29.35 29.95 29.07 24.43 32.71 55.80 31.28
Llama3-8B 36.31 37.77 36.77 35.04 29.30 43.77 72.50 39.97
Qwen2-7B 51.75 51.61 42.74 42.42 35.51 61.04 72.50 49.03
Mistral-7B 30.31 33.60 31.80 29.62 23.96 37.20 72.40 35.07
Meditron-7B 22.31 28.25 28.57 27.73 24.19 28.92 55.80 29.80
llm-jp-13B 36.06 37.37 32.54 33.62 26.32 39.44 75.90 37.54
SwallowLM-7B 29.00 33.67 32.23 30.32 23.41 37.89 71.40 35.16
MMed-Llama3-8B 45.37 46.42 38.54 41.95 34.88 50.29 72.50 44.64

Table 2: Benchmark results on Japanese biomedical MCQA tasks, including IgakuQA (IGA) and JMMLU-medical
(JMM), as well as the translated versions of MedMCQA (MedM), USMLE-QA (USM), MedQA (MedQ), MMLU-
medical (MML), and PubMedQA (Pub). We report the highest accuracy among four prompt templates as discussed
in Section 3.3. The best and second-best performances are highlighted in bold and underlined, respectively.

in Table 9 in the Appendix. Due to the com-
putation resources, we only evaluate LLMs with
around 7 ~ 8B parameters. LIm-jp is a represen-
tative LLM that was pre-trained from scratch with
Japanese and English texts. Although it does not
have the 7B version of the model, we still include
the 1lm-jp with 13B parameters in our benchmark.

4.2 Experimental Results
4.2.1

Table 2 shows the benchmark results on Japanese
biomedical MCQA tasks. Surprisingly, Qwen2
outperforms all models in MCQA, followed by
MMed-Llama3. Note that Qwen2 was primarily
pre-trained with Chinese and English texts. We
hypothesize that one reason for its success is the
considerable overlap in tokens between Chinese
and Japanese. MMed-Llama3 was continually pre-
trained on biomedical texts in multiple languages
including Japanese, explaining its superior perfor-
mance over Llama3. These observations highlight
the importance of understanding the Japanese lan-
guage and injecting domain knowledge. With few-
shot demonstrations, all models have improved.
We attribute this to the task format (Min et al.,
2022) and some domain-specific knowledge pro-
vided by the demonstrations. Comparing Llama2
and Llama3, we find that the performance gap un-
der the zero-shot setting is larger than that under

Multi-choice Question-Answering

the few-shot setting. The additional improvement
should be attributed to the improved in-context
learning (ICL) ability of Llama3, highlighting the
need to enhance the ICL ability of LLMs. More-
over, we can also observe a large improvement
from the zero-shot setting to the few-shot setting
for Qwen2, showing its superior ICL ability.

Although there is a human-translated version
of MMLU-medical, namely, the IMMLU-medical
dataset, we still translate the original MMLU-
medical dataset using GPT-4 to enrich our bench-
mark. According to the performances of these
two datasets (i.e., JMM & MML in Table 2), the
differences between performances on these two
datasets do not exceed 5% of accuracy. Further-
more, the ranking of the performances on the
translated MMLU-medical dataset also reflects the
ranking on the human-translated JIMMLU-medical
dataset. These observations confirm the quality and
the applicability of our translated datasets.

Meditron was continually pre-trained with large-
scale English biomedical texts from the Llama2
checkpoint. Chen et al. (2023) showed that Med-
itron has been successfully shifted to the biomed-
ical domain, outperforming the vanilla Llama?2 in
various biomedical MCQA tasks. However, we re-
alize that Meditron performs worse than Llama2 in
the JMedBench. Such multilingual ability degrada-
tion is probably due to the catastrophic forgetting is-

5922



| Flentity (%) | MRD MRM NRN  B2G  BSC  BSD  JNL  NCB | Aver (Micro) |

| Zero-shot Evaluation \
Llama2-7B 0.74 18.99 10.12 32.37 58.74 38.33 7.76 36.21 34.74
Llama3-8B 3.57 18.43 14.97 36.17 58.67 40.91 24.69 52.70 40.69
Qwen2-7B 3.06 15.02 9.54 39.88 52.26 38.40 8.51 40.13 35.43
Mistral-7B 16.75 30.21 11.33 35.61 52.37 38.92 7.12 46.65 34.65
Meditron-7B 1.94 4.78 5.17 15.31 31.12 17.71 12.89 18.29 19.14
1Im-jp-13B 8.80 11.99 14.58 29.31 59.15 37.62 22.52 43.55 37.41
SwallowLM-7B 2.20 23.74 11.79 31.18 58.22 41.76 13.22 34.85 36.26
MMed-Llama3-8B | 3.77 2685 1725 3970  61.85 3921 1648 5133 40.18

| Few-shot Evaluation \
Llama2-7B 11.10 21.14 20.41 46.76 72.95 55.50 47.85 52.90 55.22
Llama3-8B 15.83 37.26 25.15 51.98 79.42 63.40 53.47 62.05 61.69
Qwen2-7B 11.65 22.31 24.93 50.59 76.96 55.23 49.54 57.55 57.69
Mistral-7B 15.39 32.50 26.31 48.15 73.06 56.12 48.11 51.33 55.83
Meditron-7B 10.70 18.73 19.13 45.12 68.36 52.05 46.02 52.49 52.47
llm-jp-13B 14.74 22.23 24.64 45.25 76.60 59.79 51.77 56.14 57.76
SwallowLM-7B 12.05 25.58 20.55 44.41 74.74 59.26 46.60 51.03 55.62
MMed-Llama3-8B | 17.27  39.47  29.09  49.19 8034 6527 5105 6121 61.14

Table 3: Benchmark results on Japanese biomedical NER tasks, including MRNER-Disease (MRD), MRNER-
Medicine (MRM) and NRNER (NRN), as well as the translated versions of BC2GM (B2G), BC5Chem (B5C),
BC5Disease (BSD), INLPBA (JNL), and NCBI-Disease (NCB). We report the highest F1-entity score among four
prompt templates as discussed in Section 3.3. The best and second-best performances are highlighted in bold and

underlined, respectively.

sue during continual pre-training. How to improve
an LLM safely without losing any other ability
should be considered in future research. Besides,
since the SwallowLM and MMed-Llama3 were
continually pre-trained with additional Japanese
texts from Llama2 and Llama3, respectively, they
are improved by approximately 1% ~ 5% aver-
age accuracy, indicating the importance of local-
language adaptation.

4.2.2 Named Entity Recognition

Table 3 shows the results on Japanese biomedi-
cal NER datasets. In the few-shot evaluation of
BC2GM, BC5Chem, BC5Disease, JNLPBA, and
NCBI-Disease datasets, we use three shots of ex-
amples. However, for MRNER-Disease, MRNER-
Medicine, and NRNER, we only use one shot of
example because texts in these datasets are so long
that multiple shots will exceed the input token limit
of several models.

According to the results, we find that Llama3-
8B outperforms other LLMs in both zero-shot and
few-shot evaluations, with average F1-entity score
of 40.69% and 61.69% respectively. The Japanese
biomedical LLM, MMed-Llama3, has the second-
best performance in both settings. Few-shot exam-
ples can significantly improve the performance of
models on the NER tasks, ranging from 19.36%

to 33.33% F1-entity improvement. Similar to the
observations on MCQA tasks, we believe these
examples help LLMs better understand the entity
types’ definition and output format. Besides, we
find that LLMs perform generally worse on datasets
including MRNER-Disease, MRNER-Medicine,
and NRNER which are derived from JMED-LLM.
Note that the average text lengths of datasets from
these two sources are 69.82 and 247.81 Japanese
characters, while the numbers of entities are 1.33
and 2.66, respectively. Considering the longer in-
put text, larger number of entities and sparser en-
tity distribution, we believe these are the main rea-
sons why the datasets derived from JMED-LLM
are more challenging.

4.2.3 Machine Translation

Table 4 shows the BLEU scores for involved com-
parison methods on EJMMT. MMed-Llama3-8B
and Llama3-8B achieve the best and second-best
performance in our benchmark under the zero-shot
setting. Interestingly, we find that the English-
centric models (e.g., Llama2, Mistral) tend to
perform better on translating Japanese texts into
English, while the Japanese-centric models (e.g.,
SwallowLM) perform much better in translating
English texts into Japanese. We believe the main
reason is the text generation ability in different
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. EJMMT EJMMT Aver CRADE RRTNM SMDIS Aver ‘ JCSTS ‘
Metric . A .
(en->ja) (ja->en) (Micro)
\ \ BLUE \ Accuracy (%) | Pearson |
| Zero-shot Evaluation \
Llama2-7B 11.13 14.18 12.65 27.17 37.08 54.76 39.67 -0.005
Llama3-8B 16.79 23.66 20.23 25.00 44.94 51.19 40.38 0.422
Qwen2-7B 15.24 19.59 17.41 35.87 59.55 58.33 51.25 0.636
Mistral-7B 10.93 18.24 14.59 25.00 48.31 54.76 42.69 0.110
Meditron-7B 8.39 7.22 7.81 3043 52.81 54.76 46.00 0.072
1Im-jp-13B 15.14 23.13 19.13 28.26 37.08 51.19 38.84 0.014
SwallowLM-7B 19.32 1.15 10.24 25.00 41.57 50.00 38.86 0.056
MMed-Llama3-8B 23.00 17.50 20.25 26.09 55.06 55.95 45.70 0.553
| Few-shot Evaluation \
Llama2-7B 12.89 20.18 16.54 29.35 4494 59.52 44.61 0.099
Llama3-8B 20.22 28.50 24.36 34.78 53.93 63.10 50.60 0.483
Qwen2-7B 18.33 25.41 21.87 44.57 56.18 86.90 62.55 0.625
Mistral-7B 12.76 23.05 17.91 30.43 56.18 66.67 51.09 0.378
Meditron-7B 11.79 21.67 16.73 26.09 35.96 54.76 38.93 0.067
1Im-jp-13B 27.93 28.96 28.45 36.96 46.07 67.86 50.29 0.144
SwallowLM-7B 23.23 23.07 23.15 30.43 44.94 59.52 44.97 0.039
MMed-Llama3-8B 25.56 28.73 27.14 34.78 57.30 67.86 53.31 0.515

Table 4: Benchmark results on the rest of other tasks in JMedBench, including Machine Translation (EJMMT),
Document Classification (CRADE, RRTNM, SMDIS), and Semantic Text Similarity (JCSTS). The best and
second-best performances are highlighted in bold and underlined, respectively.

languages. Therefore, when applying LLMs to
the MT task, we should consider more on the lan-
guage generation ability instead of the language
understanding ability. Although the llm-jp is also a
Japanese-centric LLM, according to Aizawa et al.
(2024), it was pre-trained with 50-50 Japanese-
English mixed data. Therefore, it has a balanced
bilingual NLU and NLG ability. Furthermore, with
few-shot demonstrations displaying the task for-
mat, llm-jp achieves the best performance in the
MT task, which shows the prospect of developing
Japanese LLMs from scratch instead of continually
pre-training from checkpoints in other languages.
Besides, comparing Llama2 and the continually
pre-trained Meditron and SwallowLLM, we find that
continually pre-training with texts in biomedical
domains or Japanese texts only will lead to forget-
ting issues. Continual Learning (Wang et al., 2024)
is a potential solution,but it is still challenging to
continually improve the existing LLMs while main-
taining their original ability.

4.2.4 Document Classification

Performances of the DC task are also shown in
Table 4. We find that Qwen2 achieves the best
performance again. In the zero-shot setting, Med-
itron achieves the second-best performance, while
MMed-Llama3 achieves the second-best perfor-

mance. Most of the comparison methods achieve
better performance when few-shot demonstrations
are given. We believe it is because of the provided
task format as we discuss in Section 4.2.1. More-
over, LLMs can also recognize the fine-grained
differences between different classes given few-
shot demonstrations, making better decisions in
classification. Especially, we notice that Meditron
performs badly under the few-shot evaluation. We
attribute it to the language degradation issue since
it accepts a few long documents in the context, am-
plifying the noise when understanding Japanese.

4.2.5 Semantic Text Similairity

The performances on the STS task are varied dra-
matically. Qwen2 achieves excellent performance
on this task, while the prediction of other models
like Llama2-based models (i.e., Llama2, Meditron,
SwallowLM) is close to random guess. One pos-
sible reason is that the distribution of generating
numbers is close to a uniform distribution for these
models. Recent works also show the shortage of
LLMs from this aspect (Shah et al., 2023; Avnat
et al., 2024). However, understanding and generat-
ing numbers accurately is essential in the biomedi-
cal domains (e.g., on blood test reports). Therefore,
it is also a promising search direction in the field
of biomedical NLP.
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Figure 2: Zero-shot and few-shot performances on different tasks in JMedBench.

4.3 Discussions

In this section, we will conduct an integral and
in-depth analysis of the experimental results.

4.3.1 Comparison of Model Performances

Figure 2 includes two radar charts that demonstrate
models’ zero-shot and few-shot performance on
different tasks. Besides, we also rank the model
performance and visualize the rankings in Figure
6 as shown in the Appendix. A larger distance
from the center represents a higher ranking and
better performance. From the radar charts, we can
find out that basically, MMed-Llama3, Qwen2, and
Llama3 are the most outstanding LLMs on vari-
ous tasks. Few-shot examples also significantly
improve the model performances in all tasks.

4.3.2 Effect of Prompt Templates

We also hope to understand the performance of
prompt templates across different tasks and mod-
els. In zero-shot evaluation, Figure 3 illustrates that
the performance of Standard, English-centric, and
Instructed prompt templates do not differ signifi-
cantly, but using English-centric templates usually
achieves a slightly better performance. This phe-
nomenon is even more evident in English-centric
LLMs. We believe it is because these models have
a greater advantage in understanding English in-
structions, even when facing cross-lingual contexts.
Moreover, Figure 4 shows that few-shot demon-
strations reduce the differences between prompt
templates to a certain extent, with a particularly
noticeable enhancement for minimal prompt tem-
plates. We believe it is because the output relies
less on the instructions and can instead understand
the task format from the few-shot examples.
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Figure 3: Zero-shot performance under different prompt
templates.

5 Conclusions

In this paper, we discuss an urgent need for the
field of Japanese biomedical LLMs that requires
a solid benchmark for evaluation and comparison.
We collect a large collection of Japanese datasets
in diverse biomedical tasks, including MCQA, MT,
NER, DC, and STS. Considering the scale of the
human-manufactured datasets, we translate several
large-scale datasets with high quality in English to
ensure robust benchmarking results.

Based on the constructed dataset collection, we
conduct an evaluation of four types of models, in-
cluding Japanese biomedical LLMs, Japanese Gen-
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Figure 4: Few-shot performance under different prompt
templates.

eral LLMs, biomedical LL.Ms in other languages,
and general LLMs in other languages. Reported
performances reveal some insights for improving
existing Japanese LLMs in the biomedical domain.
Furthermore, our datasets and evaluation tools are
publicly available for future research.

Limitations

Considering the difficulty of evaluating natural lan-
guage generation (NLG) tasks that usually require
human evaluation, we only include natural lan-
guage understanding (NLU) tasks or reformulate
NLU tasks into NLU tasks. However, NLG tasks
are also widely used in real-world applications. In
the future, we consider introducing LLM-based
evaluation methods to unlock an easy evaluation of
NLG tasks, enriching our benchmark for a further
comprehensive evaluation.

With the help of superior modern large language
models, we can construct a large-scale benchmark-
ing dataset with less human effort, but the quality
of the translation is concerning. During our manual
correction of 223 invalid NER samples, we realized
the quality was high enough for model comparison.

Due to the limitation of our budgets, we only
translate several datasets of MCQA and NER. We

only perform evaluation on models with 7B/8B
model parameters. For a comprehensive evalu-
ation, we should also perform comparison in a
larger scale. We leave it as a future work to in-
clude more translated large-scale datasets in other
tasks and evaluation results of larger models. More-
over, though we evaluate these models with four
categories of prompt templates, each category only
contains one template, which may introduce some
fluctuation. To further improve the robustness of
our benchmark, we consider including more di-
verse prompt templates in each prompt category in
the future.

Evaluation results on Japanese general domains
and biomedical domains in other languages are also
valuable for comparison, providing some insights
into developing Japanese biomedical LLMs. Such
multilingual biomedical benchmark containing di-
verse tasks is a promising research direction in the
future. However, it is out of our scope in this paper.
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Besides, considering the scale of the existing
human-manufactured evaluation datasets, we adopt
machine translation systems (i.e., GPT-4) to trans-
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fore, those who want to use our datasets to develop
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tions should be aware of this limitation.
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A  Benchmark Construction Details

A.1 Further details of datasets in the
JMedBench

Table 5 shows the statistics of involved datasets
in the JMedBench. IgakuQA does not have an
official training set, while its genre is similar to
MedQA. Therefore, we share the training set of
MedQA with IgakuQA for a few-shot evaluation.
JMMLU-medical only contains the translated test-
ing set, and we also share the training set of trans-
lated MMLU-medical-JP with JIMMLU-medical.
Considering our limited budgets, we only trans-
lated 1,000 training samples randomly selected
from the original training set of the PubMedQA.
As for the datasets derived from JMED-LLM, in-
cluding EJMMT, MRNER-Medicine, MRNER-
Disease, NRNER, CRADE, RRTNM, and SMDIS,
we randomly split a small subset from the original
dataset for few-shot evaluation. The size of the
training set can be found in Table 5. As for the
JCSTS, we also randomly split a small subset to
be the training set. For the rest of the datasets, we
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strictly follow the origin setting of the split and use
the training set or development set for a few-show
evaluation.

| Task | Dataset | Train  Test | Creator|
IgakuQA 10,178 989 Human
JMMLU-medical 45 1,271 | Human
MCQA MedMCQA-JP 182,822 4,183 MT
USMLE-QA-JP 10,178 1,273 MT
MedQA-JP 10,178 1,273 MT
MMLU-medical-JP 45 1,871 MT
PubMedQA-JP 1,000 1,000 MT
MT | EIMMT | 80 2,400 | Human |
MRNER-Medicine 10 90 Human
MRNER-Disease 10 90 Human
NRNER 10 90 Human
NER BC2GM-JP 12,572 5,037 MT
BC5Chem-JP 4,562 4,801 MT
BC5Disease-JP 4,560 4,797 MT
JNLPBA-JP 18,607 4,260 MT
NCBI-Disease-JP | 5,424 940 MT
CRADE 8 92 Human
DC RRTNM 11 89 Human
SMDIS 16 84 Human
\ STS \ JCSTS \ 170 3,500 \ Human \

Table 5: Statistics of involved datasets in JMedBench.

A.2 Prompt Templates for Data
Augmentation

Table 6 shows the prompt template we used when
using OpenAl’s APIs for translating biomedical
MCQA datasets.

Besides, Table 7 is the prompt template for trans-
lating biomedical NER datasets.

A.3 Bad Cases during NER Dataset
Translation

We summarized three main failure types during ma-
chine translation: (1) ambiguity of a single word,
for example, ‘depression’ can be considered as a
mental illness (9 77) or pressing down (Il l));
(2) multiple possible expressions of a single word,
for example, ‘glucose’ can be translated into either
7L a2 — A or [LFE; (3) differences in grammar
between English and Japanese. Table 8 shows one
bad case for each typical failure type during trans-
lating NER datasets. The parts underlined indicate
an inconsistency between the entity and the text
translation. Although there is a small number of
failure cases during the machine translation phase,
we still realize that the quality of the translation
for both the entities and the text is very high dur-
ing the manual modification process, which can

prove the reliability and the scalability of our data
augmentation method.

B Experimental Details

B.1 Development in chronological order

We sorted the various models according to their
release dates. In chronological order, they are:
Llama2-7B (Jul. 2023), SwallowLM-7B (Nov.
2023), Meditron-7B (Dec. 2023), Mistral-7B (May
2024), MMed-Llama3-8B (May 2024), Qwen2-7B
(Jun. 2024), Llama3-8B (Jul. 2024), llm-jp-13B
(Sep. 2024). Figure 5 illustrates the relationship
between model performance and release date. The
color of the points represents the corresponding
tasks, and the shape represents their models. Col-
ored lines reflect the trend of model performance
on each task over time. The figure shows that as
time progresses, the performance of models on var-
ious tasks is consistently improving, especially for
the STS task. Moreover, the improvement in the
in-context learning (ICL) capabilities of the models
is even more pronounced.

B.2 Ranking of Models

Figure 6 shows the zero-shot and few-shot perfor-
mance rankings on JMedBench tasks among all
involved LLMs.

B.3 Comparison Methods

Detailed information for involved comparison
methods is listed in Table 9.

B.4 Prompts for Each Task

Detailed prompt templates for each task are shown
in Table 10, 11, 12, 13, and 14.
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Prompt template for translating MCQA datasets

#System Message

You are an excellent machine translation system for the biomedical domain.
Translate Japanese to English.

Input and output should be in the same JSON format.

{
"question”: {question}
"options": [
{option_a},
{option_b},
{option_c},
{option_d},

]

"context": {context} #Optional

Table 6: Prompt templates for translating biomedical MCQA tasks.

Prompt template for translating NER datasets

#System Message

You are an excellent machine translation system for the biomedical domain.

Translate Japanese to English.

Input and output should be in the same JSON format.

Please keep the original key without any changes.

Please promise the consistency of translation. For same English words, you should use the same
Japanese translation.

Please remove unnecessary spaces while translating.

{
"entities"”: {entities}
"text": {question}

3

Table 7: Prompt templates for translating biomedical NER tasks.
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Ambiguity of words

Original Text: Depression is a major clinical feature of Parkinson’ s disease.

Original Entity: depression

Translated Text: 5 DJF1L/ N —F% > ) VRO EB LRIV T,

Translated Entity: {l[/]

Explanation: According to Cambridge English Dictionary, "depression" has multiple meanings:
a mental illness (9 D7), or pressing down (I[Il)).

Multiple Expressions of a Single Word

Original Text: After recovery from hyperglycaemia, he remained polyuric despite normal blood
glucose concentrations; water deprivation testing indicated nephrogenic diabetes insipidus,
likely to be lithium-induced.

Original Entity: glucose

Translated Text: S 10LfE S D[OlE k. FIIIEFZMERERICOI»bSTERTH
DiElr L7z AKHIRT A NI V) FoLERETH LU RENO S B IRIEZ R L
XLz

Translated Entity: 7L 2 — A

Explanation: "Glucose" can be translated into either " 7" )L 2 — A" or "[fILFE".

Difference in Grammar

Original Text: Molecular cloning and characterization of two genes encoding gp138, a cell
surface glycoprotein involved in the sexual cell fusion of Dictyostelium discoideum.
Original Entity: genes encoding gp138

Translated Text: “Dictyostelium discoideum M Al clEh &1 B 59 2 flAaFR e ¥ >
NOHTHHepl38E I — R T 220DM\M T P17 v —=2 7 EFRERHh.
Translated Entity: gpl138% 27— K § 5 T

Explanation: Due to grammatical differences, the quantifier "2" is inserted between "genes"
and "encoding gp138" when translating the text.

Table 8: Typical bad cases during NER dataset translation

Category \ Model | #Params | Checkpoint
Llama2-7B 7B meta-1lama/Llama2-7b-hf
Llama3-8B 8B meta-llama/Meta-Llama3-8B
General LLMs in other languages Qwen2-7B B Qwen/Qwen2-7B

Mistral-7B 7B mistralai/Mistral-7B-v@.3

| Biomedical LLMs in other languages | Meditron-7B | 7B | epfl-11m/meditron-7b \
llm-jp-13B 13B -

General Japanese LLMs SwallowLM-7B 7B tokyotech-11m/Swallow-7b-NVE-hf
\ Biomedical Japanese LLMs | MMed-Llama3-8B | 8B | Henrychur/MMed-L1ama3-8B \

Table 9: Detailed information of involved comparison methods. We contacted the LLM-JP team and used the
provided version 3 of the 1lm-jp model for evaluation.
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Zero-shot Performance over Time Few-shot Performance over Time

0.4 4 0.4
+
0.2 4 0.2 A
0.0 4 0.0 A
LN S\ R R LB VU - N SR \ N\ IS I L B )
e > > [% % ’ % % > s > 3 1 [% % [%
LR ML L O M N M ASF 48P 817 48l g8l 401 9T 8
— MCQA —— NER — MT — DC STS
® Llama-2-7B + Meditron-7B *  MMed-LIama3-8B A Llama-3-8B
* SwallowLM-7B H Mistral-7B ® Qwen2-7B ¢  Ilim-jp-13B
Figure 5: Zero-shot and few-shot performance over time of all involved LLMs.
Zero-shot performance on JMedBench Few-shot Performance on JMedBench

NER NER

e\ g\

—eo— |lama-2-7B
—e— |lama-3-8B
—eo— Qwen2-7B

N MCQA .\ W MCQA — M|st'ral-7B
6 7/8 6 7/8 Meditron-7B
/ \ ) \ —o— [Im-jp-13B
— — —eo— SwallowLM-7B
DC DC MMed-Llama3-8B
STS STS

Figure 6: Zero-shot and few-shot performance rankings on JMedBench of all involved LLMs.
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Prompt templates for MCQA task

| w/o Context | w/ Context
Minimal {question} {context}
{question}
Standard R : {question} 5 ! {context}
{optlons} ER : {question}
|:|Z_ . %i .
English-centric | Question: {question} Abstract: {context}
{options} Question: {question}
Answer: Answer:

Instructed

PRIEFE T, R R
Fleg . BRepmahk., BFE. ma. BEr
T HBHEOREBE s A= X LD
WTHER L 7= £ DL T o iE IR I
HZ2h3v, UToERK,rSIELWY
DEIDHEOL IV, BEFETAR I AVIC
kI N TWwWas BEfTbNR TV AR
N EREICESINWTEZ LI W,

B : {question}

\Eﬁﬁi .

{optlons}

.:.7.

i KR & BT M E TH 5 BRIl
ELT RO IEL WD h#E2 T
{3V, [TV /A ] onwd
NP TEEZ L3N,

S 1 {context}

H% . {question}

&2

Table 10: Prompt templates for the MCQA task.

Prompt templates for NER task

Minimal

| BL#& ¢ {text} => {entity_type} :

Standard

PIToBS&EICBWT . {entity_type}ld ?
Bei% L {text} => {entity_type} :

English-centric

Paragraph: {text} => {entity_type}:

Please extract all {entity_type}s mentioned in the paragraph.

Instructed

PRI HOEMFTT .
%@J‘"O)?Z

‘_a—
P¥i% . {text} => {entity_type} :

S zld{entity_type}d 7 L — X R EUERE S 2 5N X T,
BEErS IS TRTH 7L — A& T4 LT,
mHahrz7L —ZXoazBEL. FNSZEEEOH 7 ()

T 5 E NS X

Table 11: Prompt templates for the NER task.

Prompt templates for MT task

| English— Japanese | Japanese—English

Minimal | {source_text} => | {source_text} =>

Standard %@ﬂ iR (English = H 7| Translation (H 7 & => English):
ZE) . {source_text} => {source_text} =>

English-centric | Translation (Japanese => English):| T Translation (English => Japanese):
source_text => source_text =>

Instructed

PHEITENEECERR T 5 E
g, HEBERY EWRES . B
H.ORE. ORA. BES T R0
ez A= XL mMEL~ T DL
ToFELZHERL 23\,

{source_text} =>

HRFTENE FCEZRRT 2 52
+7°9. %%ﬂf H%ﬂf PR =
. L. A, RBEs NeE) QURDE
%t&é}ﬁ_xg%mﬁt%if LI
ToOMLZHERL LI,

{source_text} =>

Table 12: Prompt templates for the MT task.
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Prompt templates for DC task

Minimal {document?}
{question}
Standard SR - {document}

H® . {question}

{classes}
X\

o Z .

English-centric

Context: {document}
Question: {question}
{classes}

Answer:

Instructed

buIIEFEL T, AR BIKESE. Bk, BE. WA, BEr T
MREDOFEME 5 A = XL H>WTHEL - LT DIToSRAMEICE 2%
3w, DTFo#ERE»SIELWOZIDIEY LI,

YR © {document}

H% . {question}

HHRAY ¢ {classes}

&2

Table 13: Prompt templates for the DC task.

Prompt templates for STS task

Minimal {text_1}
{text_2}
Standard TX AR {text_1}

TX A K2 {text_2}
B (0-5) :

English-centric

Text 1: {text_1}
Text 2: {text_2}
Semantic Text Similarity (0-5):

Instructed

SuIIEFE LT, AR RRE. BaEmEk. B, WA BE 7.
wiEEoEME L 705 A = XL > W THM L /72 £ T RO LB RN FIE
Z0h SSORIFATHRT L T 7230,

0: o IITELICPI TV R,

5 o3 RelcdEE T HEE L Th B,

TX AN {text_1}

TX AN2 {text_2}

FOUE (0-5) :

Table 14: Prompt templates for the STS task.
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