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Abstract

Joint relation extraction models effectively mit-
igate the error propagation problem inherently
present in pipeline models. Nevertheless, joint
models face challenges including high compu-
tational complexity, complex network architec-
tures, difficult parameter tuning, and notably,
limited interpretability. In contrast, recent ad-
vances in pipeline relation extraction models
(PURE, PL-Marker) have attracted consider-
able attention due to their lightweight design
and high extraction accuracy. A key advance-
ment is the introduction of a marker mecha-
nism, which enhances relation extraction (RE)
process by highlighting entities. However,
these models primarily focus on generating
correct labels. In doing so, they neglect the
label selection process. Moreover, they fail
to adequately capture the intricate interactions
between entity pairs. To overcome these lim-
itations, we develop a Candidate Label Mark-
ers (CLMs) mechanism that prioritizes strate-
gic label selection over simple label generation.
Furthermore, we facilitate interactions among
diverse relation pairs, enabling the identifica-
tion of more intricate relational patterns. Ex-
perimental results show that we achieve a new
SOTA performance. Specifically, based on the
same Named Entity Recognition (NER) results
as theirs ‡, we improve the SOTA methods by
2.5%, 1.9%, 1.3% in terms of strict F1 scores
on SciERC, ACE05 and ACE04.§

1 Introduction

Named Entity Recognition (NER) and Relation Ex-
traction (RE) are fundamental tasks in information
extraction (IE). Recent works have often adopted

*These authors contributed equally to this work
†Corresponding author
‡We adopt the NER results from HGERE (Yan et al., 2023)

for ACE05 and SciERC. Considering HGERE doesn’t follow
previous approach to process ACE04 datasets, we adopt the
NER results from PL-Marker (Ye et al., 2022) for ACE04.

§Our code and models are publicly available at https:
//github.com/Hiaa1/SURE

PURE With CLMs :
In 2010, [PER]Steve Jobs[/PER] introduced the 
revolutionary iPhone 4, captivating Apple 
enthusiasts at [LOC]Apple Park[/LOC] with his 
charismatic presentation.

[LOC-IN][NIL][AFFILIATION][EMPLOYMENT]

PURE :
In 2010, [PER]Steve Jobs[/PER] introduced the 
revolutionary iPhone 4, captivating Apple 
enthusiasts at [LOC]Apple Park[/LOC] with his 
charismatic presentation.

PL-Marker :
In 2010, [S-PER]Steve Jobs[/S-PER] introduced 
the revolutionary iPhone 4, captivating Apple 
enthusiasts at Apple Park with his charismatic 
presentation.

[PER][/PER][LOC][/LOC]

PL-Marker With CLMs :

[NIL][EMPLOYMENT][LOC-IN][AFFILIATION]

[LOC-IN][NIL][AFFILIATION][EMPLOYMENT]

[NIL][EMPLOYMENT][LOC-IN][AFFILIATION]

[LOC-IN][NIL][AFFILIATION][EMPLOYMENT]

In 2010, [S-PER]Steve Jobs[/S-PER] introduced 
the revolutionary iPhone 4, captivating Apple 
enthusiasts at Apple Park with his charismatic 
presentation.

[PER][/PER][LOC][/LOC]

Figure 1: An example in RE task. PURE processes a
pair of entities once, while PL-Marker processes a batch
with one subject and its corresponding left objects. With
our CLMs, it is easier to select than to generate.

a pipeline approach, treating these two tasks sep-
arately (Zhong and Chen, 2021; Ye et al., 2022).
However, prior to PURE (Zhong and Chen, 2021),
several studies have explored the potential benefits
of addressing NER and RE jointly, suggesting that
such an approach could avoid error propagation
and enhance overall extraction performance (Wei
et al., 2020; Wang et al., 2020b; Sui et al., 2020).
PURE adheres to a sequential methodology where
NER is performed first, and followed by RE. PURE
highlights input for RE task by inserting special

https://github.com/Hiaa1/SURE
https://github.com/Hiaa1/SURE
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markers around entities. These markers help the
model focus on potential relation between marked
entities, thereby improving precision in relation
extraction.

Recent works in RE have extensively utilized
Pre-trained Language Models (PLMs) (Devlin
et al., 2019; Lan et al., 2020) due to their robust
understanding of the context. These models are
fine-tuned to perform classification tasks to align
with dataset-specific labels. This process can be
likened to answering open-ended questions where
the model generates responses based on question
stem. During this process, the model implicitly
learns the correct answers through backpropaga-
tion.

Moreover, there is a growing interest in enhanc-
ing the performance of PLMs on downstream tasks
by providing them with additional auxiliary infor-
mation, such as inserting special markers to high-
light entities (Zhong and Chen, 2021), constructing
knowledge graphs (Wang et al., 2021a), and utiliz-
ing prompts in Large Language Models (LLMs)
(Li et al., 2023; Ashok and Lipton, 2023), helping
models better understand context.

However, we argue that these methods resemble
a Fill-In-The-Blank (FITB) approach. Considering
a scenario, given the same question stem, it is eas-
ier to answer with multiple choices than with an
empty blank. An education research (Medawela
et al., 2017) presents that based on the same ques-
tion stem, a group of students scores 10.05 on av-
erage with Multiple Choice Questions (MCQs),
while another group scores 6.8 with FITB. This
finding suggests that MCQs is easier than FITB.
Consider an RE example of PURE shown in Figure
1, it is intuitively easier to select a relation option
for the entities Steve Jobs and Apple Park when
presented with choices, as opposed to having no
options at all. We argue that this basic principle
may similarly benefit models. MCQs potentially
establish a more robust mapping from the original
text to labels compared to FITB approach. Conse-
quently, the presence of explicit choices may guide
the model in predicting the correct label.

We adopt a two-stage approach. As shown in
Figure 2, in Stage 1 (St.1), we introduce Candidate
Label Markers (CLMs) by selecting potential use-
ful labels based on classifier. For Stage 2 (St.2),
these CLMs are then concatenated with the origi-
nal text to form a new input, which is then re-fed
into the model. This method, despite its simplicity,
has been proven effective. Employing the same

encoder architecture, we achieve SOTA results on
three standard benchmarks. Using the same NER
results as previous state-of-the-art model, we ob-
served strict relation F1 improvements of 2.5%,
1.9%, and 1.3% on SciERC, ACE05, and ACE04,
respectively.

To explain the effectiveness of our CLMs mech-
anism, we provide a detailed analysis contrast-
ing it with existing methods, particularly focusing
on how it addresses limitations in current mod-
els: (1) Enhanced Auxiliary CLMs Comprehen-
sion: Research has demonstrated that the process
of identifying the correct answer among distrac-
tors strengthens memory connections (Marsh et al.,
2007). CLMs, inspired by cognitive and educa-
tional theories such as Item Discrimination and
Distraction Conflict (Baron, 1986; Baker, 2001;
Masters, 1988), may enhance the model’s semantic
understanding by distinguishing between relevant
and irrelevant labels, thus comprehend positive and
negative aspects of knowledge. (2) Descending
Ordered CLMs Learning: Establishing a specific
order for CLMs during training is crucial. While it
is widely acknowledged that introducing random-
ization into model inputs enhances robustness, we
deliberately arrange the CLMs in descending or-
der. This approach facilitates learning efficiency
and construction of multi-perspective knowledge.
Notably, during the inference phase, the model no
longer requires CLMs, as it has developed suffi-
cient contextual comprehension. (3) Improved
Objects Interaction Awareness: As illustrated by
the PL-Marker example in Figure 1, object mark-
ers representing Apple Park and Apple enthusiasts
are invisible to each other in their implementation,
resulting in poor performance between pairs. To
address this, we enable Mutual Directional Atten-
tion in ObjectS (M-DOS) to capture objects inter-
action. To extract the relation that Steve Jobs is
located_in Apple Park, we must consider two di-
rect relationships: 1. Apple enthusiasts are located
in Apple Park; 2. Steve Jobs attracts Apple enthusi-
asts. By understanding these direct relationships,
model can infer the indirect relation that Steve Jobs
is located_in Apple Park. This inference is possible
because Apple enthusiasts serve as a connecting
element between Steve Jobs and Apple Park.

Our final system, called SURE (Shanxi
University Relation Extraction system), along with
our code, is publicly available for further experi-
mentation and development.

We summarize our contributions as follows: (1)
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We propose SURE, a simple yet effective two-stage
method, in which CLMs is proposed to transform
the task from FITB to MCQs, guiding the model
in predicting the correct label. (2) SURE generates
CLMs at St.1, which can capture nuanced semantic
meanings and enable M-DOS to reinforce objects
interactions at St.2 for better context understanding.
(3) Our module, when integrated with existing RE
models, significantly enhances their performance.
Specifically, on SciERC dataset, it improves the
strict relation F1 score of PURE by 1.8% and PL-
Marker by 1.0%.

2 Related Work

RE is typically modeled jointly with NER. The in-
troduction of PURE (Zhong and Chen, 2021) has
significantly reshaped our understanding of both
joint and pipeline approaches in capturing inter-
actions between NER and RE. PURE challenges
the prevailing assumption that joint models are in-
herently superior due to their reduction of error
propagation, a common issue in pipeline models.
Furthermore, the emergence of LLMs represents
a notable shift, as these models are now being ef-
fectively applied to various sub-tasks, including
RE.

LLMs: With their extensive parameters and com-
putation, LLMs offer innovative solutions for in-
formation extraction. Recent advancements (Wad-
hwa et al., 2023) include combining LLMs with
Chain of Thought (CoT) and fine-tuning techniques
for RE. These models can support multiple tasks
like NER, event detection (ED), sentiment analysis
(SA) within a single model framework. However,
this approach often involves higher training and
inference costs compared to previous PLMs.

Joint Models: Joint models integrates NER and
RE into a unified framework. Casrel (Wei et al.,
2020) is a typical tagging-based approach, which
first extracts a subject entity, then simultaneously
extracts the relation and its corresponding object
entity. However, this approach suffers from error
propagation and exposure bias. TPLinker (Wang
et al., 2020b), a table-filling approach, addresses
the exposure bias problem by formalizing joint
NER and RE tasks as a tag pair linking problem
in one stage. KEPLER (Wang et al., 2020a) is a
knowledge graph-based approach that enhances the
ability to capture factual knowledge by combining
knowledge embeddings (KE) with PLMs. HGERE
(Yan et al., 2023) integrates NER and RE into a

unified framework through two key components:
high-recall pruners for filtering entity spans, and
hypergraph neural networks for processing these
spans. By using outputs from HGERE’s NER re-
sults as inputs for SURE, we have achieved notable
improvements.

Pipeline Models: These models treat NER and
RE as separate tasks. PURE (Zhong and Chen,
2021) is a notable pipeline model that innovatively
uses text markers to highlight entity span pairs dur-
ing RE phase, resulting in significant improvement.
The PURE (Approx.) variant processes all enti-
ties simultaneously during inference phase, with
a slight decrease in accuracy but 8x or 16x speed
increase. PL-Marker (Ye et al., 2022) synthesizes
elements from both PURE (Full) and PURE (Ap-
prox.) by introducing a subject-oriented bundling
method during in RE phase. While PL-Marker is
designed to capture relationships between multi-
ple same-subject pairs simultaneously, our analysis
suggests that it does not fully implement this mech-
anism effectively.

3 Method

We apply CLMs only in RE task, and the input of
RE is from the output of NER. In this section, we
will detail the architecture of our RE model and
describe mechanisms in which CLMs are generated
and the most appropriate ones are selected.

3.1 Background: PURE and PL-Marker

Consider a sentence containing N entities. PURE
(Full) (Zhong and Chen, 2021) processes each pair
of entities sequentially, resulting in a computational
complexity of O(N2). This complexity arises be-
cause the method iterates over each possible pair,
which is composed of the Cartesian product of
the entity collection. In contrast, PURE (Approx.)
(Zhong and Chen, 2021) reduces the computational
complexity significantly by appending all entity
markers at the end of the text, thereby achieving
a complexity of O(1). Note that PURE (Approx.)
is only utilized to speed up the inference phase.
PL-Marker (Ye et al., 2022) integrates these two
methods by incorporating one entity into the text
as a solid marker and appending the remaining en-
tities at the end as levitated markers. This hybrid
strategy is applied during both training and infer-
ence phases, achieving a computational complexity
of O(N).



462

sentence St.1:Generation St.2:Selection prediction

PLM

Classifier

Selector

PLM

Classifier

output

Generate CLMs

Compute the 

probabilities of each 

category

Concatenate into span 

contextual presentation

Contextual presentation

A sentence with one 

subject and K objects

Get the best-scoring 

labels as prediction

Append CLMs to 

create a new input

[NIL] [EMPLOYMENT] [LOC-IN] [AFFILIATION]

[LOC-IN] [NIL] [AFFILIATION] [EMPLOYMENT]

...

…,[S], Steve Jobs, [/S],…, [O-AE], [/O-AE],…, [O-AP], [/O-AP]

[NIL] [EMPLOYMENT] [LOC-IN] [AFFILIATION]

[LOC-IN] [NIL] [AFFILIATION] [EMPLOYMENT]

...

(1) (1) 1 1...,[ ], ,..., ,[/ ],...,[ ] ,[/ ] ,...,[ ] ,[/ ]S E K Ks x x s o o o o

(1) (1) 1 1...,[ ], ,..., ,[/ ],...,[ ] ,[/ ] ,...,[ ] ,[/ ]S E K Ks x x s o o o o

…,[S], Steve Jobs, [/S],…, [O-AE], [/O-AE],…, [O-AP], [/O-AP]

Figure 2: The main architecture of our model. In St.1, we process the logits from classifier into CLMs. Then in St.2
we append those CLMs to form a new input. The sentence sample is the same with Figure 1. The abbreviation is:
[O-AE]=[Object-Apple Enthusiasts], [O-AP]=[Object-Apple Park].

3.2 Ours: CLMs for Span Pairs

Enhancing the interaction between entity pairs
that share the same subject is crucial, and this re-
quires making object markers mutually visible. PL-
Marker proposes that each pair of levitated mark-
ers is tied by the directional attention. However,
they also note that continuing to apply directional
attention across multiple pairs can lead to confu-
sion, as markers may fail to identify their corre-
sponding partners within the same span. Unlike
PL-Marker, which does not facilitate this interac-
tion, we propose CLMs to enrich semantic compre-
hension, thereby enabling M-DOS to work well.

M-DOS is a mutual directional attention mech-
anism that enable object markers to acquire suffi-
cient knowledge to accurately recognize their corre-
sponding partner markers within the same pair and
understand the nuanced relation with other objects.
By training the model to distinguish among CLMs,
it is possible to select correct label.

Our model is built upon PL-Marker. As illus-
trated in Figure 2, we employ a two-stage approach
in RE. Initially at St.1, like inferring phase, the
model produces logits from the classifier without
gradient accumulation. We then sort these logits
and select the top n (best-scoring) labels and the

bottom m (worst-scoring) labels. These selected
labels are processed into markers, serving as CLMs
and then appended to the end of input text. St.2
is a training phase with gradient accumulation, in
which updated inputs is fed.

Problem Definition for RE Formally, given
an input sequence with n tokens X =
{x1, x2, ..., xn}, and entities discovered from X
represented as ε = {e1, e2, . . . , em}. The goal is to
predict a relation type yr(ei, ej) ∈ {1, 2, 3, ...,K}
for each pair of entities ei, ej ∈ ε , with the num-
ber of predefined relation types of K. If there is no
relation, then yr(ei, ej) = 0.

St.1: CLMs Generation Following PL-Marker,
we designate one entity as the subject and the others
as objects. Solid markers [S] and [/S] are inserted
before and after the subject entity, and levitated
object markers [O] and [/O] are inserted before and
after the object entity, and the modified sequence
is denoted as X̂:

X̂ = . . . [S], xa, . . . , xb, [/S], . . . , xc1 ∪ [O1],

xd1 ∪ [/O1], xc2 ∪ [O2], xd2 ∪ [/O2], ...,

In this sequence, the markers [O1], [/O1], [O2]
and [/O2], connected by the union symbol ∪, in-
dicate that these object markers share the position
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of corresponding objects. We apply a pre-trained
encoder on X̂ and the final span pair representation
for si = (a, b) and sj = (c, d) is:

θ(si, sj) = [ha−1;hb+1;hc;hd]

Here, [;] denotes concatenation. ha−1 and hb+1 de-
note the contextualized embedding of the inserted
solid markers for subject si, while hc and hd repre-
sent contextualized embedding of levitated markers
for object sj . This span pair representation θ(si, sj)
is then input into a feed-forward network to pre-
dict the probability distribution of the relation type:
Pr(r|si, sj) = [p0, p1, p2, ..., pK ].

We select n best-scoring and m worst-scoring
labels out as CLMs by sorting this distribution
Pr(r|si, sj). These labels are then transformed
into CLMs and appended to X̂ to form a new input
for St.2.

We denote the sorted probabilities in descending
order as:

P̂ = [pt0 , pt1 , ..., ptK ]

where each element satisfies:

pti ≥ pti+1 , i = 0, 1, ...,K − 1

Consequently, we select the top n labels
[t0, t1, ..., tn−1] and the bottom m labels
[tK−m+1, ..., tK−1, tK ]. Let C denote the
combined list:

C = [t0, t1, ..., tn−1, tK−m+1, ..., tK−1, tK ]

Additionally, xi is used to create marker indicating
the label type. And we need to tag it with Pos
and Neg, standing for positive and negative CLMs
respectively:

CLMs = [Pos : t0], [Pos : t1], ..., [Pos : tn−1],

[Neg : tK−m+1], ..., [Neg : tK−1], [Neg : tK ]

Finally, CLMs is concatenated with X̂ to form X:

X = [X̂;CLMs]

St.2: CLMs Selection The updated sequence X
is then processed to predict the most likely relation
type like St.1:

θ(si, sj) = [ha−1;hb+1;hc;hd]

3.3 Basic Knowledge Comprehension Phase

To ensure that our model gains adequate knowl-
edge for our tasks and generates viable positive
and negative CLMs, we initially apply solely with
St.2. After several epochs of training, the model is
typically able to generate valuable options. Subse-
quently, we implement a two-stage training process:
St.1 for inferring CLMs and St.2 for choosing one
from them.

4 Experiments

4.1 Dataset

We evaluate our RE model with three end-to-end
datasets: ACE04, ACE05, SciERC. We follow
previous approach to split ACE04* into 5 folds,
ACE05† into train, development and test sets, and
to use official SciERC splits (Luan et al., 2018).
Table 8 shows the statistics for these datasets.

4.2 Evaluation Metrics

We adhere to standard evaluation protocol and em-
ploy micro F1 score as our metric for evaluation.
For NER, a predicted entity is deemed correct if
both its span boundaries and the entity type match
the ground truth. For RE, we utilize two metrics
for evaluation:(1) Boundaries Evaluation (Rel):
A predicted relation is considered correct if the
span boundaries of both entities are accurate and
the predicted type of relation between these enti-
ties is correct. (2) Strict Evaluation (Rel+): This
builds on the boundaries evaluation(Rel) by also
requiring that the predicted entity types be correct.
Additionally, we follow PL-Marker (Wang et al.,
2021b) by regarding each symmetric relational in-
stance as two directed relational instances.

4.3 Implementation Details

We adopt bert-base-uncased (Devlin et al., 2019)
and albert-xxlarge-v1 (Lan et al., 2020) encoders
for ACE04 and ACE05. For SciERC, we use the
in-domain scibert-scivocab-uncased (Beltagy et al.,
2019) encoder. We also leverage the cross-sentence
information (Wadden et al., 2019; Zhong and Chen,
2021; Luoma and Pyysalo, 2020), which extends
each sentence by its context and ensures that the
original sentence is located in the middle of the
expanded sentence as much as possible. We also

*https://catalog.ldc.upenn.edu/
LDC2005T09

†https://catalog.ldc.upenn.edu/
LDC2006T06

https://catalog.ldc.upenn.edu/LDC2005T09
https://catalog.ldc.upenn.edu/LDC2005T09
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
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Models Encoder ACE05 ACE04 SciERC
Ent Rel Rel+ Ent Rel Rel+ Ent Rel Rel+

DYGIE++ (Wadden et al., 2019)⋄

BERTB /
SciBERT

88.6 63.4 - - - - - - -
TriMF (Shen et al., 2021)⋄ 87.6 66.5 62.8 - - - 70.2 52.4 -
UniRE (Wang et al., 2021b)⋄ 88.8 - 64.3 87.7 - 60.0 68.4 - 36.9
PURE (Zhong and Chen, 2021)⋄ 90.1 67.7 64.8 89.2 63.9 60.1 68.9 50.1 36.8
PL-Marker (Ye et al., 2022)⋄ 89.8 69.0 66.5 88.8 66.7 62.6 69.9 53.2 41.6
Recollect (Wu et al., 2024)⋄ 90.3 69.7 67.7 89.6 67.8 65.0 70.4 53.7 42.1
HGERE (Yan et al., 2023)⋄⋆ 90.4 70.4 67.1 90.0 67.8 63.5 73.4 54.3 41.8
SURE(Ours)⋄ 90.4 70.5 67.6 88.7 67.7 64.1 73.4 56.9 44.3

TableSeq (Wang and Lu, 2020)

ALBXXL

89.5 67.6 64.3 88.6 63.3 59.6 - - -
UniRE (Wang et al., 2021b)⋄ 90.2 - 66.0 89.5 - 63.0 - - -
PURE (Zhong and Chen, 2021)⋄ 90.9 69.4 67.0 90.3 66.1 62.2 - - -
PL-Marker (Ye et al., 2022)⋄ 91.1 73.0 71.1 90.4 69.7 66.5 - - -
Recollect (Wu et al., 2024)⋄ 91.5 73.6 71.5 90.7 70.1 66.7 - - -
HGERE (Yan et al., 2023)⋄⋆ 91.2 72.6 69.7 90.3 69.8 66.1 - - -
SURE(Ours)⋄ 91.2 73.5 71.6 90.6 70.9 67.8 - - -

Table 1: We report the F1 scores for entity and relation extraction on the test sets of ACE04, ACE05, and
SciERC. The encoders utilized in various models are designated as follows: BERTB = BERTBASE, ALBXXL =
ALBERTXXLARGE. Models marked with ⋄ indicate that incorporate cross-sentence information. HGERE, marked
with ⋆, was re-evaluated for comparison in RE using the same NER results. We adopt re-evaluated NER results
from HGERE NER for ACE05 and SciERC. Additionally, it is important to note that we have adopted re-evaluated
NER results from PL-Marker for ACE04. This is because HGERE deviates from the previous approach of using
four out of five folds as the training set. Instead, HGERE splits the training set further, allocating one-tenth of it as a
development set.

compare RE results based on different NER results,
like PL-Marker (Ye et al., 2022), HGERE (Yan
et al., 2023) and gold entities from dataset itself.
We run all experiments with 5 different seeds and
report the average score. The standard deviations
and the detailed training configuration can be seen
in appendix A.

4.4 Our Method

4.4.1 Baseline
We compare our model with several SOTA models:
PURE (Zhong and Chen, 2021), PL-Marker (Ye
et al., 2022), and HGERE (Yan et al., 2023).

PURE: This model utilizes a simple yet effective
strategy by inserting markers before and after each
entity pair in RE. Additionally, to pursue effective-
ness, they propose a batch computation method,
though with a slight sacrifice in accuracy.

PL-Marker: This model combines the standard
and batch computation method of PURE. It fixes
one subject in the original text and places the re-
maining objects at the end of the text.

HGERE: This model applied a pruning method
to filter impossible entity spans and utilizing a hy-

pergraph network to handle both NER and RE tasks.
This method allows the model to focus on effec-
tive spans and achieve better NER results, but RE
performance is relatively weaker.

4.4.2 Results

As illustrated in Table 1, our approach, utilizing
the same BERTBASE encoder, outperforms the pre-
vious state-of-the-art method, PL-Marker, with
strict F1 score improvements of 1.1% on ACE05
and 1.5% on ACE04. Furthermore, when em-
ploying SciBERT encoder, our method demon-
strates superior performance on SciERC, yield-
ing a 2.7% increase. Additionally, employing
the larger ALBERTXXLARGE, it achieves a strict F1
score improvement of 0.5% on ACE05 dataset and
a substantial 2.3% improvement on ACE04 dataset.
These consistent improvements across different
datasets and encoders establish our model as the
new state-of-the-art. The enhanced performance
can be attributed to our innovative CLMs and M-
DOS mechanism, which effectively facilitate inter-
actions between multiple entity pairs. Moreover,
if we adopt more accurate NER results, our RE
model would likely perform better.
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Model SciERC
Rel (F1) Speed (sents/s)

PURE (Full) 50.1 92.8
PURE (Approx.) 48.9 417.9
PL-Marker 52.8 208.6
Ours 53.8 210.4

Table 2: Comparison of our RE model with PL-Marker
and PURE.

Text
John, a senior engineer at Apple, often
collaborates with Mary, a project manager
at the same company.

PL-Marker (John, employee_of, Apple)

Ours (John, employee_of, Apple)
(John, colleague_of, Mary)

Table 3: Case study for our RE model

4.5 Inference Speed

In this section, we compare the inference speed of
SURE with other models on a A800 GPU with a
batch size of 16. As shown in Table 2, We use SciB-
ert encoder for SciERC. We compared our model
with PL-Marker and PURE. PURE (Full) processes
only one pair of entities once, whereas PURE (Ap-
prox.) processes all entity pairs at once for batch
processing. In contrast, PL-Marker processes only
one subject and all its corresponding objects at a
time. Since performance heavily depends on NER
results, we used the same NER results from PL-
Marker. It is found that our model achieved a 2x
speedup over PURE (Full) model and also obtained
better performance. Compared to PURE (Approx.),
our model improved by 4.9% in strict relation F1
score. This demonstrates that our model not only
performs better but also delivers greater accuracy.

4.6 Case Study

As shown in Table 3, John is subject, and both
Mary and Apple are objects, PL-Marker (Ye et al.,
2022) fails to extract the colleague_of relation due
to a lack of semantic connections between John
and Mary. In contrast, our model makes Apple
and Mary ([O1:Apple] [/O1] [O2: Mary] [/O2])
mutually visible to each other, enhancing the se-
mantic representation. When extracting the re-
lation between John and Apple, another relation
employee_of between Apple and Mary allows our
model to infer the colleague_of relation between
John and Mary. This is because our model can

Model
SciERC

PL H Cs M Sf gold e2e

SURE ◦ ◦ ◦ 73.0 57.0
a. ◦ ◦ ◦ 73.0 54.4
b. ◦ 72.5 53.2
c. ◦ ◦ 72.5 53.3
d. ◦ ◦ 72.3 53.0
e. ◦ ◦ ◦ ◦ 72.7 53.8

Table 4: Ablation study of modules.We use abbre-
viations to represent: PL=PL-Marker NER results;
H=HGERE NER results; Cs=CLMs; M=M-DOS;
Sf=Shuffle CLMs. Besides, gold denotes that the gold
standard NER results is used instead of any previous
PL-Marker or HGERE NER results while e2e means
the previous NER results (PL-Marker or HGERE NER
results) is used end-to-end. ◦ denotes that we adopt this
module or NER result.

capture more nuanced interaction between entity
pairs while PL-Marker overlooks.

4.7 Ablation Study

In this section, we carry out ablation studies to
examine the impact of various components on our
RE model. For these experiments, we utilize an
encoder of BASE size.

M-DOS We enable these levitated object markers
mutually visible to each other by using directional
attention matrix. As shown in Table 4, based on
CLMs, we continue to set M-DOS on, resulting in
a 1.1% improvement (c.&a.). This suggests that
CLMs enhance semantic knowledge, thereby im-
proving M-DOS’s ability to accurately identify the
relevant subjects and manage the relationships be-
tween objects.

CLMs We assessed our model by generating four
CLMs for each entity pair, consisting of two posi-
tive and two negative CLMs. As illustrated in Ta-
ble 5, we applied CLMs to PURE. For PL-Marker,
we use both CLMs and M-DOS. This strategy re-
sulted in significant performance enhancements,
with Rel+ improvements of 1.8% for PURE and
1.0% for PL-Marker, demonstrating the effective-
ness of CLMs.

Combination of n and m As shown in Table
6, we evaluated our model on SciERC dataset us-
ing various combinations of n and m with both
CLMs and M-DOS activated. We find that the
combination (n,m) = (2, 4) yields the best re-
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Models
SciERC

Rel Rel+

PURE 48.2 35.6
with CLMs 50.0 37.4

PL-Marker 53.2 41.8
with CLMs & M-DOS 54.4 42.8

Table 5: Applying CLMs to PURE and CLMs & M-
DOS to PL-Marker. Based on same NER results, we
compare the RE results.

n
m 0 1 2 3 4

0 41.8 42.4 42.2 42.2 42.2

1 42.5 42.4 42.1 42.2 42.6

2 42.1 42.7 42.5 42.3 42.3

3 42.5 42.1 42.6 42.3 42.4

4 42.5 42.4 42.8 42.4 42.3

Table 6: Combination of n and m

sults. Additionally, our analysis revealed that the
model achieves best performance when both posi-
tive and negative CLMs are included, highlighting
the critical importance of learning from both types
of CLMs.

HGERE NER Results Based on CLMs and M-
DOS, shown in Figure 4, we use NER results gen-
erated by HEGRE (Yan et al., 2023), PL-Marker
and gold entity to evaluate our RE model (a.&b.).
Our model could benefit a lot from HGERE’s NER
results, so we adopted its results instead of PL-
Marker for SciERC and ACE05.

Shuffle with CLMs As shown in Table 4(a.&e.),
Using CLMs and M-DOS, we modify the arrange-
ment of CLMs from a descending order to random-
ization and observed a 0.6% decrease in perfor-
mance. This indicates that randomization does not
enhance model’s robustness. Instead, learning in
an organized way leads to better performance.

5 Conclusion

We have developed a simple yet effective approach
that involves self-generated CLMs, enhancing the
model’s capacity to capture diverse semantic per-
spectives and objects interactions. Our method,
which integrates PLMs and M-DOS, has demon-
strated superior performance across three standard

benchmarks and achieving SOTA. In future work,
we plan to explore how to select the appropriate
size of CLMs for tasks that feature different scales
of labels. Additionally, we plan to investigate the
applicability of this approach to other subtasks
within Information Extraction (IE), such as Sen-
timental Analysis (SA) and Event Extraction (EE).
Furthermore, we aim to extend this method to some
tasks in the field of Computer Vision (CV), where
standard candidate label images can be used to steer
model behavior towards label selection rather than
label generation.

6 Limitation

One potential limitation of our approach is the need
to run RE model twice during training. As we have
mentioned in section 3.3, running solely with St.2
at beginning and with St.1 and St.2 later is crucial
for basic knowledge comprehension. If there is a
need to accelerate this two-stage process, the ratio
of St.2 running alone can be increased, with little
sacrifice with accuracy. It should be noted that we
don’t adopt two-stage method in inferring phase.
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A Appendix

A.1 Configuration Details

Our model primarily relies on M-DOS and CLMs.
Below, we detail our configurations for these com-
ponents.

For M-DOS, we set those objects marker visible
to each other. This is achieved by setting a direc-
tional attention matrix that allows objects to con-
tribute mutually to each other’s processing. Shown
in Figure 3, the top one is PL-Marker’s setting for
directional attention matrix. The blue color indi-
cates bits set to 1 (active attention), and white bits
set to 0 (no attention). (O1,O2) = 0 signifies O1
can not learn the interaction with O2. However, in
our model shown in the lower part, (O1,O2) = 1
means object marker O1 can see object marker O2.
Thus, this visibility enables our model to better
learn and understand the interactions between pairs
compared to the PL-Marker.

For CLMs, we set different combination of n and
m for different datasets. We set (n,m) = (2, 4) for
SciERC, (n,m) = (3, 2) for ACE05 and (n,m) =
(3, 1) for ACE04. Besides, we follow PL-Marker
to run all experiments with 5 seeds(42, 43, 44, 45,
46). In the next section, we will report the standard
deviation of each results.

Besides, we follow PL-Marker to set learning
rate to 2e-5 for BASE size encoder and 1e-5 for
XXLARGE size encoder. We train SciERC for 20
epochs and ACE04/ACE05 for 30 epochs. And we
set the warm-up ratio to 0.33 for ACE04/ACE05.

text O1 O2

text

O1

O2

text O1 O2 CLM1 CLM2

text

O1

CLM1

O2

CLM2

Figure 3: The diagram displays the setup for the direc-
tional attention matrix, which is a directed graph. The
x-axis represents the starting points, and the y-axis rep-
resents the endpoints. The colors range from dark blue
to white, representing four scenarios: many-to-many,
many-to-one, one-to-one, and no setting. The first im-
age is the setup for PL-Marker, while the second image
is our setup, which includes CLMs.

A.2 Detailed RE results

Dataset Encoder Ent Rel Rel+

ACE05 BERTB 90.4±0.2 70.5±0.6 67.6±0.6

ALBXXL 91.2±1.1 73.5±1.1 71.6±1.3

ACE04 BERTB 88.7±0.8 67.7±0.7 64.1±1.1

ALBXXL 90.6±0.6 70.9±3.9 67.8±3.7

SciERC SciBERT 73.4±0.9 56.9±0.8 44.3±0.8

Table 7: We report average scores across five random
seeds with standard deviations as subscripts.

A.3 Datasets

Dataset #Sents #Ents (#Types) #Rels (#Types)

ACE04 8683 22735(7) 4087(6)
ACE05 14525 38287(7) 7070(6)
SciERC 2687 8094(6) 4648(7)

Table 8: The statistics of datasets
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