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Abstract

The knowledge tracing (KT) model based on
deep learning has been proven to be superior to
the traditional knowledge tracing model, elim-
inating the need for artificial engineering fea-
tures. However, there are still problems, such as
insufficient interpretability of the learning and
answering processes. To address these issues,
we propose a new approach in knowledge trac-
ing with attention-based embedding and forget-
ting curve integration, namely KVFKT. Firstly,
the embedding representation module is respon-
sible for embedding the questions and com-
puting the attention vector of knowledge con-
cepts (KCs) when students answer questions
and when answer time stamps are collected.
Secondly, the forgetting quantification module
performs the pre-prediction update of the stu-
dent’s knowledge state matrix. This quantifi-
cation involves calculating the interval time
and associated forgetting rate of relevant KCs,
following the forgetting curve. Thirdly, the
answer prediction module generates responses
based on students’ knowledge status, guess co-
efficient, and question difficulty. Finally, the
knowledge status update module further refines
the students’ knowledge status according to
their answers to the questions and the charac-
teristics of those questions. In the experiment,
four real-world datasets are used to test the
model. Experimental results show that KVFKT
better traces students’ knowledge state and out-
performs state-of-the-art models.

1 Introduction

KT (Corbett and Anderson, 1994; Lee et al., 2023;
Rasch, 1993) is the task of modeling a student’s
learning state and predicting their future perfor-
mance based on their question-solving behavior
over time (Duan et al., 2024). In recent years, the
scientific community has paid significant attention
to KT, and it has been integrated into people’s daily
learning activities (Abdelrahman et al., 2023; Ni

et al., 2023). Furthermore, a current trend in the
development of deep learning KT models is to in-
corporate forgetting features, allowing students’
forgetting behavior to be considered in knowledge
tracing (Abdelrahman and Wang, 2022).
Although conventional KT methods have
achieved empirical success (Liu et al., 2019; Par-
dos and Heffernan, 2010; Yudelson et al., 2013;
Corbett and Anderson, 2005), they often overlook
the influence of process-driven factors within the
student’s learning process. First, learning is a dy-
namic process, and each student’s learning gains
are often different and implicit. It is critical to pre-
cisely measure the knowledge gained after each
question response (Khajah et al., 2014; Li et al.,
2022). Second, while responding, students may
speculate. The amount of time students take to
respond to questions is directly related to the guess-
ing coefficient (Bai et al., 2024). Third, forgetting
must be considered in KT when students neglect
previously learned knowledge over an extended pe-
riod (Zhou et al., 2024). As shown in Figure 1, even
if students have strong knowledge of the "isosceles
triangle" KC, they may still give the wrong answer
if gg takes too long to answer. Therefore, we argue
that when students take a long time to answer ques-
tions, their final results are likely to be based on
guessing (Zhao et al., 2023). As the guessing coef-
ficient increases, students’ answers become more
erratic. Moreover, forgetting should be considered
when students study prior KCs, as this directly af-
fects their proficiency in the related KCs (Han et al.,
2023; Cui et al., 2024). Thus, we believe that there
is a correlation between the state information of
a student answering a question—such as response
time, guessing coefficient, and memory forgetting.
To address these issues, we propose a new
approach in knowledge tracing with attention-
based embedding and forgetting curve integration,
namely KVFKT. First, the embedding representa-
tion module is responsible for embedding the ques-
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Figure 1: A case of a student’s question sequence, where he has already done seven questions and is going to answer
the next question. During the learning process, different kinds of side information are recorded in addition to the

answer in the system.

tions and computing the attention vector of KCs as
students’ responses and time stamps are collected.
Second, the forgetting quantification module up-
dates the students’ knowledge state matrix by calcu-
lating the time intervals and corresponding forget-
ting rates of relevant KCs, based on the forgetting
curve. Third, the answer prediction module gener-
ates responses by considering the students’ knowl-
edge state, the guessing coefficient, and the diffi-
culty of the questions. Finally, the knowledge state
update module further refines the students’ knowl-
edge state based on their responses and the specific
characteristics of the questions answered. In the
experiment, four real-world datasets are used to
test the model. The experimental results show that
KVFKT better traces students’ knowledge states
and outperforms state-of-the-art models.

2 Related Works

2.1 Knowledge tracing

The most representative methods for knowledge
tracing are deep learning-based methods (Piech
et al., 2015; Liu et al., 2024; Ma et al., 2024).
These deep learning-based methods can be catego-
rized into three main groups: single-state methods,
multi-state methods, and attention-based methods.
Single-state methods maintain one vector to rep-
resent students’ knowledge states. Deep Knowl-
edge Tracing (DKT) (Piech et al., 2015) is a typi-
cal example of a single-state method. Multi-state
methods, on the other hand, maintain multiple
vectors to represent a student’s knowledge state.
Attention-based methods use attention mechanisms
to identify the correlation between the question
to be predicted and historical questions (Pandey

and Srivastava, 2020), predicting based on a stu-
dent’s past performance. A typical example is At-
tentive Knowledge Tracing (AKT) (Ghosh et al.,
2020), which learns the context representation of
the questions and answers using two attention en-
coders and then utilizes the attention mechanism
to recall prior learning relevant to the current ac-
tivity. Self-Attentive Knowledge Tracing (SAKT)
(Pandey and Karypis, 2019) employs self-attention
(Vaswani et al., 2017) to weigh historical perfor-
mances. Separated Self-Attentive Neural Knowl-
edge Tracing (SAINT) (Choi et al., 2020) is a typ-
ical transformer-based structure that embeds the
questions in an encoder and predicts the responses
in a decoder. Although these methods have pro-
vided elegant solutions by distributing the vector
representations of a KC, they still lack interpretabil-
ity. In contrast, some traditional models, such as
Item Response Theory (IRT) (Rasch, 1993) and the
Three-Parameter Logistic (3PL) model (Lo, 2008),
have parameters that offer direct psychological in-
terpretations. These interpretable parameters are
also reflected in the KVFKT model.

2.2 Forgetting curve

In the learning process, forgetting is a widely rec-
ognized phenomenon (Markovitch and Scott, 1988;
Choffin et al., 2019). According to the hypothesis
of the forgetting curve, students’ memory naturally
declines during the learning process, often lead-
ing to decreased proficiency in KCs (Averell and
Heathcote, 2011; Guan et al., 2025). Trace decay
theory proposes that forgetting occurs due to the
gradual disappearance of memory traces (Ricker
et al., 2016), with deeper original traces leading to
a slower rate of forgetting. Memory is stored in im-
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print cells, and forgetting happens when these cells
cannot be reactivated (Ryan and Frankland, 2022).
Ebbinghaus (Ebbinghaus, 1885) used a non-linear
function to connect the observed memory retention
probability with the interval between learning and
testing time to explain the forgetting curve. The
forgetting curve can be modeled as a power law
function, where memory strength initially drops
rapidly and then decays more slowly over a longer
period. Therefore, how to effectively integrate edu-
cational psychology theory and neurology theory to
more comprehensively model learning and forget-
ting behaviors remains a pressing challenge. DKT-
Forgetting attempts to improve the DKT model by
considering factors such as the number of times stu-
dents repeat learning, the time interval since their
last review of the same KC, and the time intervals
from prior learning (Nagatani et al., 2019). The
Exercise-correlated Knowledge Proficiency Trac-
ing (EKPT) model takes into account the correla-
tion between exercises involving the same knowl-
edge concepts (Huang et al., 2020). The Knowl-
edge Tracing Model With Learning and Forgetting
Behavior (LFBKT) separates the learning process
into two stages: knowledge acquisition and knowl-
edge retention. The knowledge retention module
includes both knowledge absorption and knowl-
edge forgetting (Chen et al., 2022; He et al., 2025).
Finally, in knowledge tracing, considering the one-
to-many relationship between KCs and questions,
we attribute the forgetting phenomenon to specific
KCs rather than questions, which enables more
effective updates to students’ knowledge states.

3 Problem Definition

3.1 Question answering sequence

Tt = ({QI,Cl ,tim€1 ’atlayl }"--a{qiaci’timei’at%yi },

{qt—1.ct—1,times—_1,ati—1,y:—1}) represents a stu-
dent’s question-answering sequence before time
t (excluding time t). In this sequence, ¢; € @
denotes the i-th element of the set (), and ()
denotes a set of questions. The ¢; € R% denotes
the set of concepts related to g;. The time; is
the current time at step ¢. The at; represents the
answer time, calculated as time; 1 — teme;. The
y; € {0,1}, with 0 indicating an incorrect answer
and 1 indicating a correct answer to question g;. A
question-answering sequence contains the history
of a student’s interactions. We formulate the KT
problem as a sequence learning problem(Zhang
etal., 2017).

-

3.2 Knowledge tracing

Given a question answering sequence x; and an
input question ¢; € @, the knowledge tracing prob-
lem is to predict the probability that ¢; is answered
correctly. As a student answers questions, the
knowledge state undergoes evolution. Each student
is thus associated with a sequence of knowledge
states (1, ..., s¢) where s1, ...s; refer to the knowl-
edge states at the time steps 1, ..., ¢, respectively.
In this work, we tackle the KT problem by develop-
ing a machine learning model My, parameterized
by 6. Concretely, given a question answering se-
quence z; and an input question ¢; € ), a KT
model My can trace the knowledge state s; at each
time step ¢ and generate as output the probabil-
ity p; of correctly answering the question ¢, i.e.

pr = p(yr = 1|@g, s¢,q1).
4 The KVFKT Model

In this section, we will introduce the KVFKT
model in detail. As shown in Figure 2, each learn-
ing phase of KVFKT consists of four modules.
Firstly, the embedding representation module is
responsible for embedding the questions and com-
puting the attention vector of Knowledge Concepts
(KCs) as students answer questions and answer
timestamps are collected. Secondly, the forget-
ting quantification updates the students’ knowledge
state matrix before prediction. It quantifies the for-
getting process by calculating the time intervals
and associated forgetting rates of relevant KCs,
based on the forgetting curve. Thirdly, the answer
prediction module generates responses by consid-
ering the students’ knowledge state, the guessing
coefficient, and the difficulty of the questions. Fi-
nally, the Knowledge status update module further
refines the students’ knowledge state based on their
responses to the questions and the specific charac-
teristics of the questions answered.

4.1 Embedding representation

To obtain more accurate learning gain information,
we incorporate a practice embedding matrix to com-
bine the practice and concept features into a cohe-
sive vector representation. Given input question
¢ € R% and KC ¢; € R%, we get the question
embedding vector QQ; € R% and KC embedding
vector C; € R% through embedding matrices
Q € R¥%*d and C € R%*dm where d, is the
number of questions set, d. is the number of con-
cepts set and dy, is a hyperparameter. After obtain-
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Figure 2: KVFKT Model Structure, where M ¥ represents the mapping matrix that encodes the relationship between
concepts and questions, capturing the interaction between memory and attention. This matrix remains constant
throughout the entire process; M’ denotes the forgetting matrix, which tracks the timestamp of each student’s most
recent review of the KCs, helping to account for forgetting behavior; MY refers to the knowledge state matrix,
representing the student’s current knowledge state at each time step.

ing the question embedding vector Q;, we query
the key memory matrix M% € R9m*d in the
KVFKT model. The query result is the weight-
ing of how much attention should be paid to each
value memory slot. This attention weight w; € RY
is computed by the softmax activation of the in-
ner product between (); and each key memory slot
ME:

wy; = Softmazr(MEQy). (1)

4.2 Forgetting quantification

To simulate students’ knowledge degradation over
time, we use the forgetting curve in KT. For the
answer interval, its knowledge retention rate is
(A = e”5), where S is a user-defined parameter,
which is a complete forgetting cycle. For interval,
its calculation is:

Qt - Ct ’ Ta (2)
MiF = G(Qta MiF)a (3)

o Sy, 3 <05xT;
G(xmyZ) - { T; other ’ ©@
T = M — MG € [1,d5)), )

where T € R% is current time vector and 7 is
current timestamp. Next, we will point multiply

it with the KC embedding vector C; to get the
intermediate vector {; € R% . Then, we perform
G(.) function processing on the vector M} in row
i of forgetting matrix M* € R%*m and € to
obtain the updated forgetting matrix MZ-F . For each
element in the matrix, when it is less than 0.5 x Tj,
we default that the KCs represented by the vector
slot are not reflected in the question. In such cases,
we will not update the corresponding elements of
forgetting matrix, conversely, we will update them
to the current timestamp. Finally, we get the 7;
vector by subtracting MlF vector and MZF vector
elements one by one. Based on this, we update the
value matrix:

€ )

UJ‘&;‘

Aj

(6)

MY, = Softmaz(M), ;- X), )

where J; is the forgetting rate of the correspond-
ing knowledge slot calculated by the model. We
perform element-wise multiplication of A with
the original value matrix MY, where the i-th
student’s knowledge state matrix is denoted as
MZ»V € Rémxdv  Afterward, we apply the soft-
max function to obtain the updated value matrix
M) for the specific student i.

4.3 Answer prediction

With the attention weight w;, the KVFKT model
can predict the probability that a student answer ¢,
correctly by the following process. Different from
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the traditional method, KVFKT integrates a three-
parameter model of IRT during the prediction stage.
It also considers not only students’ abilities but also
the difficulty coefficient and guess coefficient when
predicting how students answer questions.

First, the KVFKT model reads the latent knowl-
edge state from the value memory M, after the
second stage of forgetting, forming a read vector.

N
re =Y _wi(M)7, ®)
i=1
where M} is the i-th row-vector of M. Then, the
read vector r; and the question embedding vector
() are concatenated vertically and disseminated to
a fully connected layer with the hyperbolic tangent
activation so as to generate a feature vector f;. This
step can be expressed mathematically as follows:

ft = tanh(Wylry © Q¢] + by). )

Secondly, we utilize the acquired f; to compute
the corresponding student ability. Furthermore,
we employ the question embedding vector ), to
derive the relevant question difficulty coefficient.
Additionally, the student’s answer time at;; is uti-
lized to calculate the guessing coefficient. Sub-
sequently, we will integrate these factors into the
three-parameter IRT model, which accounts for
the question difficulty and the guessing coefficient.
The IRT model we use is as follows:

eD(0:i—5;)

P(Xij =110:; 8, 9) = 9+ (1=9) b5y

(10)
where 0;; represents student ability, 3; represents
question difficulty, g; represents guess coefficient
and D is a constant, we set it to 1.702 in accordance
with the methodology employed in earlier studies
(Lo, 2008). The calculation process of them is as
follows:

etj = tCI’I’Lh(WOft + b9)7 (11)
Bj = tanh(WgQ; + bg), (12)
gj = Softmax(|at; — at; ;| + g;), 13)

where at; represents the average time for answer-
ing question j, and at;; represents the time for
student ¢ to answer question j. g; represents the

asymptotic value under the Item Characteristic
Curve (ICC) (Von der Embse et al., 2018) of prob-
lem j. The student ability and question difficulty
are parameterized by a weight matrix W and a bias
vector b with appropriate dimensions, we also use
the hyperbolic tangent to be the activation function
for both networks such that both outputs are scaled
into the range(-1,1). Finally, we feed each element
into IRT and predict the students’ response to the
question:

P, = g;j+(1—g;)Softmax(3.0%0:;—5;), (14)

the output of the student ability network are multi-
plied by a factor of 3.0 for a practical reason(Yang
and Kao, 2014).

4.4 Knowledge status update

After completing the prediction for the time node,
the KVFKT model updates the value memory MY
based on the input tuple (g, y;) and the attention
weight w; generated by the attention-getting stage.
The KVFKT model first transforms (g, y¢) into ¢
by the following rules:

C—{ qt yt:() 7

15
g+n y=1 (1)

where n denotes the total number of questions in-
cluded in the relevant datasets and ¥, represents the
real situation of students’ answers to questions at
time ¢. This approach enables us to differentiate
between different representations of correct and
incorrect responses.

Then KVFKT retrieves an embedding vector of
(¢ from a KC-response embedding matrix B €
R2@%dv  Thjg embedding vector, denoted as Z; €
R%, represents the knowledge growth after work-
ing on the KC. When updating the memory, some
of the memory is first erased with an erase vector
e; before new information is added to the memory
with the add vector a; € R% . Erasing the mem-
ory offers the ability of forgetting similar to the
KVFKT cell. Each value memory slot is updated
as follows:

et = o(WeZy + be), (16)

a; = tanh(WoZy + b,), a7

Mt‘—/&-l,i = M);© (1 —wye)” +wzal . (18)
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To learn all parameters in KVFKT, we else
choose the cross-entropy log loss between the
prediction ; and actual answer y; as the objec-
tive function L(6) = —Et]\;l(ytlogyt + (1 -
ye)log(l — G¢)) + g || 6 ||?, where 6 denotes
all learning parameters of KVFKT and )y is the
regularization hyper-parameter. The objective func-
tion was minimized using Adam optimizer on mini-
batches.

5 Experiments

In this section, we introduce the dataset, the model
baseline, and our experimental setups. Then, we
conduct a large number of experiments to compare
the performance of KVFKT with other KT models
and the interpretability of KVFKT, to answer the
following questions:

* RQ1 Does KVFKT perform better at predict-
ing student performance han other knowledge
tracing modeling works?

* RQ2 How do the different components de-
signed in KVFKT affect the performance of
KVFKT?

* RQ3 Do the question difficulty, student abil-
ity, and guessing coefficients in the KVFKT
prediction procedure help to explain the pre-
diction results?

* RQ4 How do the settings of forget cycle pa-
rameters influence the predictive performance
of KVFKT?

5.1 Datasets and Baseline methods

We evaluate our model with four real-world
datasets, the details are shown in Table 1. (1) AS-
SISTments2012!. This is the ASSISTments data
for the school year 2012 2013 with affect predic-
tions. (2) EdNet?. This dataset is a large-scale
hierarchical student activity data set collected by
Santa (an artificial intelligence guidance system).
(3) NeurIPS? This dataset is from the Tasks 3 &
4 at the NeurIPS 2020 Education Challenge. (4)
FSAI-F1toF3* This dataset is provided by the Find
Solution AI Limited. We extracted the student in-
teractions that are related to the mathematics cur-
riculum from F.1 to F.3 in Hong Kong.

"https://sites.google.com/site/assistmentsdata/datasets/2012-

13-school-data-with-affect
“https://github.com/riiid/ednet
*https://eedi.com/projects/neurips-education-challenge
*https://www.4littletrees.com/

We compare KVFKT with several previous
methods. For a fair comparison, all these meth-
ods are tuned to have the best performances. All
models are trained on a cluster of Linux servers
with RTX 3070 GPUs. The comparison meth-
ods include 7 models: DKT (Piech et al., 2015),
DKVMN (Zhang et al., 2017), AKT (Ghosh
et al., 2020), SAKT (Pandey and Karypis, 2019)
SAINT (Choi et al., 2020), LFBKT (Chen et al.,
2022).

5.2 Parameter settings

We train the model using the Adam optimizer with
a learning rate of 0.003 and a batch size of 32. To
prevent gradient explosion, we set the norm clip-
ping threshold to 10.0. Since the input sequences
vary in length, we standardize all sequences to a
length of 200. Sequences with fewer than 200 time
steps are padded with zeros to fill the remaining
steps. Masking is applied when computing the
loss to account for the padding. Additionally, we
set the forgetting cycle to 200,000, meaning that
knowledge concepts (KCs) are fully forgotten after
200,000 time units. When initializing the forget-
ting matrix, we randomize it near the earliest time
stamp to reflect the actual conditions of the dataset.

K-fold cross-validation is applied on the training
set for hyperparameter selection across all datasets.
For the FSAI-F1 to F3 dataset, due to its smaller
size and to enhance generalization, we increase the
value of K to 10. For the other datasets, we set K to
5. The network architectures of the DKT, DKVMN,
AKT, SAKT, SAINT, and LFBKT models vary
with different numbers of state dimensions and
memory sizes. A grid search is conducted over the
combinations of state dimension and memory size.
The training and evaluation process is repeated five
times (except for the FSAI-F1 to F3 dataset) to re-
port model performance. We present the accuracy,
root mean square error (RMSE), cross-entropy loss,
and the average and standard deviation of the area
under the ROC curve (AUC).

5.3 Student performance prediction(RQ1)

In KT, achieving student performance prediction
accuracy often indicates that the model can accu-
rately capture the student’s knowledge state. To
evaluate the model’s performance, we use the area
under the curve (AUC), accuracy (ACC), and root
mean square error (RMSE) as metrics and compare
them with five existing KT models. The corre-
sponding results are presented in Table 2. Notably,
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Dataset Nstudents Nskills Nquestians Attempté‘ Per skill Nsequence RatePositive
ASSISTments2012 27,405 265 47,104 7,045 93.45 69.60%
EdNet 5,000 188 13,169 17 89.41 59.69%
FSAI-F1toF3 310 99 2,266 83 165.42 46.69%
NeurIPS 4918 57 948 10 71.56 65.35%
Table 1: The summary of datasets.
ASSISTments2012 EdNet FSAI-F1toF3 NeurIPS
Methods

AUC ACC RMSE

AUC ACC RMSE

AUC ACC RMSE

AUC ACC RMSE

DKT
DKVMN
SAKT
AKT
SAINT
LFBKT

0.7349 0.7350 0.4434
0.7226 0.7327 0.4485
0.6899 0.7250 0.4911
0.7698 0.7440 0.4231
0.6713 0.7148 0.4712
0.7955 0.7651 0.4605

0.7025 0.6666 0.4678
0.6808 0.6579 0.4962
0.6982 0.6655 0.4861
0.7217 0.6792 0.4687
0.7240 0.6786 0.4582
0.6849 0.6528 0.4907

0.6942 0.6411 0.4885
0.6840 0.6340 0.4952
0.7256 0.6953 0.4559
0.6636 0.6215 0.4996
0.5997 0.5896 0.5121
0.6523 0.6152 0.4810

0.7709 0.7045 0.4431
0.7636 0.6981 0.4291
0.7474 0.6843 0.4414
0.7721 0.7103 0.4168
0.7841 0.7149 0.4144
0.7759 0.7134 0.4092

KVFKT

0.8347 0.8066 0.4146

0.7344 0.6882 0.4476

0.7306 0.6981 0.4486

0.7784 0.7108 0.4205

Table 2: Results of comparison methods on student performance prediction. KVFKT outperforms all baselines on

all datasets.

ASSISTments2012

Methods| \ ;- Acc RMSE

EdNet
AUC ACC RMSE

specific features of the dataset, thereby improving
generalization and accuracy.

w/o F

w/o G

w/o D
w/o IRT

0.764 0.774 0.435
0.807 0.785 0.428
0.764 0.765 0.449
0.754 0.745 0.458

0.712 0.660 0.475
0.725 0.685 0.465
0.705 0.654 0.462
0.695 0.645 0.480

Second, when the guessing coefficient is re-
moved from KVFKT, the overall impact on per-
formance is somewhat reduced. This suggests that
while the guessing coefficient influences accuracy,

KVFKT|0.834 0.806 0.414

0.734 0.688 0.447

its effect is less significant compared to other fac-

Table 3: Results of ablation study.

KVFKT outperforms all other deep-learning-based
KT methods on all datasets and metrics. Particu-
larly on the ASSISTments2012 dataset, KVFKT
surpasses the basic model by an average AUC im-
provement of 9.5% and outperforms the state-of-
the-art SAINT model by enhancing ACC by 4.16%.
This indicates that KVFKT is capable of incorporat-
ing these components into the model and capturing
the learning gains.

5.4 Ablation study(RQ2)

In this subsection, we conduct several ablation ex-
periments to assess the impact of each module
on the model’s final prediction outcomes. For
these experiments, we focus on the best-performing
datasets, ASSISTments2012 and EdNet, to high-
light the results. As shown in Table 3, the first
experiment removes the forgetting matrix, which
significantly lowers the performance across all
datasets. This result underscores the importance of
accounting for forgotten information in the knowl-
edge tracing model, making it more suited to the

tors. In the following experiment, we eliminate the
difficulty factor from KVFKT. The performance
of all datasets drops substantially compared to the
KVFKT model, highlighting the critical role of the
difficulty factor.

Finally, we remove the 3PL module from the pre-
diction process, relying solely on the students’ abil-
ity to answer questions. The resulting performance
decline in both datasets emphasizes the importance
of reintroducing the 3PL module to the knowledge
tracing model, as it significantly enhances overall
predictive accuracy.

5.5 Interpretability analysis(RQ3)

In this section, we demonstrate that the KVFKT
model effectively captures the evolving knowledge
states of students across multiple concepts dur-
ing their learning process. To illustrate this, we
randomly select a student from the ASSIST2012
dataset and track the transitions in the student’s abil-
ity level, guessing coefficient, and the probability
of correctly answering the next knowledge compo-
nent (KC) as they progress through their learning.
This is visualized using the first 30 attempts of the
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Figure 3: An example of a student’s learning trajectory from the ASSIST2012 dataset is shown. The labels on the
vertical axis correspond to different skill tags. The learning trajectory is represented along the horizontal axis using
filled and hollow circles, with corresponding colors. Filled circles indicate a correct response, while hollow circles
represent an incorrect response. The learning trajectory of each student is depicted by three heatmaps: ’Student
Ability’ (A), ’Guess Coefficient’ (G), and "Predictive Value’ (P). The values in these heatmaps range from O to 1.

student.

As shown in Figure 3, the transition of students’
abilities is intuitive. When relevant KCs are in-
troduced, we observe a noticeable improvement
in the student’s knowledge within those domains.
In contrast, the abilities related to KCs that are
not currently being tested decline, primarily due to
the effects of forgetting. For instance, the "Com-
bining Like Terms" KC experiences a continuous
decline in the first 10 steps due to insufficient re-
view. Additionally, the transition of the guessing
coefficient is less smooth, reflecting its dependence
on the time spent by students on each problem. The
combination of a student’s ability and the guessing
coefficient jointly influences the prediction, which
may lead to discrepancies between the predicted
and actual ability levels. For example, although
the student shows clear mastery in the "Addition
and Subtraction Fractions" KC, an excessively high
guessing coefficient in the fifth step introduces un-
certainty in the prediction.

Moreover, due to the complexity of the KVFKT
model and its numerous parameters and features,
some anomalies arise that are difficult to explain.
For instance, in the fourth phase, KVFKT erro-
neously predicts both a low ability and a low guess-
ing coefficient as a correct response.

Finally, we observe an intriguing phenomenon:
the student’s performance on the "Venn Diagram"
activities did not decline when the "Addition and

ACC and AUC trend chart under different forget cycle settings
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Figure 4: The impact of forget cycle hyperparameters
on experimental results for each dataset.

Subtraction Fractions" questions appeared. This un-
expected trend may suggest a potential connection
between the "Venn Diagram" KC and the "Addition
and Subtraction Fractions" KC for this particular
student. This observation raises interesting ques-
tions about how relationships between different
KCs could influence learning, pointing to the need
for further research on improving the reliability of
deep learning-based knowledge tracing models.

5.6 Experiment summary on forget cycle
hyperparameters(RQ4)

To investigate KVFKT’s sensitivity to the forget-
ting phenomenon, this section explores how adjust-
ing the forget,,q. parameter affects the model’s
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predictive outcomes. The forget,,.;. parameter
represents the time interval (in timestamp units)
required for a student to completely forget a knowl-
edge point after mastering it. This parameter ranges
from 60,000 to 1,000,000 timestamps, which corre-
sponds to 16.6 hours to 277 hours. As shown in Fig-
ure 4, the experimental results demonstrate a trend
where the AUC and ACC values initially increase
and then decrease as the forget. .. parameter is
adjusted. The peak values also vary across different
datasets. Based on the experimental findings, we
draw the following conclusions:

(1) KVFKT not only functions as a knowledge
tracing model but also has the capability to esti-
mate the average forgetting cycle for students. Stu-
dents from different datasets exhibit varying for-
getting cycles. For instance, students in the AS-
SISTments2012 dataset tend to forget mastered
knowledge points within approximately 55 hours,
while students in the EdNet dataset typically show
forgetting cycles of around 110 hours.

(2) Modeling forgetting behavior proves to be
crucial for KVFKT, with experimental results vali-
dating its significance. Different forgetting cycles
lead to markedly different predictive outcomes, un-
derscoring the importance of the forget.y.. pa-
rameter in addressing knowledge tracing problems
and its role in refining the model’s performance.

6 Conclusion

In this paper, we propose a novel model called
KVFKT. To enhance the interpretability of deep
learning models, we incorporate the complex for-
getting phenomenon and integrate the IRT three-
parameter model. Through extensive experiments
on four public datasets, we demonstrate that
KVEFKT is capable of capturing more realistic and
meaningful knowledge state evolutions throughout
the learning process of students.

7 Discussion and Future Work

Limitations. Firstly, the current KVFKT model
does not fully account for the vast range of individ-
ual differences in student learning. Secondly, an-
other significant limitation lies in how the KVFKT
model treats the relationships between different
KCs. Thirdly, as the model incorporates more pa-
rameters, such as the item discrimination parameter
and dynamic forgetting adjustments, there is a risk
that the model could become too complex to scale
efficiently.

Future work. In future research, the follow-
ing directions will be explored. First, developing
adaptive mechanisms to better capture the diver-
sity of student learning behaviors. This includes
integrating personalized learning features based
on demographic, cognitive, and engagement data
to enhance the precision of the model. Second,
investigating advanced techniques, such as graph-
based or neural relational models, to more accu-
rately represent and leverage the interdependencies
among different KCs. This will facilitate a deeper
understanding of the dynamics of knowledge struc-
tures. Third, designing and evaluating lightweight
parameter optimization methods to ensure that the
inclusion of additional parameters, such as item
discrimination and dynamic forgetting adjustments,
does not hinder scalability. Potential approaches
may involve techniques such as parameter prun-
ing, parallel computing, or efficient approximation
algorithms.
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