
Proceedings of the 31st International Conference on Computational Linguistics, pages 3600–3612
January 19–24, 2025. ©2025 Association for Computational Linguistics

3600

OptiPrune: Effective Pruning Approach for Every Target Sparsity

Nguyen-Khang Le1, Ryo Sato2, Dai Nakashima2,
Takeshi Suzuki2, Minh Le Nguyen1

1Japan Advanced Institute of Science and Technology, 2RICOH
Correspondence: lnkhang@jaist.ac.jp, nguyenml@jaist.ac.jp

Abstract

Large language models (LLMs) have achieved
notable success across various tasks but are
hindered by their large size and high compu-
tational demands. Post-training pruning (PTP)
offers a promising solution by reducing model
size through parameter removal while preserv-
ing performance. However, current PTP meth-
ods perform optimally only within specific
sparsity ranges. This paper presents two key
findings: (1) Layerwise uniform sparsity is
effective at low sparsity, while non-uniform
sparsity excels at high levels; (2) Relative
importance-based pruning works best at low
sparsity, whereas Hessian-based weight recon-
struction is superior at high sparsity. We de-
sign and conduct experiments to validate these
findings. Based on these insights, we introduce
OPTIPRUNE, a robust pruning method effective
across all sparsity levels. OPTIPRUNE adapts
non-uniform sparsity with adaptive deviation
and employs a threshold to select the optimal
pruning strategy. Empirical results across di-
verse datasets, architectures, and languages val-
idate its performance and robustness. These
findings provide valuable directions for future
LLM pruning research. Our code and data are
publicly available.

1 Introduction

Large language models (LLMs) have demon-
strated exceptional performance across various
tasks. However, their large size and high com-
putational demands often constrain their deploy-
ment. To address this, network compression tech-
niques like model pruning have been widely ex-
plored (LeCun et al., 1989; Hassibi et al., 1993;
Mocanu et al., 2018; Sun et al., 2024; Frantar and
Alistarh, 2023; Zhang et al., 2024; Yin et al., 2024).
Model pruning reduces the model size by elimi-
nating redundant elements, either as individual pa-
rameters (unstructured pruning), parameters with
structural constraints (semi-structured pruning), or

1 2 n..layers..

La
ye

rw
is

e
Sp

ar
si

ty

1 2 n0%

100%

1 2 n

Uniform Non-uniform
Low deviation

Non-uniform
High deviation

..layer.. ..layer..

Dense RIA Pruning Weight
Reconstruction

Good at low
target sparsity

Good at high
target sparsity

Good at low
target sparsity

Good at high
target sparsity

W
ei

gh
t m

at
rix

Figure 1: Illustration of findings. Top: Layerwise uni-
form sparsity outperforms at low sparsity; Non-uniform
sparsity excels at high sparsity. Bottom: Relative
importance-based pruning (RIA) is better at low spar-
sity; Hessian-based weight reconstruction is superior at
high sparsity. Orange cells indicate changes in weights.

entire structures such as rows, columns, or lay-
ers (structured pruning). Post-training pruning, a
one-shot approach that avoids retraining, is particu-
larly effective for LLMs, mainly when focusing on
unstructured and semi-structured methods. Given
a target sparsity, these methods create sparsity in
weight matrices by removing unnecessary param-
eters until the target sparsity is reached (e.g., re-
moving 70% of parameters to achieve 70% target
sparsity).

State-of-the-art (SOTA) methods typically use
layerwise pruning, where each layer is pruned sep-
arately to minimize the difference between the out-

mailto:lnkhang@jaist.ac.jp
mailto:nguyenml@jaist.ac.jp

3601

puts of the pruned and original layer. These meth-
ods often follow uniform sparsity, which prune
every layer to the target sparsity. Pruning can be
achieved by finding a binary sparsity mask or re-
constructing weight via the Hessian matrix. The
sparsity mask approaches can be based on mag-
nitude (Han et al., 2015) or relative importance
(Zhang et al., 2024). The weight reconstruction ap-
proaches (Li and Louri, 2021; Frantar and Alistarh,
2022, 2023) leverage the Hessian matrix and typi-
cally find the mask adaptively based on the recon-
struction. Some approaches explore non-uniform
sparsity, varying the sparsity per layer while main-
taining overall target sparsity (Frankle and Carbin,
2019; Lee et al., 2019; Wang et al., 2020; Lee et al.,
2020; Liu et al., 2021; Yin et al., 2024). How-
ever, our study reveals that these methods perform
optimally within specific sparsity ranges and lose
effectiveness beyond them. Furthermore, there is
limited research on their ability to retain multilin-
gual capabilities post-pruning. We examine these
techniques across different target sparsity levels
and present our key findings.

• F1: Layerwise uniform sparsity performs
better at low sparsity, while non-uniform
sparsity excels at high sparsity. Addition-
ally, as non-uniform sparsity deviates fur-
ther from uniform sparsity, performance im-
proves at high sparsity but declines at low
sparsity.

• F2: Pruning with a sparsity mask based on
relative importance, without modifying the
weights, performs better at low sparsity. At
high sparsity, weight reconstruction using
the Hessian matrix yields better results.

Figure 1 illustrates our findings. We experi-
mented with SOTA pruning methods and popular
LLM architectures to validate our findings. To
enable this, we re-implemented the methods, al-
lowing for the combination and investigation of
their various aspects, and adapted them for modern
architectures such as Llama3 (Dubey et al., 2024).
Based on these results, we introduce OPTIPRUNE,
a versatile pruning approach that optimizes perfor-
mance across every target sparsity. Additionally,
we find that calibration data, though limited in size,
significantly affects the multilingual perplexity of
pruned models. To address this, we develop a per-
plexity benchmark in six languages and evaluate
OPTIPRUNE on multilingual calibration. The key

contributions of this paper are as follows.

• We present findings F1 and F2 and vali-
date them through experiments on SOTA tech-
niques (Section 4).

• We propose OPTIPRUNE , a method for ef-
fective pruning of LLMs across varying target
sparsity levels (Section 5).

• Empirical results show that OPTIPRUNE out-
performs other SOTA pruning methods across
most sparsity levels, benchmarks, and lan-
guage calibrations (Section 7).

2 Related Work

2.1 Pruning Strategies

Model pruning reduces model size by removing
unnecessary parameters. Pruning strategies can be
categorized into three approaches: sparse training
(Lee et al., 2018; Mocanu et al., 2018; Evci et al.,
2020; Sanh et al., 2020; Yuan et al., 2021; Hoang
et al., 2022; Zhang et al., 2023), pruning-aware
training (Han et al., 2015; Liu et al., 2021), and
post-training pruning (Hassibi et al., 1993; Li and
Louri, 2021; Frantar and Alistarh, 2023; Sun et al.,
2024). While sparse training and pruning-aware
training involve iterations of training and are costly
for LLMs, post-training pruning avoids retrain-
ing, making it a more practical approach for LLMs
(Zhang et al., 2024; Frantar and Alistarh, 2023).
This paper focuses on post-training pruning.

2.2 Post-training pruning

Post-training pruning (PTP) has a long history
where early work prune model using Hessian Ma-
trix (LeCun et al., 1989; Hassibi et al., 1993). As
LLMs advanced, more recent techniques like Itera-
tive AdaPrune (Li and Louri, 2021), and AdaPrune
(Frantar and Alistarh, 2022) have leveraged the
Hessian matrix for weight pruning and reconstruc-
tion. However, due to the computational com-
plexity of O(N4), newer methods reduce this to
O(N3), improving pruning efficiency (Frantar and
Alistarh, 2023; Sun et al., 2024).

Other approaches use pruning masks to remove
less important parameters without weight recon-
struction, often determining parameter importance
by magnitude (Zhu and Gupta, 2017). The recent
work RIA (Zhang et al., 2024), accounting for pa-
rameter relative connections and activations in cal-
culating importance scores, obtains SOTA results.

3602

2.3 Uniform & Non-uniform Sparsity

Although uniform layerwise sparsity (Zhu and
Gupta, 2017; Gale et al., 2019) is a common prun-
ing approach (Sanh et al., 2020; Kurtic et al., 2022),
non-uniform layerwise sparsity, where different lay-
ers have different sparsity levels, has been actively
studied. Early work focused on vision models (Mo-
canu et al., 2016; Erdos and Renyi, 1959; Mocanu
et al., 2018), while more recent efforts apply a
global threshold across all layers for non-uniform
sparsity (Frankle and Carbin, 2019; Lee et al., 2019;
Wang et al., 2020; Lee et al., 2020; Liu et al., 2021).
Studies on LLMs have uncovered "outlier" features
with magnitudes significantly larger than others
(Kovaleva et al., 2021; Puccetti et al., 2022; Timkey
and van Schijndel, 2021; Dettmers et al., 2022).
OWL (Yin et al., 2024) exploits this outlier distri-
bution to design layerwise non-uniform sparsity for
improved pruning performance.

3 Preliminaries

3.1 Layer-wise Pruning

Post-training pruning is often performed through
layer-wise pruning, which breaks down the pruning
process into subproblems for each layer. The goal
is to minimize the ℓ2 error between the original
dense layer and the pruned layer. Formally, for a
given input Xl and weight matrix Wl ∈ Rr×c in
the l-th layer, where r and c represent the number
of output and input channels, respectively, the ob-
jective is to find a binary mask Ml ∈ {0, 1}r×c and
potentially reconstructed weights Ŵl such that:

argminMℓ,Ŵℓ
∥WℓXℓ − (Mℓ ⊙ Ŵℓ)Xℓ∥22 (1)

3.2 State-of-the-art Solvers

We refer to layerwise pruning methods as solvers.
The first category of solvers focuses on finding the
sparsity mask Ml while keeping the weights un-
changed (Ŵl = Wl). This is typically done by
calculating the importance of each weight param-
eter and pruning the least important ones until the
target sparsity is reached. While parameter impor-
tance is often determined by magnitude (Zhu and
Gupta, 2017), recent SOTA method RIA (Zhang
et al., 2024) incorporate parameter connections and
activations for more accurate importance estimates
(Details in Appendix A.2). The second category
of solvers focuses on reconstructing the weights
Ŵ using the Hessian matrix (LeCun et al., 1989;

Hassibi et al., 1993; Li and Louri, 2021; Frantar
and Alistarh, 2022, 2023; Sun et al., 2024). Here,
the mask Ml is selected adaptively during the re-
construction. Recently, SparseGPT (Frantar and
Alistarh, 2023) reduced pruning complexity and
achieved SOTA results among these approaches.

3.3 Non-uniform Sparsity

Given a target sparsity S, layerwise uniform spar-
sity assigns the same sparsity level to each layer
i, such that Si = S, ∀i. Instead of applying a uni-
form sparsity across all layers, non-uniform spar-
sity can be used, where each layer has a different
sparsity while maintaining the overall target spar-
sity. This removes the constraint Si = S but en-
sures that the average sparsity across layers satisfies∑

i Si/N = S where N is the number of layers.
OWL (Yin et al., 2024) computes the non-

uniform sparsity ratios by identifying outliers in
each layer through the layerwise outlier distribu-
tion (LOD). Layers with a high number of outliers
are assigned lower sparsity, while those with fewer
outliers have higher sparsity. For layer l-th, OWL
computes the outlier distribution Dl. The detailed
calculation of Dl is described in Appendix A.1.
Given a global target sparsity S and the LOD for
each layer D = [D1, D2, . . . , Dn], the sparsity for
layer i-th is set as Si ∝ 1−Di. A hyperparameter
λ controls the deviation of Si from the target S,
with the constraint Si ∈ [S − λ, S + λ]. Figure
4a illustrates how non-uniform sparsity varies with
different values of λ.

4 Empirical Study

4.1 Study on Uniform vs Non-uniform (F1)

We examine the performance of layerwise uniform
versus non-uniform sparsity across different target
sparsity levels by comparing the perplexity of mod-
els pruned with uniform and non-uniform sparsity
at each target level. To further assess how devia-
tions from uniform sparsity affect performance, we
analyze the impact of varying deviations on models
pruned with non-uniform sparsity. We compare
perplexity across different deviation levels at each
target sparsity.

Experimental Settings. We use two pruning
methods: SparseGPT (Frantar and Alistarh, 2023),
which reconstructs weights using the Hessian ma-
trix, and RIA (Zhang et al., 2024), which fo-
cuses on mask finding. Non-uniform sparsity is
calculated using OWL (Yin et al., 2024), which

3603

0.0 0.2 0.4 0.6 0.8
Target sparsity

100

10 1

0

10 1

100

101
Pe

rp
le

xi
ty

LLaMA2 13B
LLaMA2 7B
LLaMA3 8B
OPT 6.7B

Figure 2: Perplexity difference (∆ Perplexity) between
uniform and non-uniform sparsity, using SparseGPT.
Lower perplexity indicates better performance. Neg-
ative ∆ indicates uniform outperforms non-uniform.
Positive ∆ indicates non-uniform outperform uniform.

0.0 0.2 0.4 0.6 0.8
Target sparsity

100

10 1

0

10 1

100

101

102

103

104

Pe
rp

le
xi

ty

LLaMA2 13B
LLaMA2 7B
LLaMA3 8B
OPT 6.7B

Figure 3: Perplexity difference (∆ Perplexity) RIA
(mask finding via relative importance and activation)
and SparseGPT (weight reconstruction via Hessian ma-
trix). Lower perplexity indicates better performance.
Negative ∆ indicates RIA outperforms SparseGPT. Pos-
itive ∆ indicates SparseGPT outperforms RIA.

sets sparsity ratios based on outlier distribution.
We evaluate target sparsity levels ranging from
[10%, 20%, ..., 80%] on Llama2 (7B and 13B),
Llama3 (8B), and OPT (6.7B), with perplexity
measured on the Wikitext2 test set (Merity et al.,
2016). To explore the effect of deviations from
uniform sparsity, we experiment on Llama2 (7B)
using SparseGPT with different values of λ (which
controls deviation) set to λ ∈ {0.01, 0.08, 0.15}.

Results (Uniform vs Non-uniform). Figure 2
compares the perplexity of models pruned with uni-
form and non-uniform sparsity using SparseGPT.
Non-uniform sparsity outperforms uniform spar-
sity at higher target sparsity levels. However, at
lower sparsity levels, uniform sparsity shows better

0 5 10 15 20 25 30
Layer Index

0.0

0.5

1.0

1.5

2.0

LO
D

Va
lu

e

0.5

0.6

0.6

0.7

0.7

0.8

0.8

La
ye

rw
ise

 sp
ar

sit
y

ra
tio

=0.0
=0.01

=0.08
=0.15

LOD

(a) Illustration of layerwise non-uniform sparsity of different
λ value at target sparsity 70%. λ = 0.0 indicates uniform
sparsity. The bar chart shows each layer’s Layerwise Outlier
Distribution (LOD).

0.1 0.2 0.3 0.4
Target sparsity

6.2

6.4

6.6

6.8

7.0

Pe
rp

le
xi

ty

0.5 0.6 0.7 0.8
Target sparsity

101

102

=0.15 =0.08 =0.01

(b) Perplexity performance of different deviations controlled
by λ, measured on Llama2(7B) pruned by SparseGPT. Lower
perplexity indicates better performance. A lower λ is bene-
ficial at low target sparsity (left), while a higher λ performs
better at high target sparsity (right).

Figure 4: Effect of different values of λ

results. This pattern is consistent across all architec-
tures. Results for models pruned with RIA follow
a similar trend and are detailed in Appendix B.1.

Results (Deviations in Non-uniform). Figure
4a illustrates how non-uniform sparsity deviates
from the target sparsity (70%) for different λ val-
ues. Figure 4b compares perplexity with varying
λ values. The results show that at lower target
sparsity levels (10% to 50%), smaller λ (closer to
uniform sparsity) yields better performance. For
higher target sparsity, larger λ (greater deviation
from uniform) produces better results.

4.2 Study on State-of-the-art Solvers (F2)

We evaluate two SOTA solvers, RIA and
SparseGPT. RIA, which calculates parameter im-
portance by considering connections and activa-
tions, leads to finding sparsity masks without modi-

3604

Model's
Layers

Layers'
sparsity

Target
Sparsity S

1 2 3 4 5 6 7 8 9 ... Layer Index ... 323130

Non-uniform
sparsity

Solver
threshold τ

Deviation λ(S)

Prune by Solver A Prune by Solver B

Example: layer 30th

Prune weight

S30

Q K V

Multihead Attention

Gate Up Down

Feed forward

Step 1: Obtain deviation λ(S) from target S Step 2: Obtain sparsity Si for each layer Step 4: Prune the weight

τ
S

O

Step 3: Determine the Solver

to sparsity S30
using Solver B

Figure 5: Illustration of OPTIPRUNE applied to the Llama2 (7B) model, consisting of 32 layers. Each layer includes
four weight matrices for multi-head attention (Q, K, V, O) and three for the feed-forward network (Gate, Up, Down).
The importance of each layer, determined by the outlier distribution, is represented by varying shades of green.

fying weights. SparseGPT, which uses the Hessian
matrix for weight reconstruction and adaptive mask
selection, represents the SOTA for weight recon-
struction methods. We compare the perplexity of
models pruned by RIA and SparseGPT across dif-
ferent target sparsity levels.

Experimental Settings We assess RIA and
SparseGPT across target sparsity levels ranging
from [10%, 20%, ..., 80%] on several LLMs, in-
cluding Llama2 (7B and 13B), Llama3 (8B), and
OPT (6.7B). Perplexity is evaluated on the Wiki-
text2 test set (Merity et al., 2016).

Results. Figure 3 shows the perplexity perfor-
mance of both solvers. The results indicate that
RIA outperforms SparseGPT at lower target spar-
sity levels, while SparseGPT excels at higher target
sparsity. This trend is consistent across all model
architectures. Further analysis reveals that weight
reconstruction degrades performance at lower spar-
sity but enhances it at higher sparsity levels, rein-
forcing our findings. Detailed results are provided
in Appendix B.2.

5 OPTIPRUNE

Building on our validated findings, we introduce
a pruning method designed to effectively handle
models across varying target sparsity levels. Figure
5 provides an overview of the method. Since lower
deviation values enhance performance at low target
sparsity and higher deviation values are better at
high target sparsity (Finding F1), we first compute
the deviation level λ(S) based on the target sparsity
S (Step 1). Next, we determine the non-uniform

sparsity for each layer, calculating the layer-wise
sparsity Si (Step 2). To optimize performance, we
then compare Si with a threshold τ (Step 3), as
different solvers perform better at different sparsity
levels (Finding F2). Finally, for each layer, we
prune the weight matrices using the chosen solver
and calculated sparsity Si (Step 4). The following
subsections show the details of these key steps.

5.1 Determine the deviation levels
The parameter λ controls the deviation of non-
uniform sparsity from uniform sparsity. While
prior work (Yin et al., 2024) uses a fixed, prede-
fined λ, we dynamically adjust λ based on the tar-
get sparsity level, following the strategy outlined
in Finding F1. Specifically, we use a low λ for
low target sparsity and a high λ for high target
sparsity. We define the range for λ as [λmin, λmax]
and compute λ as a function of the target spar-
sity S. Let Smin and Smax represent the minimum
and maximum sparsity levels, respectively. One
straightforward method is to linearly interpolate λ
as follows.

λ(S) = λmin +
(S − Smin) · (λmax − λmin)

Smax − Smin

We also explore different approaches to calcu-
late λ and detailed in Appendix C. For consis-
tency, we use linear interpolation for all exper-
iments. Through experimentation, we find that
λmin = 0.01 and λmax = 0.16 provide a good
range, with Smin = 0% and Smax = 100% as the
sparsity bounds.

3605

Target sparsity
Method 10% 20% 30% 40% 50% 60% 70% 80% Avg

Llama2-7B (Dense=53.83)
OPTIPRUNE (Ours) 53.83 54.06 53.61 53.39 51.50 48.05 42.83 36.79 49.26
OWL 53.89 53.81 53.03 52.67 50.98 47.65 42.36 36.20 48.82
RIA 53.80 54.17 53.79 53.11 50.29 46.10 36.40 33.90 47.70
SparseGPT 53.88 53.49 53.35 52.36 50.12 47.25 39.89 33.48 47.98
Wanda 53.90 54.09 53.26 51.86 49.72 43.46 34.88 33.60 46.85

Llama2-13B (Dense=56.60)
OPTIPRUNE (Ours) 56.35 55.81 55.40 55.79 54.35 51.69 46.25 38.35 51.75
OWL 56.25 56.14 55.87 54.20 54.33 51.07 45.53 37.59 51.37
RIA 56.34 55.99 55.65 55.29 53.89 50.60 39.65 33.44 50.11
SparseGPT 56.35 55.98 55.89 55.12 54.08 50.51 42.74 35.30 50.75
Wanda 56.19 56.10 55.65 55.45 53.33 48.05 35.81 33.20 49.22

Llama3-8B (Dense=58.62)
OPTIPRUNE (Ours) 59.06 58.82 57.74 56.72 53.45 50.74 42.45 36.41 51.92
OWL 59.15 58.78 58.06 56.60 54.05 49.85 41.66 36.39 51.82
RIA 58.72 58.52 57.08 55.31 52.42 45.21 34.51 33.42 49.40
SparseGPT 59.10 58.70 57.75 56.59 53.42 48.64 40.20 34.91 51.16
Wanda 59.10 58.60 57.36 54.53 50.97 44.08 35.91 33.54 49.26

OPT-6.7B (Dense=46.89)
OPTIPRUNE (Ours) 47.59 46.98 47.11 46.64 45.52 44.18 41.83 37.60 44.68
OWL 47.00 47.19 47.19 46.59 45.56 44.18 41.54 37.15 44.55
RIA 46.94 46.88 46.72 46.41 45.50 43.31 36.10 35.63 43.44
SparseGPT 47.00 46.88 47.15 46.54 45.92 44.61 41.82 37.21 44.64
Wanda 46.97 46.93 46.89 46.24 43.35 38.06 35.11 33.15 42.09

Table 1: Zero-shot accuracy at each sparsity ratio, averaged across all benchmarks: Hellaswag, BoolQ, ARC
(Challenge/Easy), MNLI, QNLI, RTE, OpenBookQA, Winogrande, and MathQA. The results of OPTIPRUNE are
highlighted in blue . Bold numbers indicate the highest performance among the methods.

5.2 Obtain the layerwise non-uniform sparsity

After calculating λ to control non-uniform devia-
tion, we determine the layerwise non-uniform spar-
sity Si based on outliers, following the OWL ap-
proach (Yin et al., 2024) (Section 3.3). First, we
compute the outlier distribution for each layer as
D = [D1, D2, ..., Dn]. We then set Si ∝ 1 −Di

and scale it within the range [S−λ, S+λ]. The prin-
ciple is to assign lower sparsity to layers with more
outliers and higher sparsity to those with fewer out-
liers while maintaining the overall target sparsity
S.

5.3 Adaptive Solver

We select RIA and SparseGPT as the two SOTA
solvers to consider. Our finding (F2) shows
that these solvers excel in different target sparsity
ranges, with RIA suitable for low and SparseGPT

suitable for high target sparsity levels. To deter-
mine which solver to use for pruning each layer,
we introduce a hyperparameter τ . For the i-th layer,
we compare the non-uniform sparsity Si with τ . If
Si < τ , we apply RIA to find the sparsity mask
based on relative importance and activation. If
Si ≥ τ , we utilize SparseGPT to reconstruct the
weights and adaptively generate the mask.

5.4 Model pruning
The final step is to prune each layer of the model
based on the obtained non-uniform sparsity and the
solver. For layer i-th, we use the solver (obtained in
Step 3) to prune the weight matrices to the sparsity
Si (obtained in Step 2). We perform pruning on
the main weight matrices of the layer. For common
LLM architectures, this involves the multi-head
attention, which contains 4 weight matrices Q, K, V,
O, and feed-forward layers, which contain multiple

3606

Method ARC-C ARC-E BoolQ HSwag MathQA MNLI OBQA QNLI RTE WGrande AVG

Llama-2 (7B) (Touvron et al., 2023)

Dense 43.43 76.30 77.71 57.16 28.17 42.24 31.40 49.90 62.82 69.14 53.83
OPTIPRUNE 35.85 65.28 73.56 49.03 26.03 40.37 27.50 50.22 58.57 66.17 49.26
OWL 36.09 64.69 73.46 49.05 26.31 38.74 27.50 50.45 56.05 65.89 48.82
RIA 34.97 62.71 68.58 47.02 25.47 39.96 25.98 50.28 57.85 64.12 47.69
SparseGPT 35.41 63.60 70.15 48.25 26.25 37.73 27.05 50.51 55.42 65.40 47.98
Wanda 34.79 60.64 66.44 45.86 25.98 37.57 26.05 50.88 56.72 63.52 46.85

Llama-2 (13B) (Touvron et al., 2023)

Dense 48.46 79.38 80.61 60.07 32.06 43.19 35.00 49.53 65.34 72.38 56.60
OPTIPRUNE 40.00 69.76 78.01 52.42 28.60 40.42 29.98 49.57 59.39 69.36 51.75
OWL 39.88 69.49 77.25 52.08 28.46 40.09 29.88 49.51 58.21 68.88 51.37
RIA 38.46 66.94 73.12 50.43 28.32 39.92 28.62 49.52 58.98 66.75 50.11
SparseGPT 39.25 67.96 75.65 51.14 28.25 40.69 29.12 49.54 57.85 68.01 50.75
Wanda 38.01 63.89 71.15 49.32 27.73 40.12 28.32 49.28 58.08 66.34 49.22

Llama-3 (8B) (Dubey et al., 2024)

Dense 50.26 80.09 80.98 60.11 40.47 47.82 34.60 49.94 68.59 73.40 58.62
OPTIPRUNE 39.19 67.03 77.40 50.85 32.62 42.80 27.55 51.15 62.59 68.06 51.92
OWL 38.76 66.74 76.74 50.52 32.82 42.43 27.88 51.81 62.73 67.77 51.82
RIA 37.20 62.97 69.30 47.76 31.70 41.35 26.00 50.23 61.42 66.06 49.40
SparseGPT 38.77 66.00 74.87 49.77 32.73 42.18 27.20 51.48 61.60 67.04 51.16
Wanda 37.08 61.93 71.67 47.60 31.45 40.99 26.82 49.96 59.39 65.73 49.26

OPT (6.7B) (Zhang et al., 2022)

Dense 30.46 65.57 66.06 50.51 24.62 32.81 27.60 50.92 55.23 65.19 46.89
OPTIPRUNE 27.56 59.54 65.28 44.97 24.34 34.56 24.38 50.31 54.18 61.70 44.68
OWL 27.46 59.45 65.25 44.80 23.99 34.23 24.30 50.20 53.97 61.82 44.55
RIA 26.77 55.81 65.01 42.89 23.18 32.86 22.98 50.16 54.15 60.56 43.44
SparseGPT 27.59 60.05 65.25 45.25 23.92 33.81 24.30 50.32 53.70 62.21 44.64
Wanda 26.43 52.28 60.70 40.79 22.84 32.62 22.50 50.22 53.20 59.31 42.09

Table 2: Zero-shot accuracy of all benchmarks, averaged over all target sparsity (from 10% to 80% sparsity).
OPTIPRUNE ’s results are highlighted in blue . Dense models’ results are highlighted in gray . Bold numbers
indicate highest performance among methods.

matrices (e.g., 3 for Llama2 and 2 for OPT).

6 Experiments

6.1 Tasks and Datasets

We evaluate our model’s performance on both lan-
guage modeling and zero-shot classification tasks.
For language modeling, we measure perplexity
(PPL), with lower values indicating better perfor-
mance. This is assessed using the Wikitext2. For
zero-shot classification, we evaluate the models on
multiple benchmarks: Hellaswag, BoolQ, ARC,
MNLI, QNLI, RTE, OpenBookQA, Winogrande,
and MathQA (Details in Appendix D).

6.2 Baselines

We evaluate our approach against strong publicly
available LLMs, including Llama2 (7B, 13B) (Tou-
vron et al., 2023) Llama3 (8B) (Dubey et al., 2024),
and OPT (6.7B) (Zhang et al., 2022). We com-

pare with recent SOTA methods for LLM pruning,
such as SparseGPT (Frantar and Alistarh, 2023)
Wanda (Sun et al., 2024), RIA (Zhang et al., 2024),
and OWL (Yin et al., 2024). Since OWL only de-
termines the non-uniform sparsity and requires a
backbone method for pruning, we use SparseGPT
as the backbone for OWL, given its reported high-
est performance in OWL’s paper (Yin et al., 2024).

7 Results

7.1 Zero-shot performance at every sparsity

Table 1 presents the zero-shot accuracy for various
target sparsity levels. OPTIPRUNE consistently
outperforms other baselines across nearly all spar-
sity levels. Averaged over all sparsity ratios, it
achieves the highest accuracy compared to com-
peting approaches. This trend remains consistent
across different model architectures and sizes. Al-
though OPTIPRUNE does not have the highest

3607

performance at a few sparsity levels, it is still com-
petitive compared to the highest results. This result
highlights the robustness and performance of OP-
TIPRUNE at every target sparsity.

7.2 Zero-shot performance by benchmarks
Table 2 shows the zero-shot accuracy for all bench-
marks, averaged over all target sparsity levels. Our
method consistently outperforms baseline methods
across almost all benchmarks and achieves the high-
est average results. This improvement is evident
across different model architectures and sizes. The
strong performance across a diverse set of bench-
marks highlights the robustness of OPTIPRUNE

7.3 Perplexity
Table 3 shows the average perplexity across all
target sparsity levels. OPTIPRUNE outperforms all
baselines for Llama models. For the OPT model,
while OPTIPRUNE does not surpass OWL, it still
demonstrates competitive performance compared
to other SOTA methods.

7.4 Other Results
Semi-structured pruning with N : M constraint,
which requires that at least N out of every M con-
secutive elements be zero, allows for model prun-
ing while preserving hardware efficiency (Details
in Appendix F.1). Table 4 shows the perplexity per-
formance of models pruned in semi-structured 2:4.
The results show that OPTIPRUNE outperforms
other methods in most architectures.

We also assess the ability of OPTIPRUNE to
calibrate for specific languages. Calibration details
are provided in Appendix E.1 with results in Ap-
pendix E.3. The findings show that the original OP-
TIPRUNE already outperforms other SOTA meth-
ods across languages. Furthermore, OPTIPRUNE

with language calibration significantly enhances
performance, surpassing the baselines by a substan-
tial margin.

Additionally, in Appendix F.2, we discuss the
inference acceleration of sparse models.

Method Llama2-7B Llama2-13B Llama3-8B OPT-6.7B

OPTIPRUNE 18.98 13.68 39.42 26.55
RIA 152.88 65.15 310.23 1967.77
SparseGPT 23.18 22.61 44.56 26.35
OWL 20.61 14.81 39.67 24.49
Wanda 743.84 251.90 447.14 592.75

Table 3: Perplexity performance, averaged across all
sparsity.

Method Llama2-7B Llama2-13B Llama3-8B OPT-6.7B

OPTIPRUNE 12.31 9.86 18.49 16.09
RIA 12.75 9.49 25.81 17.63
SparseGPT 12.41 9.87 18.49 16.11
OWL 12.41 9.86 18.49 16.11
Wanda 13.72 10.17 27.71 17.80

Table 4: Semi-structured 2:4 pruning performance, mea-
sured by average perplexity across all sparsity.

8 Conclusions

This study addresses the limitations of existing
pruning methods by exploring the effects of vary-
ing target sparsity levels. We present and validate
two key findings: (1) Layerwise uniform sparsity is
effective at low sparsity levels, while non-uniform
sparsity excels at high sparsity levels; (2) Relative
importance-based mask pruning performs better
at low sparsity, whereas Hessian-based weight re-
construction is superior at high sparsity. Based on
these insights, we introduce OPTIPRUNE , an ef-
fective pruning method that remains robust across
all target sparsity levels. OPTIPRUNE uses non-
uniform with adaptive deviation and employs a
threshold to select the appropriate pruning solver.
Empirical results across various datasets, model
architectures, and languages confirm OPTIPRUNE

’s robustness and performance. Our method and
findings offer valuable insights for future research
in LLM pruning.

9 Limitations

Specificity of Pruning Methods. When examin-
ing the effect of solvers across different target spar-
sity levels, we focused on two methods: RIA and
SparseGPT. While SparseGPT aligns with other
Hessian-based weight reconstruction methods, RIA
is more tailored to its specific approach and may
not represent the full spectrum of mask-finding
techniques. Consequently, while the observation
that each method excels at particular sparsity levels
is valuable, it may be somewhat method-specific.
This insight remains important for guiding future
research.

Scale of Investigated Models. Due to compu-
tational constraints, we tested pruning methods on
models ranging from 6 to 13 billion parameters.
Larger LLMs were not explored, and future work
should extend this investigation to larger models to
confirm the generalizability of our results.

3608

References
Aida Amini, Saadia Gabriel, Earl Lin, Rik Koncel-

Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2357–2367.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936.

Peter Clark, Liam Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop,
pages 177–190.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Llm.int8(): 8-bit matrix multipli-
cation for transformers at scale. Advances in Neural
Information Processing Systems (NeurIPs).

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, and et al. 2024. The llama 3 herd
of models. Preprint, arXiv:2407.21783.

Paul Erdos and Alfred Renyi. 1959. On random graphs i.
Publicationes Mathematicae (Debrecen), 6:290–297.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel
Castro, and Erich Elsen. 2020. Rigging the lot-
tery: Making all tickets winners. In International
Conference on Machine Learning, pages 2943–2952.
PMLR.

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning
Representations.

Elias Frantar and Dan Alistarh. 2022. Spdy: Accurate
pruning with speedup guarantees. In International
Conference on Machine Learning, pages 6726–6743.
PMLR.

Elias Frantar and Dan Alistarh. 2023. SparseGPT: mas-
sive language models can be accurately pruned in one-
shot. In Proceedings of the 40th International Con-
ference on Machine Learning, ICML’23. JMLR.org.

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The
state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in neural infor-
mation processing systems, volume 28.

Babak Hassibi, David G Stork, and Gregory J Wolff.
1993. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural
networks, pages 293–299. IEEE.

Duc NM Hoang, Shiwei Liu, Radu Marculescu, and
Zhangyang Wang. 2022. Revisiting pruning at ini-
tialization through the lens of ramanujan graph. In
The Eleventh International Conference on Learning
Representations.

Olga Kovaleva, Suvarna Kulshreshtha, Anna Rogers,
and Anna Rumshisky. 2021. Bert busters: Outlier
dimensions that disrupt transformers. arXiv preprint
arXiv:2105.06990.

Eldar Kurtic, Daniel Campos, Tri Nguyen, Elias Frantar,
Mark Kurtz, Brendan Fineran, Matt Goin, and Dan
Alistarh. 2022. The optimal bert surgeon: Scalable
and accurate second-order pruning for large language
models. arXiv preprint arXiv:2203.07259.

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-
mal brain damage. In Advances in neural information
processing systems, volume 2.

Jaehong Lee, Sejung Park, Seul-Kee Mo, Sungsoo Ahn,
and Jinwoo Shin. 2020. Layer-adaptive sparsity
for the magnitude-based pruning. arXiv preprint
arXiv:2010.07611.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip
Torr. 2019. Snip: Single-shot network pruning based
on connection sensitivity. In International Confer-
ence on Learning Representations.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. 2018. Snip: Single-shot network pruning based
on connection sensitivity.

Jiajun Li and Ahmed Louri. 2021. Adaprune: An
accelerator-aware pruning technique for sustainable
cnn accelerators. volume 7, pages 47–60.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atash-
gahi, Lu Yin, Huanyu Kou, Li Shen, Mykola Pech-
enizkiy, Zhangyang Wang, and Decebal Constantin
Mocanu. 2021. Sparse training via boosting pruning
plasticity with neuroregeneration. Advances in Neu-
ral Information Processing Systems, 34:9908–9922.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391.

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

3609

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko
Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu,
and Paulius Micikevicius. 2021. Accelerating sparse
deep neural networks. Preprint, arXiv:2104.08378.

Decebal Constantin Mocanu, Elena Mocanu, Phuong H
Nguyen, Madalina Gibescu, and Antonio Liotta.
2016. A topological insight into restricted boltzmann
machines. Machine Learning, 104(2):243–270.

Decebal Constantin Mocanu, Elena Mocanu, Peter
Stone, Phuong H Nguyen, Madeleine Gibescu, and
Antonio Liotta. 2018. Scalable training of artificial
neural networks with adaptive sparse connectivity in-
spired by network science. Nature communications,
9(1):2383.

NeuralMagic. 2021. Deepsparse. https://github.
com/neuralmagic/deepsparse.

Giacomo Puccetti, Anna Rogers, Alexander Drozd, and
Felice Dell’Orletta. 2022. Outliers dimensions that
disrupt transformers are driven by frequency. arXiv
preprint arXiv:2205.11380.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2020. Winogrande: An ad-
versarial winograd schema challenge at scale. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8732–8740.

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.
Movement pruning: Adaptive sparsity by fine-tuning.
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 20378–20389.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter.
2024. A Simple and Effective Pruning Approach
for Large Language Models. In The Twelfth Interna-
tional Conference on Learning Representations.

Andrew Timkey and Marten van Schijndel. 2021. All
bark and no bite: Rogue dimensions in transformer
language models obscure representational quality.
arXiv preprint arXiv:2109.04404.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,

Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open Foundation and Fine-
Tuned Chat Models.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353–355.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. 2020.
Picking winning tickets before training by preserv-
ing gradient flow. In International Conference on
Learning Representations.

Adina Williams, Nikita Nangia, and Samuel R Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh,
Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. 2024.
Outlier Weighed Layerwise Sparsity (OWL): A Miss-
ing Secret Sauce for Pruning LLMs to High Sparsity.

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li,
Zhenglun Kong, Ning Liu, Yifan Gong, Zheng Zhan,
Chaoyang He, and et al. Jin, Qing. 2021. Mest: Accu-
rate and fast memory-economic sparse training frame-
work on the edge. In Advances in Neural Information
Processing Systems, volume 34, pages 20838–20850.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-

https://arxiv.org/abs/2104.08378
https://arxiv.org/abs/2104.08378
https://github.com/neuralmagic/deepsparse
https://github.com/neuralmagic/deepsparse
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://openreview.net/forum?id=pOBvr1PxFd
https://openreview.net/forum?id=pOBvr1PxFd

3610

wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. OPT: Open Pre-
trained Transformer Language Models.

Y Zhang, J Zhao, W Wu, A Muscoloni, and CV Cannis-
traci. 2023. Epitopological sparse ultra-deep learn-
ing: A brain-network topological theory carves com-
munities in sparse and percolated hyperbolic anns.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao,
Lu Hou, and Carlo Vittorio Cannistraci. 2024. Plug-
and-Play: An Efficient Post-training Pruning Method
for Large Language Models. In The Twelfth Interna-
tional Conference on Learning Representations.

Michael Zhu and Suyog Gupta. 2017. To prune, or not
to prune: exploring the efficacy of pruning for model
compression. Preprint, arXiv:1710.01878.

A Detailed Calculation of Pruning
Methods

A.1 Calculation of Outlier Distribution

This section outlines the calculation of OWL (Yin
et al., 2024) for determining the layerwise outlier
distribution. The outlier score for a given Wij

is computed as Aij = ||Xj ||2 ∗ ||Wij ||, where
||Xj ||2 is the ℓ2 norm of input feature connected
to the weight. The outlier distribution of layer l is
calculated as follows.

Dl =

∑Cout
i=1

∑Cin
j=1 I

(
Al

ij > M ·Al
)

CinCout
(2)

where (Cout, Cin) are the dimensions of W, Al

is the mean of Al and I() is an indicator function
returning 1 if the condition is true, and 0 otherwise.

A.2 Calulation of Relative Importance and
Activation

The importance of parameter Wij is calculated as
follows.

RIAij =

(
|Wij |∑
|W∗j |

+
|Wij |∑
|Wi∗|

)
(∥Xi∥2)α

(3)
where

∑
|W∗j | is the sum of parameters in in-

put channel j,
∑

|Wi∗| is the sum in output chan-
nel i, and α is a hyperparameter controlling activa-
tion strength.

0.0 0.2 0.4 0.6 0.8
Target sparsity

101

100

10 1

0

10 1

100

101

102

Pe
rp

le
xi

ty

LLaMA2 13B
LLaMA2 7B

Figure 6: Perplexity difference (∆ Perplexity) between
uniform and non-uniform sparsity, using RIA. Lower
perplexity indicates better performance. Negative ∆
indicates uniform outperforms non-uniform. Positive ∆
indicates non-uniform outperform uniform.

B Additional Experiments

B.1 Experiments on Uniform vs Non-uniform

Figure 6 illustrates the perplexity difference be-
tween uniform and non-uniform sparsity in models
pruned by RIA. Non-uniform sparsity outperforms
uniform sparsity at higher sparsity ratios. However,
at lower sparsity ratios, the benefits of non-uniform
sparsity diminish, with uniform sparsity proving
more effective. This pattern is consistent across all
architectures.

B.2 Experiments on Solvers

0.0 0.2 0.4 0.6 0.8
Spartsity ratio

101

100
10 1

0
10 1

100
101

102

Pe
rp

le
xi

ty

LLaMA2 7B

Figure 7: Perplexity difference (∆ Perplexity) between
RIA with and without weight reconstruction. Lower
perplexity indicates better performance. Negative ∆
indicates weight reconstruction hurt the performance.
Positive ∆ indicates weight reconstruction improves the
performance.

We experiment on RIA, both with and without

https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.01878

3611

Sparsity ratio
λ Calculation 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Avg

Linear translate 53.83 54.06 53.61 53.39 51.50 48.05 42.83 36.79 49.26
Sigmoid Function 53.78 54.20 53.70 53.15 50.56 47.92 42.82 36.85 49.12

Table 5: Zero-shot Accuracy at every sparsity ratio, Llama2(7B).

weight reconstruction, across different target spar-
sities. Using RIA’s mask, we applied SparseGPT’s
weight reconstruction technique and compared the
perplexity results. Figure 7 shows the perplexity
difference between RIA with and without weight re-
construction. The results indicate that while weight
reconstruction negatively impacts performance at
low sparsity, it improves performance at high spar-
sity levels.

C Approaches to calculate λ

This section investigates the two approaches to cal-
culating λ. The first one is linear translation.

λ(S) = λmin +
(S − Smin) · (λmax − λmin)

Smax − Smin

Where S represents the target sparsity for the cur-
rent layer or model. λmin and λmax are the bound-
aries for the deviation parameter. Another approach
uses a sigmoid function to calculate λ.

λ(S) = λmin+(λmax−λmin)·
1

1 + e
−k

(
S−Smin

Smax−Smin
−0.5

)
Unlike linear scaling, the sigmoid function

changes λ slowly near the boundaries of S and
more rapidly around mid-range sparsity (50%).

Table 5 compares the performance of two ap-
proaches of calculating λ based on target sparsity.
The results show that the two approaches perform
equally well. However, linear translation is more
stable and outperforms the translation by sigmoid
function.

D Details on Dataset

This section lists the benchmarks used in the evalu-
ation. Perplexity is evaluated on Wikitext2 (Mer-
ity et al., 2016). The benchmarks used for zero-
shot evaluation includes Hellaswag (Zellers et al.,
2019), BoolQ (Clark et al., 2019), ARC (Chal-
lenge/Easy) (Clark et al., 2018), MNLI (Williams

et al., 2018), QNLI (Wang et al., 2018), RTE (Da-
gan et al., 2005), OpenBookQA (Mihaylov et al.,
2018), Winogrande (Sakaguchi et al., 2020), and
MathQA (Amini et al., 2019)

E Calibration on specific language

E.1 OPTIPRUNE with language calibration

Most existing pruning methods (Frantar and Alis-
tarh, 2023; Sun et al., 2024; Zhang et al., 2024) use
a small amount of calibration data—typically 128
examples from the C4 dataset (Raffel et al., 2020).
Despite the small sample size, our study finds that
this data can significantly impact multilingual per-
formance. Our preliminary results show that by
adjusting the calibration data to focus on a spe-
cific language, we can notably improve perplexity
for that language, especially at high target spar-
sity levels. To leverage this insight, we develop a
version of OPTIPRUNE calibrated for specific lan-
guages, using 128 examples from the Multilingual-
C4 dataset (Xue et al., 2021) for calibration.

E.2 Evaluation data

To assess multilingual perplexity performance, we
curated datasets comparable to the Wikitext2 test
set (Merity et al., 2016) in multiple languages. We
ensured that each dataset was similar in size to
Wikitext2, specifically maintaining around 5 mil-
lion tokens per dataset, as tokenized by the Llama
tokenizer.

E.3 Results

Table 6 presents perplexity results on Wikitext
for various languages, including German, Spanish,
French, Vietnamese, Chinese, and Japanese, aver-
aged across all target sparsity levels. The results
indicate that the original OPTIPRUNE already out-
performs other SOTA methods. Furthermore, OP-
TIPRUNE with language calibration significantly
enhances performance, surpassing the baselines by
a substantial margin.

3612

Method de es fr vi zh ja

OPTIPRUNE -LC 8.49 7.41 8.05 3.22 5.77 9.21
OPTIPRUNE 24.04 16.23 14.87 7.01 11.23 9.25
RIA 60.18 32.76 32.82 10.87 473.72 579.88
SparseGPT 66.67 33.41 28.78 10.33 19.80 18.82
OWL 28.13 17.45 16.00 7.69 12.17 10.19
Wanda 223.80 108.37 126.10 49.84 407.26 1751.95

Table 6: Average perplexity across all target sparsity
levels, measured on Wikitext for various languages:
German (de), Spanish (es), French (fr), Vietnamese
(vi), Chinese (zh), and Japanese (ja). Original OP-
TIPRUNE and the version with specific language calibra-
tion (OPTIPRUNE-LC) are compared with baselines.

F Inference of Pruned Models

F.1 N:M Pruning
NVIDIA recently introduced N:M sparsity (Mishra
et al., 2021) as a technique to compress neural
networks while maintaining hardware efficiency.
This approach requires that at least N out of ev-
ery M consecutive elements be zero, facilitating
faster matrix-multiply-accumulate operations. For
example, a 2:4 sparsity ratio yields 50% sparsity,
which can effectively double inference speed on
NVIDIA’s Ampere GPUs.

F.2 Inference Acceleration

Strategy Q/K/V/Out Up/Gate Down Overall

Unstructured 50% 0.98x 0.98x 0.97x 0.98x
2:4 (cuTLASS) 1.21x 1.23x 1.23x 1.22x

2:4 (cuSPARSELT) 1.64x 1.65x 1.62x 1.63x

Table 7: Inference time on Llama2 (13B)

Unstructured sparsity 40% 50% 60%

Speedup 1.57x 1.82x 2.16x

Table 8: Speedup over dense version of OPT(2.7B) in
DeepSparse

Pruning of models can improve inference effi-
ciency. The improvements in inference have been
actively studied in previous studies. Although the
post-training pruning methods are different, they
all follow the same strategy (unstructured, semi-
structured pruning). The only difference is which
parameters the method chooses to prune. Theoret-
ically, the inference efficiency should be approxi-
mately the same for these pruning methods at the
same target sparsity and model architecture. This
section includes the inference acceleration in prun-
ing that has been previously studied. Theoretically,

the acceleration observed in these studies should
apply to OptiPrune.

Table 7 shows the inference time on
Llama2(13B), reported by Zhang et al. (2024),
experimented on NVIDIA Tesla A100 with
cuTLASS and cuSPARSELt library for Sparse
Matrix-Matrix Multiplication (Mishra et al., 2021).
The results show that 50% semi-structure pruned
model can achieve up to 1.6 times speed up.

Table 8 shows the CPU inference time speedup
on pruned OPT(2.7B), reported by Frantar and Al-
istarh (2023). The experiments use DeepSparse
engine (NeuralMagic, 2021).

	Introduction
	Related Work
	Pruning Strategies
	Post-training pruning
	Uniform & Non-uniform Sparsity

	Preliminaries
	Layer-wise Pruning
	State-of-the-art Solvers
	Non-uniform Sparsity

	Empirical Study
	Study on Uniform vs Non-uniform (F1)
	Study on State-of-the-art Solvers (F2)

	 OptiPrune
	Determine the deviation levels
	Obtain the layerwise non-uniform sparsity
	Adaptive Solver
	Model pruning

	Experiments
	Tasks and Datasets
	Baselines

	Results
	Zero-shot performance at every sparsity
	Zero-shot performance by benchmarks
	Perplexity
	Other Results

	Conclusions
	Limitations
	Detailed Calculation of Pruning Methods
	Calculation of Outlier Distribution
	Calulation of Relative Importance and Activation

	Additional Experiments
	Experiments on Uniform vs Non-uniform
	Experiments on Solvers

	Approaches to calculate
	Details on Dataset
	Calibration on specific language
	 OptiPrune with language calibration
	Evaluation data
	Results

	Inference of Pruned Models
	N:M Pruning
	Inference Acceleration

