Knowledge Graph Unlearning with Schema

Yang Xiao, Ruimeng Ye, Bo Hui
Department of Computer Science, University of Tulsa
{yax3417, ruy9945, bohui}@utulsa.edu

Abstract

Graph unlearning emerges as a crucial step
to eliminate the impact of deleted elements
from a trained model. However, unlearning
on the knowledge graph (KG) has not yet been
extensively studied. We remark that KG un-
learning is non-trivial because KG is distinc-
tive from general graphs. In this paper, we
first propose a new unlearning method based
on schema for KG. Specifically, we update the
representation of the deleted element’s neigh-
borhood with an unlearning object that regu-
lates the affinity between the affected neighbor-
hood and the instances within the same schema.
Second, we raise a new task: schema unlearn-
ing. Given a schema graph to be deleted, we
remove all instances matching the pattern and
make the trained model forget the removed in-
stances. Last, we evaluate the proposed un-
learning method on various KG embedding
models with benchmark datasets. Our codes are
available at https://github.com/NKUShaw/
KGUnlearningBySchema.

1 Introduction

To protect users’ concerns about privacy and secu-
rity, laws such as the European Union’s General
Data Protection Regulation (GDPR), the California
Consumer Privacy Act (CCPA), and Canada’s pro-
posed Consumer Privacy Protection Act (CPPA)
regulate the usage of personal data in machine
learning (ML) and give users the right to withdraw
consent to the usage of their data (Biega and Finck,
2021; Regulation, 2016; OAG, 2021). Machine un-
learning algorithms (Cao and Yang, 2015; Golatkar
et al., 2020; Bourtoule et al., 2019; Marchant et al.,
2022; Neel et al., 2021a) aim to proactively elimi-
nate the memory about deleted data from already
trained machine learning models.

Graph unlearning (Said et al., 2023; Cheng et al.,
2023; Chien et al., 2022) emerges as a crucial
method to address data privacy and adversarial at-
tacks on graph data such as social networks. Given

the elements such as nodes and edges to be deleted,
various approaches (Guo et al., 2020; Wu et al.,
2023b,a; Chien et al., 2023) have been proposed to
remove the influence of deleted elements on both
model weights and neighboring representations.

However, unlearning on knowledge graph (KG)
has not yet been extensively studied. We remark
that KG unlearning is non-trivial. First, KG has
been used to describe open knowledge projects
such as Wikidata and YAGO (Wiki, 2024; Pel-
lissier Tanon et al., 2020). These KGs allow
both humans and machines to acquire information
and derive new knowledge. Factors like scientific
opinions (e.g., historical ideas about race), socio-
culture, or political views can lead to an encoding
of social bias. Therefore, it is necessary to pro-
vide an interface to remove certain knowledge and
eliminate the influence on downstream modules
such as reasoning. Second, a knowledge graph is
distinctive from general graphs. A KG defines ab-
stract classes and relations of entities in a schema.
Lastly, the relation between two entities has seman-
tic meanings where the edge on a general graph is
only associated with a weight. Due to the unique
structure and information, it is a challenge to gen-
eralize a graph unlearning algorithm on KGs.

In this paper, we first propose a KG unlearning
method based on schema. Given an entity or a re-
lation to be deleted from the KG, existing graph
unlearning methods seek to ensure that the rela-
tionship between two entities connected by the
deleted component is similar to the relation be-
tween two random entities as if the relation does
not exist (Cong and Mahdavi, 2022; Ye et al., 2023;
Peng et al., 2022). However, we argue that such a
strategy is too "aggressive" because the two entities
could be indirectly connected through other entities
on the KG. Therefore, we propose to define a new
target for KG unlearning. Schema, as a high-order
meta pattern of KG, contains the type constraint be-
tween entities and relations, and it can naturally, be

3541

Proceedings of the 31st International Conference on Computational Linguistics, pages 3541-3546
January 19-24, 2025. ©2025 Association for Computational Linguistics

https://github.com/NKUShaw/KGUnlearningBySchema
https://github.com/NKUShaw/KGUnlearningBySchema

used to capture the structural and semantic informa-
tion in context (Ghosh et al., 2020; Ye et al., 2023;
Peng et al., 2022; Hui et al., 2022). Intuitively, two
instances within a schema are similar to each other.
Given a component to be removed, we construct a
sub-graph containing affected entities. We extract
the schema for the sub-graph and query sub-graphs
that have the same schema. Lastly, we update the
affected neighborhood’s representation based on
the queried sub-graphs. Our method is applicable
to both entity unlearning and relation unlearning.
Furthermore, we raise a new research problem:
schema unlearning on KG. Since the schema can
constrain the entities and relations on the knowl-
edge base, it is intuitive to remove a set of instances
with given constraints on KG upon request. We re-
mark that the schema can be used to extract the
instances that concern privacy and stereotypes. For
example, Schema (person, is a friend of, person)
leads to privacy leakage, and Schema (black Ameri-
can, commits, criminality) is related to racial stereo-
types. Existing study shows that social biases are
engraved in KG (Kraft and Usbeck, 2022). Given
a schema, we propose to extract and remove all
instances matching the schema from KG. Similar
to removing entities or relations, we update the
representations of affected neighborhoods.

2 Proposed Method

Let G = (E, R, S) be a KG, where E and R are
the sets of entities and relations in the KG. We
use S to denote the set of triples, each of which is
(en, T, €t), including the head entity e, € F, the
tail entity e; € E and the relation r between e,
and e;. Given a model M (G) trained on G to as-
sociate each entity and relation with a vector in an
embedding space H, the user can request to delete
a subset of entities F; or a subset of relations .
The straightforward solution is to retrain a new
model M(G/E;) (or M(G/Ry)) on the remain-
ing data G/ E,4 (or G/ Ry) from scratch. However,
this naive method is time-consuming for frequent
deletion requests over large-scale data. Therefore,
the goal of an efficient unlearning algorithm is to
directly eliminate the effects of deleted data on M.

2.1 Unlearning with Schema

Given an entity ey € FEj; to be deleted, we first
extract k-hop enclosing sub-graph G, around eg.
Intuitively, if e4 is deleted, the representations of
nodes in the k-hop neighborhood need to be up-
dated. For example, in Figure 1, the blue nodes

O Entity

~_— Relation

@ schema node

by :‘- Entity to delete g{a’ﬁ Representation after unlearning

S~ "~ _Schema sub-graph G I Py
Qe I I vl
S [H—

@ Representation before unlearning

—) xQ

I
o3

Gy 1 Vector operation

Neighborhood of Deleted Entity Schema instances

Figure 1: Unlearning with Schema.

represent the nodes in the 2-hop sub-graph around
the deleted entity. For each node on the sub-graph,
we use RDF (Resource Description Framework)
Schema (e.g., rdf: Class) (Wikipedia, 2024) to rep-
resent the high-order meta pattern of the node and
edge. Similarly, we can extract high-order meta pat-
terns for edges on GG,,.Then we can use a schema
sub-graph G to describe the meta pattern of G,,.
For example, "Da Vinci” on G,, will be replaced
with "rdf: Person" on Gi.

With the high-order meta pattern G, the next
step is to query a sub-graph G, which also has
a high-order meta pattern G5. Specifically, G is
isomorphic to G, and G, share the schema-graph
G with G,,. Intuitively, if both G, and G can
be described by a schema pattern G; at high-order,
these two sub-graph should be similar to each other.
However, sub-graph matching is an NP-complete
problem (Lou et al., 2020; Sun et al., 2012). In this
paper, we leverage Glasgow Subgraph Solver (Mc-
Creesh et al., 2020) to find the sub-graph G,. To
reduce the high computational cost, the solver re-
turns once a sub-graph matches the query instead of
finding all sub-graphs. Figure 1 shows an example
of the queried G, (highlighted in green) where all
nodes match the pattern on the schema sub-graph.
Recall that the target is to update the representation
of G, as if ey has never existed. For any two enti-
ties e¢; and e; on G, our target is to maximize the
similarity between (e;, e;) and (e, e,,), where (e,
and e,,) are the corresponding entities on GG, and
share the same schema with (e;, e;). Specifically,
the relation (direct or indirect) in the embedding
space between e; and e; is supposed to be similar
to that between ¢; and e; because they share the
same schema sub-graph. Therefore, we maximize
the similarity for all pairs on G

(Hi _ Hj)) (Hm - Hn)
2 |(Hs = Hy)[[||(Hpm — Hp)|”
(1)

(es,e€Gu ei7€;)

3542

where H;, H;, Hy,, H, are the embedding of
€i, €j, em, ey, Tespectively. For any pair (e;, e;),
we can always find corresponding (e, e,,) on G,.
Denote Eq (1) as the unlearning target /,; for the
deleted entity ey. For all deleted entities in E, the
overall unlearning object is to minimize:

L= In(l-lj+e),)
eq€lby
where ¢ is a hyperparameter to avoid 0 in In(-).
Similar to deleting an entity, we can construct a
neighborhood sub-graph around a deleted 4y € Ry
and leverage Eq (2) to update the representations
of the neighborhood around 7.

2.2 Delete Schema

Note that the schema can constrain the entities and
relations on the knowledge base. It provides a way
to remove a set of instances with given constraints.
For example, we can remove the relations in all in-
stances that match the schema (foaf: Person, rdf: Is
a friend of, foaf: Person) to protect privacy. Some
data patterns (e.g., a person of type X is a terrorist
or a protestor) could have an unwanted impact on
downstream modules (e.g., reasoning or classifying
if a person is a terrorist), so it is important to re-
move such patterns in KG. Given a schema pattern
to be deleted, there are two solutions to break the
pattern: (1) delete a component (e.g., entities or
relations) on the instance of a schema sub-graph;
(2) remove the whole sub-graph. We remark that
the first solution will be transferred to an entity
unlearning or relation unlearning problem once the
instances are returned. Algorithm 1 describes the
second solution to remove the matched sub-graphs.

Algorithm 1 Schema Unlearning
Input: Schema G, to be deleted, G, H
Output: New GG, new embeddings H

1: Query all instances of the query schema G
2: Find all sub-graphs Q = {Gg,Gg,, -}
matches G5 with Glasgow Solver
3: for G, € Q do
: remove G, from G
5: Construct k-hop connected sub-graphs
around G|,.
6: for each connected G around G, do
Maximize Eq (1) for any two entities (e;,
e;) on GG
end for
8: end for

3 Experiments

We evaluated the effectiveness of our unlearning
method on three embedding models and compared
our method with graph unlearning baselines. We
experiment with two datasets: YAGO3-10 (Pel-
lissier Tanon et al., 2020) and FB15k237 (Wang
et al., 2019). From each dataset, we sample entities
and relations to be deleted, and re-train the embed-
ding model with the remaining data from scratch
for comparison. Ideally, the result of unlearning
should be similar to re-training on the remaining
data. We report Hit@1, Hit@3, Hit@10, and MRR
of link prediction task for three embedding mod-
els: TransE (Bordes et al., 2013), TransH (Wang
et al., 2014), TransD (Ji et al., 2015). Besides the
intuitive retraining strategy (), we compare our un-
learning method with Gredeint Ascent (Neel et al.,
2021b), GIF (Wu et al., 2023a), and the-state-of-
the-art baseline GNNDelete (Cheng et al., 2023).
Note that GNNDelete outperforms other baselines
including GraphEraser (Chen et al., 2022) and
GraphEditor (Cong and Mahdavi, 2022) in terms of
both accuracy and efficiency (Cheng et al., 2023).
In the experiment, We follow (Ye et al., 2023) to
randomly choose schemas to be deleted. For entity
unlearning and relation unlearning, we randomly
delete components (i.e., entities, relations) to ob-
serve the results after unlearning.

Results and analysis Table 1 shows the perfor-
mance of the link prediction before deleting entities
(labeled as "original") and after unlearning. Ide-
ally, the result after unlearning should be close to
"retraining”. We have removed about 10% entities
randomly from the dataset. Compared with other
unlearning baselines, we can observe that the per-
formance of our unlearning is closer to "retraining"
in terms of all performance metrics. Interestingly,
none of these baseline methods have comparable
performance to our method on these performance
metrics. These baseline unlearning methods lead
to drastic performance degradation and lose almost
the prowess in making meaningful predictions. It
further verifies that existing unlearning methods are
too "aggressive". Compared with general graphs,
the knowledge graph is more complicated because
there are semantic relations between entities. Only
considering the direct connection between entities
on the graph may ignore intrinsic connection after
deleting components. We also examine deleting
relations and schemas in Table 2 and 3. The conclu-
sion still holds for deleting relations and schemas.

3543

Model | Method YAGO FB13k

Hit@10 | Hit@3 | Hit@l | MRR | Hit@10 | Hit@3 | Hit@l | MRR

Original 0.5443 | 0.3887 | 0.2189 | 0.3315 | 0.4764 | 0.3253 | 0.1939 | 0.2892

Retrain 0.5080 | 0.3661 | 0.2058 | 0.3111 | 0.4416 | 0.3016 | 0.1774 | 0.2672

TransE Gradient Ascent | 0.3623 | 0.1248 | 0.0515 | 0.1353 | 0.3394 | 0.2198 | 0.1236 | 0.1814

GNNDelete 0.3713 | 0.2321 | 0.1163 | 0.2012 | 0.4147 | 0.2785 | 0.1669 | 0.2498

GIF 0.4479 | 0.2649 | 0.0896 | 0.2109 | 0.3394 | 0.1941 | 0.1034 | 0.1806

Our Method 0.5107 | 0.3443 | 0.1814 | 0.2933 | 0.4744 | 0.3230 | 0.1854 | 0.2831

Train 0.6148 | 0.4773 | 0.3015 | 0.4124 | 0.4844 | 0.3337 | 0.2018 | 0.2967

Retrain 0.5615 | 0.4305 | 0.2716 | 0.3725 | 0.4497 | 0.3026 | 0.1704 | 0.2647

TransH Gradient Ascent | 0.3706 | 0.1174 | 0.0509 | 0.1327 | 0.3416 | 0.1949 | 0.1073 | 0.1833

GNNDelete 0.3459 | 0.2223 | 0.1155 | 0.1944 | 0.3444 | 0.2262 | 0.1338 | 0.2045

GIF 0.4283 | 0.2467 | 0.0335 | 0.1706 | 0.4080 | 0.2652 | 0.1422 | 0.2319

Our Method 0.5519 | 0.4003 | 0.2274 | 0.3384 | 0.4527 | 0.2901 | 0.1554 | 0.2529

Train 0.6011 | 0.4543 | 0.2791 | 0.3915 | 0.4840 | 0.3302 | 0.1976 | 0.2931

Retrain 0.5512 | 0.4168 | 0.2617 | 0.3626 | 0.4502 | 0.3016 | 0.1643 | 0.2614

TransD Gradient Ascent | 0.3690 | 0.1192 | 0.0509 | 0.1331 | 0.3403 | 0.1916 | 0.1050 | 0.1813

GNNDelete 0.3613 | 0.2286 | 0.1116 | 0.1971 | 0.3108 | 0.1946 | 0.1123 | 0.1783

GIF 0.4753 | 0.2973 | 0.0451 | 0.1997 | 0.3665 | 0.2279 | 0.1139 | 0.1984

Our Method 0.5751 | 0.4197 | 0.2390 | 0.3546 | 0.4572 | 0.2850 | 0.1399 | 0.2443

Table 1: Delete entities (about 10% entities) on YAGO and FB15K-237

Model | Method Hit@10 | Hit@3 | Hit@1 | MRR Model | Method Hit@10 | Hit@3 | Hit@1 MRR
Original 0.5443 | 0.3887 | 0.2189 | 0.3315 Original 0.5443 | 0.3887 | 0.2189 | 0.3315
Retrain 0.5232 | 0.3770 | 0.2199 | 0.3245 Retrain 0.4983 | 0.3429 | 0.1724 | 0.2850
TransE Gradient Ascent | 0.3541 | 0.1199 | 0.0408 | 0.1262 TransE Gradient Ascent | 0.3628 | 0.1204 | 0.0429 | 0.1285
GNNDelete 0.4413 | 0.2904 | 0.1604 | 0.2543 GNNDelete 0.3725 | 0.2300 0.105 | 0.1969
GIF 0.4613 | 0.2806 | 0.0840 | 0.2134 GIF 0.4432 | 0.2546 | 0.0874 | 0.2055
Our Method 0.5256 | 0.3751 | 0.2126 | 0.3216 Our Method 0.5038 | 0.3407 | 0.1779 | 0.2887
Train 0.6148 | 0.4773 | 0.3015 | 0.4124 \Train 0.6148 | 0.4773 | 0.3015 | 0.4124
Retrain 0.5901 | 0.4600 | 0.3008 | 0.4018 Retrain 05223 | 0.3821 | 0.2055 | 0.3190
Gradient Ascent | 0.3600 | 0.1054 | 0.0362 | 0.1193 Gradient Ascent | 0.3730 | 0.1069 | 0.0385 | 0.1233
TransH GNNDelete 0.4427 | 0.2966 | 0.1639 | 0.2580 TransH GNNDelete 0.3528 | 0.2213 | 0.1062 | 0.1917
GIF 0.4370 | 0.2605 | 0.0343 | 0.1774 GIF 0.4213 | 0.2353 | 0.0354 | 0.1671
Our Method 0.5965 | 0.4655 | 0.2991 | 0.4042 Our Method 0.5407 | 0.3890 | 0.2207 | 0.3304
Train 0.6011 | 0.4543 | 0.2791 | 0.3915 ‘Train 0.6011 | 0.4543 | 0.2791 | 0.3915
Retrain 0.5764 | 0.4408 | 0.2773 | 0.3820 Retrain 0.52141/0.3779 | 0.1988 | 0.3128
Gradient Ascent | 0.3587 | 0.1075 | 0.0363 | 0.1198 TransD Gradient Ascent | 0.3707 | 0.1081 | 0.0379 | 0.1229
TransD | ~\NDelete 04694 | 03157 | 0.1739 | 02732 GNNDelete 0.3725 | 02300 | 0.1051 | 0.1969
GIF 0.4961 | 0.3171 | 0.0436 | 0.2010 GIF 04649 | 02764 | 0.0446 | 0.1910
Our Method | 0.5865 | 0.4454 | 0.2788 | 0.3861 Onxiivicthod 0. oTEoN MO 0Ty 020 R R0 -0

Table 2: Delete relations (about 7% triplets) on YAGO

Time and Space Efficiency. Our unlearning
method is both time-efficient and space-efficient as
compared to the unlearning baselines. For example,
our unlearning method takes about 24 minutes to
unlearn 10% entities on TransE while GNNDelete
takes about 1 hour and 11 minutes. The GPU mem-
ory required for GIF is 50 G and the GPU memory
occupied by our method is less than 2 G.

Visualization We project the embeddings of ran-
dom entities from the dataset "YAGO" in 2-
dimensional space for visualization. Figure 2
shows 200 random entities before unlearning and
after unlearning. We can see that some embedding
will change significantly after unlearning while the
overall distribution does not change.

Table 3: Delete schemas (about 10% triplets) on YAGO

'+,

¢ 'w.;)

* S
s

(a) Original (b) Unlearning

Figure 2: Visualization of unlearning

4 Conclusion

In this paper, we propose a new unlearning method
based on schema for knowledge graph. Given com-
ponents to be deleted, we update the neighborhood
representation with sub-graphs within the same
schema. The experiment verifies that our method
outperforms the baselines.

3544

Limitations

This paper focuses on an important task: deleting
components from KGs and eliminating their influ-
ence on downstream modules. We do not make any
statements regarding its performance beyond this
scope. One limitation of our work is that we only
measure the performance regarding link prediction.
The deletion requests are supposed to be approved
before deletion.

References

Asia J Biega and Michele Finck. 2021. Reviving pur-
pose limitation and data minimisation in data-driven
systems. arXiv preprint arXiv:2101.06203.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States, pages 2787-2795.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A.
Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu
Zhang, David Lie, and Nicolas Papernot. 2019. Ma-
chine unlearning. CoRR, abs/1912.03817.

Yinzhi Cao and Junfeng Yang. 2015. Towards making
systems forget with machine unlearning. In 2015
IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015, pages 463-480.
IEEE Computer Society.

Min Chen, Zhikun Zhang, Tianhao Wang, Michael
Backes, Mathias Humbert, and Yang Zhang. 2022.
Graph unlearning. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022, pages 499-513. ACM.

Jiali Cheng, George Dasoulas, Huan He, Chirag Agar-
wal, and Marinka Zitnik. 2023. Gnndelete: A general
strategy for unlearning in graph neural networks. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

Eli Chien, Chao Pan, and Olgica Milenkovic. 2022.
Certified graph unlearning. CoRR, abs/2206.09140.

Eli Chien, Chao Pan, and Olgica Milenkovic. 2023. Ef-
ficient model updates for approximate unlearning of
graph-structured data. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Weilin Cong and Mehrdad Mahdavi. 2022. Graphed-
itor: An efficient graph representation learning and
unlearning approach.

Subhasis Ghosh, Arpita Kundu, Aniket Pramanick, and
Indrajit Bhattacharya. 2020. Discovering knowledge
graph schema from short natural language text via
dialog. In Proceedings of the 21th Annual Meeting
of the Special Interest Group on Discourse and Di-
alogue, SIGdial 2020, 1st virtual meeting, July 1-3,
2020, pages 136-146. Association for Computational
Linguistics.

Aditya Golatkar, Alessandro Achille, and Stefano
Soatto. 2020. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020, pages 9301-9309. Computer Vi-
sion Foundation / IEEE.

Chuan Guo, Tom Goldstein, Awni Y. Hannun, and Lau-
rens van der Maaten. 2020. Certified data removal
from machine learning models. In Proceedings of the
37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research,
pages 3832-3842. PMLR.

Bo Hui, Tian Xia, and Wei-Shinn Ku. 2022. A local-
ized geometric method to match knowledge in low-
dimensional hyperbolic space. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2022, Abu Dhabi,
United Arab Emirates, December 7-11, 2022, pages
2822-2832. Association for Computational Linguis-
tics.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun
Zhao. 2015. Knowledge graph embedding via dy-
namic mapping matrix. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing of the Asian
Federation of Natural Language Processing, ACL
2015, July 26-31, 2015, Beijing, China, Volume 1:
Long Papers, pages 687—696. The Association for
Computer Linguistics.

Angelie Kraft and Ricardo Usbeck. 2022. The life-
cycle of "facts": A survey of social bias in knowl-
edge graphs. In Proceedings of the 2nd Conference
of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 12th International
Joint Conference on Natural Language Processing,
AACL/IJCNLP 2022 - Volume 1: Long Papers, On-
line Only, November 20-23, 2022, pages 639-652.
Association for Computational Linguistics.

Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes
Canedo, Jure Leskovec, et al. 2020. Neural subgraph
matching. arXiv preprint arXiv:2007.03092.

Neil G Marchant, Benjamin IP Rubinstein, and Scott
Alfeld. 2022. Hard to forget: Poisoning attacks
on certified machine unlearning. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 7691-7700.

3545

https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://arxiv.org/abs/1912.03817
https://arxiv.org/abs/1912.03817
https://doi.org/10.1109/SP.2015.35
https://doi.org/10.1109/SP.2015.35
https://doi.org/10.1145/3548606.3559352
https://openreview.net/pdf?id=X9yCkmT5Qrl
https://openreview.net/pdf?id=X9yCkmT5Qrl
https://doi.org/10.48550/ARXIV.2206.09140
https://openreview.net/pdf?id=fhcu4FBLciL
https://openreview.net/pdf?id=fhcu4FBLciL
https://openreview.net/pdf?id=fhcu4FBLciL
https://doi.org/10.18653/V1/2020.SIGDIAL-1.18
https://doi.org/10.18653/V1/2020.SIGDIAL-1.18
https://doi.org/10.18653/V1/2020.SIGDIAL-1.18
https://doi.org/10.1109/CVPR42600.2020.00932
https://doi.org/10.1109/CVPR42600.2020.00932
http://proceedings.mlr.press/v119/guo20c.html
http://proceedings.mlr.press/v119/guo20c.html
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.182
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.182
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.182
https://doi.org/10.3115/V1/P15-1067
https://doi.org/10.3115/V1/P15-1067
https://aclanthology.org/2022.aacl-main.49
https://aclanthology.org/2022.aacl-main.49
https://aclanthology.org/2022.aacl-main.49

Ciaran McCreesh, Patrick Prosser, and James Trimble.
2020. The glasgow subgraph solver: Using con-
straint programming to tackle hard subgraph isomor-
phism problem variants. In Graph Transformation
- 13th International Conference, ICGT 2020, Held
as Part of STAF 2020, Bergen, Norway, June 25-26,
2020, Proceedings, volume 12150 of Lecture Notes
in Computer Science, pages 316-324. Springer.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi.
2021a. Descent-to-delete: Gradient-based methods
for machine unlearning. In Algorithmic Learning
Theory, pages 931-962. PMLR.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi.
2021b. Descent-to-delete: Gradient-based meth-
ods for machine unlearning. In Algorithmic Learn-
ing Theory, 16-19 March 2021, Virtual Conference,
Worldwide, volume 132 of Proceedings of Machine
Learning Research, pages 931-962. PMLR.

CA OAG. 2021. Ccpa regulations: Final regulation text.
Office of the Attorney General, California Depart-
ment of Justice, page 1.

Thomas Pellissier Tanon, Gerhard Weikum, and Fabian
Suchanek. 2020. Yago 4: A reason-able knowledge
base. In The Semantic Web: 17th International Con-
ference, ESWC 2020, Heraklion, Crete, Greece, May
31-June 4, 2020, Proceedings 17, pages 583-596.
Springer.

Miao Peng, Ben Liu, Qiangian Xie, Wenjie Xu, Hua
Wang, and Min Peng. 2022. Smile: Schema-
augmented multi-level contrastive learning for knowl-
edge graph link prediction. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2022,
Abu Dhabi, United Arab Emirates, December 7-11,
2022, pages 4165—4177. Association for Computa-
tional Linguistics.

Protection Regulation. 2016. Regulation (eu) 2016/679
of the european parliament and of the council. Regu-
lation (eu), 679:2016.

Anwar Said, Tyler Derr, Mudassir Shabbir, Waseem
Abbas, and Xenofon D. Koutsoukos. 2023. A survey
of graph unlearning. CoRR, abs/2310.02164.

Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and
Jianzhong Li. 2012. Efficient subgraph matching on
billion node graphs. arXiv preprint arXiv:1205.6691.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei
Li, Xiang Song, Jinjing Zhou, Chao Ma, Ling-
fan Yu, Yu Gai, Tianjun Xiao, Tong He, George
Karypis, Jinyang Li, and Zheng Zhang. 2019. Deep
graph library: A graph-centric, highly-performant
package for graph neural networks. arXiv preprint
arXiv:1909.01315.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada,
pages 1112-1119. AAAI Press.

Wiki. 2024. Knowledge graph — Wikipedia, the free
encyclopedia. [Online; accessed 2-June-2024].

Wikipedia. 2024. Rdf schema — Wikipedia, the free
encyclopedia. [Online; accessed 13-June-2024].

Jiancan Wu, Yi Yang, Yuchun Qian, Yongduo Sui, Xi-
ang Wang, and Xiangnan He. 2023a. GIF: A gen-
eral graph unlearning strategy via influence function.
In Proceedings of the ACM Web Conference 2023,
WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May
2023, pages 651-661. ACM.

Kun Wu, Jie Shen, Yue Ning, Ting Wang, and
Wendy Hui Wang. 2023b. Certified edge unlearning
for graph neural networks. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD 2023, Long Beach, CA, USA,
August 6-10, 2023, pages 2606-2617. ACM.

Hongbin Ye, Honghao Gui, Xin Xu, Xi Chen, Huajun
Chen, and Ningyu Zhang. 2023. Schema-adaptable
knowledge graph construction. In Findings of the
Association for Computational Linguistics: EMNLP
2023, Singapore, December 6-10, 2023, pages 6408—
6431. Association for Computational Linguistics.

3546

https://doi.org/10.1007/978-3-030-51372-6_19
https://doi.org/10.1007/978-3-030-51372-6_19
https://doi.org/10.1007/978-3-030-51372-6_19
http://proceedings.mlr.press/v132/neel21a.html
http://proceedings.mlr.press/v132/neel21a.html
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.307
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.307
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.307
https://doi.org/10.48550/ARXIV.2310.02164
https://doi.org/10.48550/ARXIV.2310.02164
https://doi.org/10.1609/AAAI.V28I1.8870
https://doi.org/10.1609/AAAI.V28I1.8870
https://en.wikipedia.org/w/index.php?title=Knowledge_graph&oldid=1193493935
https://en.wikipedia.org/w/index.php?title=Knowledge_graph&oldid=1193493935
https://en.wikipedia.org/w/index.php?title=RDF_Schema&oldid=1227368958
https://en.wikipedia.org/w/index.php?title=RDF_Schema&oldid=1227368958
https://doi.org/10.1145/3543507.3583521
https://doi.org/10.1145/3543507.3583521
https://doi.org/10.1145/3580305.3599271
https://doi.org/10.1145/3580305.3599271
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.425
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.425

	Introduction
	Proposed Method
	Unlearning with Schema
	Delete Schema

	Experiments
	Conclusion

