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Abstract

In the Multimodal Sentiment Analysis task,
most existing approaches focus on extract-
ing modality-consistent information from raw
unimodal data and integrating it into multi-
modal representations for sentiment classifica-
tion. However, these methods often assume
that all modalities contribute equally to model
performance, prioritizing the extraction and
enhancement of consistent information, while
overlooking the adverse effects of noise caused
by modality inconsistency. In contrast to these
approaches, this paper introduces a novel ap-
proach namely text-guided Hierarchical Noise
Eliminator (t-HNE). This model consists of
a two-stage denoising phase and a feature re-
covery phase. Firstly, textual information is
injected into both visual and acoustic modali-
ties using an attention mechanism, aiming to
reduce intra-modality noise in the visual and
acoustic representations. Secondly, it further
mitigates inter-modality noise by maximizing
the mutual information between textual repre-
sentations and the respective visual and acous-
tic representations. Finally, to address the po-
tential loss of modality-invariant information
during denoising, the fused multimodal repre-
sentation is refined through contrastive learning
with each unimodal representation except the
textual. Extensive experiments conducted on
the CMU-MOSI and CMU-MOSEI datasets
demonstrate the efficacy of our approach.

1 Introduction

In recent years, smartphones have evolved rapidly.
Mobile social media has experienced unprece-
dented expansion, witnessing a significant shift
from unimodal data to multimodal data, including
but not limited to short videos, tweets and memes.
Coupled with the tremendous strides in multimodal
machine learning technologies, everything from
traditional natural language processing tasks to the
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Visual

Textual Anyhow It was really good.

Surprise😮: 50.897%

Fear😱: 42.146%

Others: 6.957%

Negative

Positive

Figure 1: A sample from the CMU-MOSI dataset.
The facial emotion recognition results are derived from
MEGVII Face++ platform.

now-trendy large language models are increasingly
becoming multimodal. This is attributed to the
fact that multimodal data always involves richer
and more precise human sentiment information
than unimodal data. Leveraging this multimodal
data can enhance machine understanding of human
viewpoints and behaviors. Consequently, multi-
modal sentiment analysis (MSA), a process that
explores and comprehends sentiment information
within multimodal data, is currently a prevalent
research topic.

Generally, in the conventional MSA task dis-
cussed in this paper, most of the sentiment polarity
information contained in visual and acoustic modal-
ity in the same video fragment is consistent with
that in textual modality, which is termed modality-
consistent information. The core process of MSA
is to extract these modality-consistent features from
the input raw unimodal data and fuse them into a
multimodal representation (Gandhi et al., 2023) for
sentiment classification, and existing works (Wang
et al., 2023; Huang et al., 2023; Lu et al., 2024)
have recognized the significance of this process.

However, the aforementioned process may also
introduce noise into the fused representation. As
illustrated in Figure 1, while the overall sentiment
polarity of the video is positive, the images are
machine-recognized as conveying negative senti-
ment. This indicates that the visual modality con-
tains a substantial amount of negative sentiment
features. We define this type of modality-specific
feature, which contradicts the overall sentiment po-

https://www.faceplusplus.com.cn/emotion-recognition/
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larity, as intra-modality noise. Additionally, the
sentiment polarity of the text "Anyhow it was really
good." is clearly positive. If the textual representa-
tion is fused directly with the visual representation
without proper processing, the sentiment consis-
tency between the two modalities may conflict. We
refer to this conflict between modalities as inter-
modality noise. If the fused representation, con-
taining such noise, is used directly for sentiment
classification, the performance of the model will
be significantly impacted.

Han et al. (2021) tried to address the noise is-
sue in multimodal sentiment analysis by propos-
ing a denoising method based on mutual informa-
tion maximization. However, their approach does
not differentiate between intra-modality and inter-
modality noise, leading to a less targeted and in-
complete denoising process. Building upon this, in
this paper, we propose the t-HNE model, a text-
guided Hierarchical Noise Eliminator, which intro-
duces a two-stage denoising phase followed by a
feature recovery phase. Leveraging the observation
that text modality typically contains minimal intra-
modality noise, we first construct a cross-modal
attention network to effectively reduce intra-modal
noise in other modalities. Next, we apply a mutual
information maximization network to eliminate
inter-modality noise. Finally, to recover sentiment-
related, modality-invariant information that may
be lost during the denoising process, we incorpo-
rate a contrastive learning network that aligns the
fused representation with the unimodal representa-
tions. This hierarchical approach ensures a more
comprehensive and targeted denoising process for
multimodal sentiment analysis. Our main contribu-
tions are summarized as follows:

1. We propose a text-guided Hierarchical Noise
Eliminator for multimodal sentiment analysis.
This model effectively eliminates the afore-
mentioned intra-modality and inter-modality
noise.

2. We construct a contrastive learning network
between the fused representation and the uni-
modal representations, which effectively miti-
gates the feature loss incurred during the de-
noising process.

3. We conduct comprehensive experiments on
two publicly available datasets and obtained
superior results over many recent models.

2 Related Work

In this section, we briefly overview some related
works in cross-modality interaction and contrastive
representation learning on MSA task.

2.1 Cross-modality Interaction

Various methods have been proposed to model
cross-modal interactions (Barezi and Fung, 2019),
including the Tensor Fusion Network (Zadeh et al.,
2017), which employs the Cartesian product of
different modalities to capture both intra- and
inter-modality interactions. More recent research
has gravitated towards transformer-based architec-
tures for integrating multimodal signals through
cross-modal attention mechanisms. The MULT
model (Tsai et al., 2019b) pioneered this approach
by introducing directional pairwise cross-modal at-
tention, enabling interactions between modalities
at distinct time steps and adapting one modality
to another. Subsequent studies have further ex-
plored cross-modal attention (Huang et al., 2023;
Yin et al., 2024), offering valuable insights into
the effective processing of multimodal data. In
this paper, we introduce an attention mechanism
between the textual modality and other modalities.
By leveraging the low intra-modality noise in tex-
tual representations, the text modality serves as
a guide to refine the representations of the other
modalities.

2.2 Contrastive Representation Learning

Contrastive learning has achieved great success
in representation learning by contrasting positive
pairs against negative pairs (Akbari et al., 2021;
Hassani and Khasahmadi, 2020; Chen et al., 2020).
This framework has also been widely used in MSA
tasks. Liu et al. (2021) proposed TupleInfoNCE
loss to avoid the weak modality being ignored
in the multimodal representation. Hycon (Mai
et al., 2023) simultaneously performed intra-/inter-
modality constastive learning and semi-contrastive
learning to enhance the inter-sample and inter-class
relationships. ConFEDE (Yang et al., 2023) en-
hanced the multimodal information by jointly per-
forms contrastive representation learning and con-
trastive feature decomposition. In this paper, a
contrastive learning network between the fused rep-
resentation and the unimodal representations (ex-
cept textual) is constructed to mitigate the feature
loss incurred during the denoising process.
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3 Method

3.1 Task Definition

In multimodal sentiment analysis (MSA) tasks, the
model processes unimodal raw sequences XM ∈
RlM×dM , where each sequence is extracted from
the same video fragment. Here, lM represents the
sequence length, and dM denotes the dimension-
ality of the representation vector for modality M .
In this work, we consider M ∈ {t, v, a}, where
t, v, and a correspond to the textual, visual, and
acoustic modalities, respectively, derived from the
given datasets. The primary objective of our model
is to effectively extract and integrate task-relevant
information from these modality-specific represen-
tations, thereby generating a unified representation.
This integrated representation is then used to make
accurate predictions of the target sentiment label y,
which reflects the intensity of the sentiment.

3.2 Overall Architecture

Figure 2 shows the overall architecture of t-HNE.
The raw unimodal inputs are first processed into
numerical sequential vectors with feature extractor
(OpenFace for visual and Librosa for acoustic with
no parameters to train) and tokenizer (for textual).
Then they are encoded into individual unit-length
representations. The model then performs a two-
stage denoising and a feature recovery in the multi-
modal feature fusion process. In the fusion process,
a fusion network of stacked linear-activation lay-
ers transforms the unimodal representations into
the fusion results F , which is then passed through
a regression multilayer perceptron (MLP) for fi-
nal predictions. In the denoising process, the first
phase employs cross-modality attention, allowing
the textual representation to guide the generation
of visual and acoustic representations, thereby re-
ducing intra-modality noise. In the second phase,
inter-modality noise is mitigated by maximizing
the mutual information between modalities. In
the feature recovery process, to restore and refine
the modality-consistent information that may have
been lost during the denoising process, contrastive
learning is performed between the fused represen-
tation F and the individual unimodal features from
the visual and acoustic modality. The three parts
work concurrently to produce task losses for back-
propagation, through which the model learns to
infuse the task-related information into fusion re-
sults as well as improve the accuracy of predictions
in the main task.

3.3 Modality Encoding

Following previous works (Han et al., 2021; Yu
et al., 2021), we first encode the multimodal se-
quential input Xm into unit-length representations
hm. Specifically, for textual data, we utilize
BERT (Devlin et al., 2019) to encode the input
sentence, extracting the head embedding from the
output of the final layer as ht. For the visual and
acoustic modalities, we employ modality-specific
unidirectional LSTMs (Hochreiter, 1997) to cap-
ture the temporal features of each respective modal-
ity:

ht = BERT
(
Xt; θ

BERT
t

)
hm = LSTM

(
Xm; θLSTM

m

)
m ∈ {v, a}.

(1)

3.4 Text-guided Intra-modality Denoising

This denoising occurs between the textual modality
t and the other two modality pairs {t,m}, where
m ∈ {v, a}. We utilize a cross-modality attention
mechanism to inject more sentiment-aware textual
features into the visual and acoustic features to
reduce their intra-modality noise. Specifically, the
textual representation ht is used as the query, while
the representation of the other modality hm serves
as both the key and value. The new representation
of modality m after the text injection is computed
as follows:

hm←t = softmax(
htWmh⊤m√

dt
)hm, (2)

where Wm ∈ Rdt×dm is a trainable parameter.

3.5 MI Maximization Based Inter-modality
Denoising

Existing works (Arandjelovic and Zisserman, 2017;
Diao et al., 2024, 2025) proved that for a modality
representation pair X,Y that obtained from a sin-
gle video clip, there is a certain correlation between
them. Formally, mutual information is defined as
I(X,Y ) = H(Y ) − H(Y |X), where H(x) rep-
resents the differential entropy of x. Rearranging
the terms yields H(Y |X) = H(Y ) − I(X,Y ),
which indicates that the larger I(X,Y ), the greater
the reduction in entropy brought by introducing
X , making Y more certain and more correlated
with X . Therefore, maximizing I(hm←t, ht) al-
lows the sentiment-sensitive textual representation
to reduce inter-modality noise between modality
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Figure 2: The overall architecture of the t-HNE model.

m and the modality t. Existing work (Han et al.,
2021) used the BA-bound (Barber and Agakov,
2003) to instead of computing MI directly. This
lower bound approximates the truth conditional
distribution p(y|x) with a variational counterpart
q(y|x):

I(X;Y ) =Ep(x,y)

[
log

q(y|x)
p(y)

]
+

Ep(y) [KL(p(y|x)∥q(y|x))]
≥Ep(x,y) [log q(y|x)] +H(Y )

≜IBA.

(3)

This lower bound is tight when q(y|x) = p(y|x).
However, it is tractable only if X is data and Y is
representation. Here hm←t and ht are both a rep-
resentation. The Gaussian Mixture Model (GMM)
can be used to estimate the H(Y ) and makes the
BA-bound tractable, but the estimation is not com-
pletely accurate, which fundamentally limiting the
performance of the model.

To calculate a more accurate MI lower bound,
we use the KL-divergence based lower bound Deep
InfoMax (DIM) (Hjelm et al., 2019):

I(X;Y ) =KL(p(x, y)||p(x)p(y))
≥supθ(Ep(x,y)[Tθ(x, y)−

logEp(x)p(y)e
Tθ(x,y)]])

=supθ(Ep(x,y)[Tθ(x, ϵ(x))−

logEp(x)p(y)[e
Tθ(x,ϵ(x))]]),

(4)

where ϵ(x) is the encoder and T is the correspond-
ing classifier. This lower bound eliminates the in-
tractable H(Y ), so that the entire MI maximization

process can be accurately completed by neural net-
works. Building on the idea that textual modality
is more sentiment-aware, we optimize the bounds
for two modality pairs: {t, v} and {t, a}. In each
pair, we treat t as X and the other as Y in for-
mula 4. And we use a simple MLP as the encoder,
and treat all other representations of m modality
in the same batch H̃i

m = Hm \ {him} as nega-
tive samples. The Noise-Contrastive Estimation
(NCE) (Gutmann and Hyvärinen, 2010) loss func-
tion of this part can be described as:

ltm = −EH

[
log

Tθ(h
i
m←t, ht)∑

hj
m←t∈H̃m

Tθ(h
i
m←t, ht)

]
,

(5)
. where m ∈ {v, a}.

3.6 Feature Recovery

The text-guided denoising process, while effective
in eliminating intra-modality sentiment-irrelevant
information and inter-modality inconsistency, may
also lead to the loss of modality-invariant features
within the visual and acoustic modalities. These
lost features are fully present in the afore-denoised
representations. Therefore, we construct a con-
trastive learning network between the fused re-
sults F and the afore-denoised representations hv
and ha. Specifically, we require the fused results
F = FN(Xt, Xv, Xa) to predict the unimodal rep-
resentations, excluding the textual modality. We
suppose that this training process could further re-
inforce the dominance of textual information in
the fused representation, making it difficult to re-
cover the features lost from other modalities. This
insight will be further discussed with experimen-
tal evidence in Section 5.2. Same as what Han
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et al. (2021) did, we use the Contrastive Predictive
Coding (CPC) scores to gauge their correlation:

Gϕ(F ) =
Gϕ(F )

∥Gϕ(F )∥2
, hm =

hm
∥hm∥2

s(F, hm) = exp

(
hm

(
Gϕ(F )

)T
)
,

(6)

where Gϕ is a neural network with parameters ϕ
that generates the prediction of hm from F , and
m ∈ {v, a}. The loss function used here is similar
to the one in Section 3.5:

lfm = −EH

[
log

s(F, him)∑
hj
m∈H̃m

s(F, hjm)

]
. (7)

3.7 Model Training

In each iteration, the aforementioned denoising and
recovery losses are incorporated into the primary
task loss as auxiliary components. The main task
loss is defined as:

ltask = MAE(ŷ, y), (8)

where ŷ represents the final prediction, and y de-
notes the ground truth label. Here, MAE refers
to the mean absolute error loss, a widely adopted
metric in regression tasks. Finally, we calculate
the weighted sum of all these losses to obtain the
overall loss:

L = ltask + α(lta + ltv) + β(lfa + lfv), (9)

where α, β are hyper-parameters. Summarized
trainning algorithm is shown in Algorithm 1.

Algorithm 1: text-guided Hierarchical Noise

Eliminator (t-HNE)
Input: Dataset D = {(Xt, Xv, Xa), Y }, α, β,

learning rate η
Output: Prediction ŷ
for each training epoch do

for minibatch B = {(Xi
t , X

i
v, X

i
a)}Ni=1 sampled

from D do
Encode Xi

m to hi
m as (1)

Compute the text-guided unimodal
representation hi

m←t as (2)
Compute ltm as (5)
Produce fused results
Fi = FN(Xi

t , X
i
v, X

i
a) and predictions ŷ

Compute lfm as (7)
Compute L as (9)
Update all parameters in the model

end
end

4 Experiments

In this section, some experimental details including
datasets, baselines, feature extraction toolkits, and
results are presented.

4.1 Datasets and Metrics
We conduct our experiments on two widely used
benchmark datasets in MSA: CMU-MOSI (Zadeh
et al., 2016) and CMU-MOSEI (Zadeh et al., 2018).
The CMU-MOSI dataset contains 2,199 video ut-
terances extracted from 93 videos, featuring 89
distinct speakers expressing opinions on various
topics of interest. Each video segment is anno-
tated with sentiment scores ranging from -3 to +3,
capturing both the sentiment polarity (positive or
negative) and its intensity (based on the absolute
value). CMU-MOSEI extends CMU-MOSI by sig-
nificantly increasing the dataset’s size, comprising
23,454 movie review clips sourced from YouTube,
and follows the same sentiment annotation scheme
as CMU-MOSI. Detailed split specifications of the
two datasets are shown in Table 1.

Split CMU-MOSI CMU-MOSEI
Train 1284 16326

Validation 229 1871
Test 686 4659
All 2199 22856

Table 1: Details of the datasets.

We adopt the same set of evaluation metrics
that has been consistently employed in previous re-
search. These include: mean absolute error (MAE),
which calculates the average absolute difference
between predicted values and ground truth; Pear-
son correlation (Corr), used to assess the linear
relationship between predictions and true values;
seven-class classification accuracy (Acc-7), which
represents the percentage of predictions that fall
within the same interval as their corresponding
ground truth, across the seven sentiment intervals
ranging from -3 to +3; binary classification accu-
racy (Acc-2), and the F1 score, both of which are
computed for binary sentiment classification tasks
(positive/negative and non-negative/negative).

4.2 Baselines
To evaluate the relative performance of t-HNE,
we benchmark our model against several well-
established baselines. These include pure learning-
based models such as TFN (Zadeh et al., 2017),
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LMF (Liu et al., 2018), MFM (Tsai et al., 2019b),
and MulT (Tsai et al., 2019a). Additionally, we
consider methods that involve feature space ma-
nipulation, including ICCN (Sun et al., 2020) and
MISA (Hazarika et al., 2020).

Furthermore, we compare our model against
more recent and competitive baselines, such as
MAG-BERT (Rahman et al., 2020), a BERT-based
approach, MMIM (Han et al., 2021), Self-MM (Yu
et al., 2021), a multi-task learning based approach,
MMIM (Han et al., 2021), the inspiration of t-HNE,
ConFEDE (Yang et al., 2023), a contrastive learn-
ing based model, and InfoEnh (Xie et al., 2024),
an irrelevant data filter (i.e. a noise eliminator) for
the MSA. Details of the baselines are introduced in
Appendix A.

4.3 Settings and Results
Experimental Settings In all experiments, we
utilize unaligned raw data following the approach
of Amos et al. (2016). For extracting visual and
acoustic features, we employ OpenFace (Degottex
et al., 2014) and Librosa (McFee et al., 2015), two
widely used toolkits for feature extraction that have
been commonly adopted in prior works. Our model
was trained on a single RTX 3090 GPU, and we
conducted a grid search to identify the optimal
hyper-parameters.

Hyperparameter Settings We perform a grid-
search for the best set of hyper-parameters: batch
size in {32, 64}, η in {5e-4, 1e-3, 5e-3}, α, β in
{0.05, 0.1, 0.3}, hidden dim in {32, 64}, gradi-
ent clipping value is fixed at 5.0, learning rate for
BERT fine-tuning is 5e-5, BERT embedding size
is 768 and fusion vector size is 128. The hyperpa-
rameters are given in Table 2.

Item CMU-MOSI CMU-MOSEI
batch size 32 64
learning rate η 1e-3 5e-4
α 0.3 0.1
β 0.1 0.05
V-sLSTM hidden dim 32 64
A-sLSTM hidden dim 32 16
gradient clip 5.0 5.0

Table 2: Hyperparameters for best performance.

Summary of the Results. Following prior works,
we trained and evaluated our model five times with
consistent hyper-parameter settings, and the aver-
age performance is presented in Table 3. Experi-
mental results show that t-HNE achieves superior

results relative to several baseline methods on all
metrics except Acc-7 (This will be further ana-
lyzed in Section 5.2). Notably, t-HNE outperforms
both MMIM and MMIM-InfoEnh across all eval-
uation metrics, indicating the effectiveness of our
denoising approach. And t-HNE also outperforms
ConFEDE-InfoEnh, further illustrates that the text-
guided denoising is more suitable for MSA tasks.
These findings provide preliminary evidence sup-
porting the efficacy of our method for multimodal
sentiment analysis (MSA) tasks.

4.4 Ablation Study

We conduct ablation experiments to evaluate the
effectiveness of various components of the t-HNE
model. Table 4 presents the experimental re-
sults. For simplicity, we denote "text-guided intra-
modality denoising" (described in Section 3.4) as
"DeNo1", "MI maximization based inter-modality
denoising" (described in Section 3.5) as "DeNo2",
and "feature recovery" as "Re" (described in Sec-
tion 3.6). Experimental results show that remov-
ing either stage of the denoising process leads to
a decline in model performance, indicating that
both stages contribute to effective noise elimination.
The performance degradation is more pronounced
when the feature recovery stage is removed, sug-
gesting that the denoising process does indeed re-
sult in the loss of valuable features.

5 Further Analysis

To further explain why the method is effective, we
further analyze the details of the model in this sec-
tion.

Firstly, beased on the UAT model and the pro-
posed

5.1 Case Study

We adopt the same approach as MMIM to con-
duct the case study. Specifically, for each case, we
present the model’s prediction, ground truth, and
the corresponding raw input data (visual and acous-
tic modalities illustrated textually), along with three
CPC scores (note that s(F, hm) is not involved in
model training but can still be computed). The re-
sults for t-HNE and MMIM on the same four cases
are provided in Table 5 to highlight the effective-
ness of text guidance.

It is evident that, under the influence of textual
guidance, the fused features of t-HNE are most
closely aligned with the text features across all four
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models♢
CMU-MOSI CMU-MOSEI

MAE↓ Corr↑ Acc-7↑ Acc-2↑ F1↑ MAE↓ Corr↑ Acc-7↑ Acc-2↑ F1↑

TFN† 0.901 0.698 34.9 -/80.8 -/80.7 0.593 0.700 50.2 -/82.5 -/82.1
LMF† 0.917 0.695 33.2 -/82.5 -/82.4 0.623 0.677 48.0 -/82.0 -/82.1
MFM† 0.877 0.706 35.4 -/81.7 -/81.6 0.568 0.717 51.3 -/84.4 -/84.3
ICCN† 0.862 0.714 39.0 -/83.0 -/83.0 0.565 0.713 51.6 -/84.2 -/84.2
MulT† 0.861 0.711 - 81.5/84.1 80.6/83.9 0.580 0.703 - -/82.5 -/82.3

MAG-BERT† 0.731 0.789 - 82.5/84.3 82.6/84.3 0.539 0.753 - 83.8/85.2 83.7/85.1
MISA‡ 0.796 0.766 42.51 80.49/81.88 80.47/81.98 0.571 0.723 52.15 82.54/84.18 82.54/83.86

Self-MM‡ 0.720 0.789 45.68 82.33/84.75 82.71/84.86 0.536 0.758 53.45 82.49/84.88 82.51/84.91
MMIM‡ 0.708 0.796 46.25 82.81/84.95 82.97/85.05 0.532 0.765 53.93 82.29/85.78 82.38/85.86

MMIM-InfoEnh‡ 0.698 0.808 46.77 84.37/85.49 84.42/85.58 0.524 0.776 54.16 83.27/86.24 83.36/84.40
ConFEDE‡ 0.695 0.806 48.62 84.43/86.26 84.52/86.32 0.528 0.778 54.20 84.48/86.56 84.60/86.72

ConFEDE-InfoEnh‡ 0.683 0.805 49.25 84.57/86.65 84.60/86.74 0.520 0.785 55.38 84.78/86.98 84.82/87.01

t-HNE(ours) 0.680 0.810 47.04 85.02/87.03 84.98/87.01 0.520 0.789 54.05 85.20/87.14 85.32/87.59

Table 3: Results on CMU-MOSI and CMU-MOSEI; ♢: all models use BERT as the text encoder; †: from Han
et al. (2021); ‡: from Xie et al. (2024). For Acc-2 and F1, we have two sets of non-negative/negative (left) and
positive/negative (right) evaluation results. Best results are marked in bold.

MAE↓ Corr↑ Acc-7↑ Acc-2↑ F1↑

0.520 0.789 54.05 85.20/87.14 85.32/87.59

MAE↓ Corr↑ Acc-7↑ Acc-2↑ F1↑

0.533 0.754 54.75 82.42/84.65 82.44/84.58

(a) (b)

Figure 3: Training loss curves and experimental results before (a) and after (b) model adjustment. All experiments
in this section use the CMU-MOSEI dataset.

Description MAE↓ Corr↑ Acc-7↑ Acc-2↑ F1↑

t-HNE 0.520 0.789 55.77 85.20/87.14 85.32/87.59

w/o DeNo1 0.528 0.774 54.15 84.45/86.37 84.50/86.15
w/o DeNo2 0.525 0.776 54.18 83.76/86.30 83.84/86.35

w/o Re 0.536 0.760 53.35 82.35/85.00 82.51/84.86

Table 4: Ablation study of t-HNE on CMU-MOSEI.
w/o x denotes a variant model without part x.

cases (since the sft is the biggest). This allows
t-HNE to outperform MMIM in case (C) by mak-
ing a more accurate prediction. However, in case
(D), where the sentiment conveyed by the textual
modality starkly contrasts with that of the other
modalities, t-HNE is more likely to make incor-

rect predictions. In more typical scenarios, such
as cases (A) and (B), the feature recovery stage en-
ables t-HNE to prioritize the textual modality with-
out neglecting the sentiment features from other
modalities, leading to comparable performance.

5.2 Loss Tracing and Model Adjustment

Compared to binary sentiment classification, emo-
tional features present in the visual and acoustic
modalities play a more critical role in multi-class
sentiment classification. Whether the model suc-
cessfully learns these features directly impacts the
performance of multi-class sentiment classification.
Therefore, after observing the poor performance of
t-HNE on the Acc-7 metric, we hypothesize that
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Case t-HNE MMIM
Textual Visual Acoustic sft/sfv/sfa Pred sft/sfv/sfa Pred Truth

(A)
We’ll pick it up from here
in the next video in this series.

Smile
Slightly rising tone
Normal volume

0.82/0.70/0.52 +0.6603 0.67/0.96/0.43 +0.6663 +0.6667

(B)
I’d probably only give it
a two out of five stars.

Frown
Peaceful tone
Normal volume

0.85/0.45/0.21 -1.7667 0.85/0.96/0.36 -1.6642 -1.6667

(C) Anyhow it was really good.
Staring wide-eyed
mouth agape

Peaceful tone
Normal volume

0.96/0.23/0.25 +2.4 0.83/0.80/0.40 +1.1 +2.4

(D)
I’m sorry, on the scale of one
to five I would give this a five.

Turn head
Looks happy

High pitch on "five" 0.88/0.35/0.42 -2.6667 0.83/0.71/0.54 -2.0023 +2.6667

Table 5: Case study of t-HNE and MMIM. sfm denotes the CPC score s(F, hm). The Highest scores are highlighted
in bold.

the guidance from the textual modality may have
been overly dominant. To verify this hypothesis,
we tracked the changes in all loss functions during
training. The visualized results are presented in
Figure 3(a). As shown, fluctuations of ltm are more
pronounced, indicating that the overall loss L is
heavily influenced by ltm. This loss is correspond
to the process of maximizing mutual information
between the textual modality and other modalities
during the denoising process, partially confirming
our hypothesis.

To address this issue, we first reduced the weight
of ltm in the L (α : 0.1 → 0.05). Then, to fur-
ther minimize the influence of the textual modality
on the visual and acoustic modalities, we added
the original features hm of the visual and acoustic
modalities back into hmt:

hm←t = softmax(
htWmh⊤m√

dt
)hm + hm. (10)

The resulting changes in loss are shown in Fig-
ure 3(b). While the Acc-7 performance improved
significantly, other metrics declined due to the con-
siderable weakening of the textual modality’s guid-
ance. Unfortunately, we have not yet found a vari-
ant model of t-HNE that performs well across all
metrics, including Acc-7.

6 Limitation

Despite the encouraging results of our study, there
are several limitations that warrant attention, high-
lighting areas for future improvement and investi-
gation. Firstly, our model is unable to consistently
outperform other baselines across both binary and
seven-class sentiment classification tasks. Analy-
sis reveals that the level of textual guidance sig-
nificantly impacts the model’s performance in the
seven-class classification, indicating that we have
yet to strike an optimal balance between text denois-
ing and multimodal fusion. Secondly, our model

does not achieve superior performance across all
case types. While this may partly stem from the
inherent characteristics of the dataset, it also points
to certain limitations of the method itself. Finally,
due to constraints in computational resources, we
employed the most straightforward network archi-
tecture for each component of the model. This
likely limits the overall performance of the model.
We hope that future research will address these
limitations, thereby improving the robustness and
applicability of our proposed approach.

7 Conclusion

In this paper, we introduce t-HNE, a novel ap-
proach that integrates a two-stage denoising mech-
anism and feature recovery within a multimodal
fusion pipeline for the MSA task. The model is
centered on textual features. Initially, the text repre-
sentation is employed to perform cross-modality at-
tention with the visual and acoustic representations,
effectively mitigating intra-modality noise in both
the visual and acoustic modalities, resulting in re-
fined unimodal representations. Subsequently, we
maximize the mutual information between the text
representation and those of the other two modal-
ities to eliminate inconsistent information across
modalities, thereby reducing inter-modality noise.
Lastly, the fused representation is leveraged for
contrastive learning with the visual and acoustic
representations to recover sentiment features that
may have been lost during the denoising process.
We further enhance our analysis by visualizing the
loss patterns and showcasing representative exam-
ples to provide deeper insights into the model’s
behavior. We believe this approach will spark fur-
ther interest in multimodal representation learning
and continue to inspire future advancements in the
field.
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A Details of Baselines

TFN (Zadeh et al., 2017): The Tensor Fusion Net-
work separates unimodal representations into ten-
sors through a three-fold Cartesian product. Fusion
is achieved by calculating the outer product of these
tensors.
LMF (Liu et al., 2018): Low-rank Multimodal Fu-
sion decomposes high-order tensors into multiple
low-rank factors, enabling efficient fusion through
factorized representations.
MFM (Tsai et al., 2019b): The Multimodal Factor-
ization Model integrates an inference network with
a generative network, utilizing modality-specific
latent factors to facilitate fusion through both re-
construction and discrimination losses.
MulT (Tsai et al., 2019a): The Multimodal Trans-
former employs a combination of unimodal and
crossmodal transformer networks, leveraging atten-
tion mechanisms to achieve fusion.
ICCN (Sun et al., 2020): Interaction Canonical
Correlation Network optimizes fusion by minimiz-
ing the canonical correlation loss between modality
pairs, enhancing interaction between modal repre-
sentations.
MISA (Hazarika et al., 2020): Modality-Invariant
and -Specific Representations map features into
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two distinct spaces with specific constraints, per-
forming fusion on these projected features.
MAG-BERT (Rahman et al., 2020): The Multi-
modal Adaptation Gate for BERT introduces an
alignment gate into the standard BERT model to
refine fusion during adaptation.
SELF-MM (Yu et al., 2021): Self-supervised
Multi-task Learning assigns each modality its own
unimodal task with automatically generated labels,
adjusting gradient back-propagation to enhance
overall fusion.
MMIM (Han et al., 2021): The Multimodal Mutual
Information Maximization focuses on estimate the
MI by the GMM and maximize the MI on both
feature level and fusion level.
ConFEDE (Yang et al., 2023): The Contrastive
FEature DEcomposition is a contrastive learning
based framework for MSA. It enhances multimodal
representations by simultaneously conducting con-
trastive representation learning and contrastive fea-
ture decomposition, thereby improving the quality
of the learned multimodal features.
InfoEnh (Xie et al., 2024): An Information En-
hancement framework for the MSA, based on in-
formation bottleneck and optimal transport. We
select two variant baselines: MMIM-InfoEnh, due
to its strong relevance to MMIM and our model,
and ConFEDE-InfoEnh, as it is the best-performing
model reported in the paper.


	Introduction
	Related Work
	Cross-modality Interaction
	Contrastive Representation Learning

	Method
	Task Definition
	Overall Architecture
	Modality Encoding
	Text-guided Intra-modality Denoising
	MI Maximization Based Inter-modality Denoising
	Feature Recovery
	Model Training

	Experiments
	Datasets and Metrics
	Baselines
	Settings and Results
	Ablation Study

	Further Analysis
	Case Study
	Loss Tracing and Model Adjustment

	Limitation
	Conclusion
	Details of Baselines

