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Abstract

Advancements in language models (LMs) have
sparked interest in exploring their potential
as knowledge bases (KBs) due to their high
capability for storing huge amounts of fac-
tual knowledge and semantic understanding.
However, existing studies face challenges in
quantifying the extent of large-scale knowl-
edge packed into LMs and lack systematic
studies on LMs’ structured reasoning capabil-
ities over the infused knowledge. Addressing
these gaps, our research investigates whether
LMs can effectively act as large-scale KBs after
training over an expansive set of world knowl-
edge triplets via addressing the following three
crucial questions: (1) How do LMs of differ-
ent sizes perform at storing world knowledge
of different frequencies in a large-scale KB?
(2) How flexible are these LMs in recalling the
stored knowledge when prompted with natu-
ral language queries? (3) After training on the
abundant world knowledge, can LMs addition-
ally gain the ability to reason over such infor-
mation to infer new facts? Our findings indicate
that while medium-scaled LMs hold promise
as world knowledge bases capable of storing
and responding with flexibility, enhancements
in their reasoning capabilities are necessary to
fully realize their potential.1

1 Introduction

In recent years, the focus of language models (LMs)
has shifted from “language generation” to “task
solving”. Meanwhile, the scaling law (Kaplan et al.,
2020) and the emergent ability (Wei et al., 2022)
further push for training corpora and model archi-
tectures of larger scales. This results in many large
LMs that have shown good performances on var-
ious complex tasks. Existing studies have found
that LMs, after pre-training, can encode a large
amount of factual knowledge as well as implicit

1Our code and data are available at https://github.
com/hyanique/lmkb-at-scale.

linguistic knowledge from the general corpus, mak-
ing them a crucial component for tasks that require
natural language understanding (Bommasani et al.,
2022; Li et al., 2022a). This leads to the poten-
tial of using LMs as knowledge sources (Petroni
et al., 2019; AlKhamissi et al., 2022). Existing
studies mainly focus on probing (Li et al., 2022b;
Chen et al., 2022; Sung et al., 2021) and utilizing
(Roberts et al., 2020; Moiseev et al., 2022) LMs’
knowledge gained from pre-training. However, due
to knowledge imbalance, conflict, and noise in the
pre-trained corpora (Carlini et al., 2023; Razeghi
et al., 2022; Tänzer et al., 2022), LMs show defi-
ciencies when handling long-tail, less frequently
appeared knowledge (Kandpal et al., 2023). In ad-
dition, these large corpora are mostly represented
in free form without a clear specification of knowl-
edge, making it difficult to quantify how much
knowledge has been packed into the pre-trained
LMs, hence posing greater difficulties in evaluating
their reasoning ability over the learned knowledge.

To explicitly study how LMs handle diverse
world knowledge, we resort to knowledge bases
(KBs) which are commonly utilized in many
knowledge-intensive tasks such as dialogue (Li
et al., 2022c; Galetzka et al., 2021), question an-
swering (Baek et al., 2023; Saxena et al., 2020;
Qiu et al., 2020) and recommendation systems (Wu
et al., 2013). KBs are known for their ability to
compactly organize information on a large scale,
providing much cleaner and more balanced knowl-
edge than natural language corpora. However, most
existing solutions to knowledge-intensive tasks rely
on extra models to handle external KBs (Cordella
et al., 2004; Grohe and Schweitzer, 2020; Lan and
Jiang, 2020; Bhutani et al., 2019), leading to two
major drawbacks: the rigid structure of KBs lim-
its the flexibility of knowledge query formats, and,
the representations of KBs lie in a different embed-
ding space from the embeddings of the LMs thus
making it challenging to effectively combine them.

https://github.com/hyanique/lmkb-at-scale
https://github.com/hyanique/lmkb-at-scale
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Figure 1: A simple illustration of our study on LMs for world knowledge. Here, the dotted purple line indicates a
missing fact that can be deduced using the red line and blue line.

In this work, we propose to infuse Wikidata (Pel-
lissier Tanon et al., 2016), the largest world knowl-
edge KB to date, into LMs with minimal data pro-
cessing, and systematically investigate LMs’ poten-
tial as functional KBs from the aspects of storage
capacity, access flexibility and reasoning ability, as
illustrated in Fig. 1. Specifically, we aim to answer
the following research questions:
(RQ1) How fast and how well can LMs of dif-

ferent sizes memorize world knowledge of
different frequencies through training?

(RQ2) Are these LMs flexible in handling natural
language queries over their stored knowl-
edge, after being trained with structured
knowledge triplets?

(RQ3) How do these LMs reason over the stored
knowledge when inferring new knowledge
that does not exist in the KB?

We differentiate our work from existing studies
along this direction that (1) mainly target much
smaller KBs of popular facts (Heinzerling and Inui,
2021; Wang et al., 2021) that might largely overlap
with the internal pre-trained knowledge in LMs,
and hence inconclusive to demonstrate LMs’ ca-
pacity over the KB; (2) convert knowledge triplets
to synthetic sentences using manually curated tem-
plates (Heinzerling and Inui, 2021; Petroni et al.,
2019) which only works for a limited set of rela-
tions; (3) lack a systematic study on LMs’ capabil-
ity in performing KB tasks such as inferring new
facts using existing facts in KBs.

We start by proposing an efficient learning algo-
rithm based on importance sampling (Alain et al.,
2016; Katharopoulos and Fleuret, 2018; Zhang
et al., 2019) to train LMs to memorize knowledge
more efficiently. To answer (RQ1), we evaluate
the memorization capacity of LMs of different
sizes as well as their performances on both pop-

ular and long-tail world knowledge. We observe
that LMs are capable of memorizing information
from a large-scale KB, with larger models learning
faster. In addition, infrequent knowledge is more
challenging to memorize, irrespective of the size
of the LMs. We also realize that increasing the
size of LLaMA-2 from 7B to 13B doesn’t yield a
significant performance boost, suggesting that an
entry-level large LM is already capable of storing
the majority of world knowledge.

To answer (RQ2), we further finetune the trained
LMs using PopQA (Mallen et al., 2023), a natural
language QA dataset that requires long-tail Wiki-
data knowledge. With minimal finetuning, these
LMs demonstrate superior performance over their
counterpart, which are not trained on Wikidata KB.
This indicates the power of LMs in flexibly retriev-
ing and organizing long-tail knowledge, regardless
of the presentation form, unveiling their potential
for responding to various forms of user queries.

To answer (RQ3), we use a dataset published
by Veseli et al. (2023) containing factual knowl-
edge missing from Wikidata and further curate two
sets of missing facts focusing on inverse reasoning
(switching the positions of the subject and object)
and compositional reasoning (conjoining two rela-
tions to form a new one) to study LMs’ inherent
reasoning capabilities in addition to memorizing
existing facts. Our results show that LMs are ca-
pable of inferring missing entities from existing
knowledge to some extent via reasoning. However,
they struggle with inverse reasoning more often
than compositional reasoning, advocating for fur-
ther investigations and explorations. We also notice
that increasing the model size of the same model
family does not yield significant improvement; this
suggests that the true bottleneck of using LMs as
large-scale KBs is their ability to reason over such
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information, which calls for further improvement.
In conclusion, our study delves into the potential

of LMs over large-scale KBs using Wikidata and
systematically evaluates their capacity to store KB
knowledge, flexibility of query forms when access-
ing KB knowledge, and reasoning ability involved
when inferring facts amiss from the given KB. We
present the following key observations: (1) From
the perspective of packing large-scale KBs into
LMs, the LLaMA-2-7b model is sufficient when
it comes to capacity and scaling to LLaMA-2-13b
does not provide significant benefits; (2) In terms
of query flexibility, the performance gains are lim-
ited by the storage capacity of models. Increasing
model size has diminishing returns when storage
capacity is sufficient; (3) When using stored KB
knowledge to infer new facts, the type of reasoning
involved can lead to distinct performance patterns,
suggesting the underlying complexity for LMs to
effectively utilize stored information.

2 Related Work

2.1 Infusing Knowledge into LMs

The idea of using LMs as KBs was first intro-
duced by (Petroni et al., 2019), who demonstrated
that LMs can recall factual information to a cer-
tain extent. Since then, various studies have ex-
plored enhancing this capacity through techniques
such as fine-tuning and optimization for specific
downstream tasks like question answering (QA).
For instance, methods like salient span masking
(Montañés-Salas et al., 2022), augmented learning
objectives (Verga et al., 2020), and architectural
modifications (Yasunaga et al., 2022; Zhang et al.,
2021) have been proposed to improve the retrieval
of stored knowledge for open-domain QA tasks.
These studies often operate on a smaller subset of
world knowledge: LAMA (Petroni et al., 2019)
and WikiData5M (Wang et al., 2021) have been
prominent resources, but they are constrained in
scope, representing only a subset of larger, more
comprehensive KBs like Wikidata. In addition, pre-
vious studies have often employed template-based
synthetic sentences to represent knowledge triplets
(Heinzerling and Inui, 2021; Petroni et al., 2019),
which is limited in scope, covering only a narrow
set of relations.

2.2 Probing LMs for Existing Knowledge

Probing techniques have been a primary method
for extracting knowledge stored in LMs, given

that LMs are sensitive to input variations (Jiang
et al., 2020; Elazar et al., 2021). Many studies
have explored how syntactic variations in queries
can significantly alter the outputs of LMs (Longpre
et al., 2021). For instance, Li et al. (2022b) investi-
gated unsupervised methods for knowledge extrac-
tion in grounded conversation, while Alivanistos
et al. (2023) utilized prompt engineering and post-
processing to extract embedded knowledge from
LMs. Other studies focused on probing specific
knowledge types, such as commonsense (Davison
et al., 2019), metaphors (Chen et al., 2022), and
domain-specific knowledge like biomedical facts
(Sung et al., 2021).

3 Training LMs on Large-Scale KB

3.1 Wolrd Knowledge KB
A basic KB is a collection of facts in the form
of (subject, relation, object) triplets, for exam-
ple, Freebase (Bollacker et al., 2008) and DBPe-
dia (Auer et al., 2007). To study the memoriza-
tion capacity of LMs at a large scale, we consider
Wikidata (Pellissier Tanon et al., 2016), one of the
largest KBs to date that is actively maintained by
the community. Compared with pre-training cor-
pora, Wikidata contains abundant world knowledge
in a more compact and accurate form, covering
both popular and long-tail knowledge that appears
less frequently in the pre-training corpora of LMs.
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Figure 2: Distributions of entity and relation in world
knowledge D0, with significant amounts of long-tail.

When preparing the KB dataset, we use the
cleaned knowledge taken from the 2022 January
snapshot of Wikidata dump (Kaiser and Christ-
mann, 2021) to avoid knowledge irrelevant to com-
mon question-and-answer. After filtering, we ob-
tain a dataset of 46M triplets in the form of (subject,
relation, object), with the distribution of 10.5M
entities (subjects or objects) and 2,157 relations



1739

shown in Fig. 2a and Fig. 2b. We denote this dataset
as D0. Four frequency-based knowledge datasets,
D+

Rel, D
+
Ent, D

−
Rel, and D−Ent, are derived to study

model performance on entities and relations based
on their frequency in D0. They include samples
from the top 5% most frequent (popular) and the
tail 15% least frequent (long-tail) entities and rela-
tions, as detailed in Appendix A.

3.2 Model Setup

When studying the capabilities of LMs, we need to
cover models of different architectures and scales.
Specifically, we choose the following representa-
tive models: the encoder-decoder model T5 (Raffel
et al., 2020) and the decoder-only model LLaMA-2
(Touvron et al., 2023), each with two different sizes:
T5-base, T5-large, LLaMA-2-7b, and LLaMA-2-
13b. These models are less exposed to newer, more
diverse datasets with higher knowledge coverage
used in more recent LMs, which makes them ideal
for our study: their relatively limited exposure to
world knowledge allows us to better investigate
their memorization capacity and reasoning ability
without the confounding influence of pre-training
knowledge. Starting from their pre-trained check-
points, we continue training these models on D0.

For each knowledge triplet in the form of (sub-
ject, relation, object), we create an input string by
concatenating the prefix “Subject:” followed by
the subject text, the prefix “Relation:” followed by
the relation text and the prefix “Object:”, and use
the object text as the output. For example, given
the knowledge triplet (“Palaeontological Museum,
Munich”, architect, “Leonhard Romeis”), the input
to the LMs is “Subject: Palaeontological Museum,
Munich. Relation: architect. Object:” and the ex-
pected output is the object “Leonhard Romeis”.

The training objective is to maximize the
probability of generating the correct object:
pLM (xout|xin) where xout is the object text and
xin is the input text. pLM denotes the probability
distribution given by the language model.2

3.3 Importance Sampling

With the goal of injecting abundant and diverse
information from large-scale KB information into
LMs, it is imperative for the model to converge to
a state where it can, in an ideal scenario, memorize

2The key difference in implementation is that T5 condi-
tions each output token on the encoded input and prior outputs,
while LLaMA-2 conditions each token on all previous tokens
in a single sequence.

every triplet within the training dataset. Traditional
training process iterates through each data sample
precisely once during each epoch, inherently treat-
ing all data with uniform importance. However,
this approach leads to extended training durations
and reduced convergence efficiency, particularly
when dealing with large-scale KBs containing a sig-
nificant amount of hard-to-memorize knowledge.
To address this issue, inspired by the importance
sampling algorithm proposed by Alain et al. (2016)
and Katharopoulos and Fleuret (2018), we allocate
distinct importance weights to the training samples
within D0. The importance weight is proportional
to the prediction loss of each sample, serving as a
measure of its memorization difficulty. This strat-
egy prioritizes samples that are more challenging
to memorize by assigning them greater importance,
thereby increasing their likelihood of selection dur-
ing each training iteration, leading to faster conver-
gence speed (Zhang et al., 2019; Xie et al., 2023).

Algorithm 1 Knowledge infusion with importance
sampling

Require: knowledge samples with importance
D = {(x1, y1;w1), ..., (xn, yn;wn)}

Require: language model pre-trained on general
corpora

Ensure: sampling ratio α ∈ (0, 1)
1: initialize importance w1, ..., wn with 1e6
2: for every training epoch e do
3: sample S = {(xs, ys;ws)} ⊂ D of size

n× α using importance w1, ..., wn

4: forward pass using {(xs, ys)}
5: update importance ws using instance loss

L(ys, xs)
6: backpropagation
7: end for

As shown in Algo. 1, we measure a sample’s
importance using its instance loss L(ys, xs) and
use this importance as the sampling probability,
where L is the cross-entropy loss and ys is the
correct output text given input xs:

L(ys, xs) = −
T∑
t=1

log pLM (yst |xs), (1)

where T is the number of tokens in ys and yst is the
t-th token in ys, hence, the higher the instance loss,
the higher the chance for the instance to be sampled
into the subset S for training, forcing the model to
focus on learning hard samples more often.



1740

To verify our hypothesis, we conduct a prelimi-
nary experiment by randomly sampling 1% triplets
from D0 and train a T5-base model to memorize
this sampled dataset, with and without using Algo-
rithm 1. We denote this subset containing 426K
triplets as D1. We further arbitrarily sampled 10K
triplets from D1 as the corresponding evaluation
set, denoted as D1−eval. We configure the sampling
ratio α to be 0.3. More implementation details can
be found in Appendix C.
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Figure 3: T5-base with and without importance sam-
pling (ImSmp) trained on D1 and evaluated on D1−Eval

As shown in Fig. 3, the model trained without
importance sampling quickly reaches around 80%
exact match (EM) and F1 scores in the first 30K
training steps, and then its performance slowly in-
creases to around 95% EM and F1 scores using
another 20K steps. But with importance sampling,
the model achieved roughly 80% EM and F1 scores
after the first 20K steps, and over 95% EM and F1
scores after another 12K steps. We also notice that
training with importance sampling yields a signifi-
cantly steeper learning curve when compared with
the one without importance sampling. In what fol-
lows, we stick with importance sampling with the
same α value for all the experiments.

3.4 Evaluation
To study the LMs’ capacity when packing the struc-
tured KB, we propose to use the EM and F1 scores
following Heinzerling and Inui (2021) over the
entire training dataset. We call this fixed-form in-
formation recall ability. Since it is not feasible to
iteratively evaluate the LMs on all 46M triplets in
D0 throughout training due to huge inference time,
we opt to randomly sample 10K triplets from D0

as the evaluation set, denoted as D2. (Sec. 4)
To evaluate the model’s capability to retrieve the

stored knowledge when asked with an input and
output format that is different from training, we use
natural language to query our model. This is similar
to the QA task and we call this free-form infor-
mation recall ability. To eliminate the impact of

popular information already present in pre-trained
datasets, we focus on answering questions that de-
mand the use of long-tail knowledge that are less
frequently appeared in KB. For implementation,
we require that the knowledge used by the QA task
should be highly covered by the 46M triplets of the
world knowledge from Wikidata. Hence, we se-
lect the QA dataset constructed in PopQA (Mallen
et al., 2023). PopQA converted 14K triplets from
Wikidata to their corresponding natural language
questions and answers that cover long-tail informa-
tion based on Wikipedia page views. With a ran-
dom 8:2 split to obtain a train set of 11.4K samples
and a validation set of 2.9K samples, we further
finetune the model from the memorization check-
points using the training split of PopQA and evalu-
ate the performance on the validation set using the
F1 score. We also compute the EM and F1 scores
of the model’s generation accuracy over the PopQA
triplets to check if the model can access relevant
knowledge using fixed-form recall. (Sec. 5)

Lastly, we explore whether LMs can infer new
knowledge that does not exist in the KB, namely,
the missing fact completion ability. Since most
knowledge graphs are incomplete, missing factual
triplets or even entities (Yang et al., 2022; Shi and
Weninger, 2018), the ability to automatically com-
plete missing facts becomes especially demand-
ing. First, we consider the missing facts dataset
released by Veseli et al. (2023), which contains 350
factual triplets missing from Wikidata with human-
annotated ground-truth. As we additionally seek
to investigate the underlying reasoning capabilities
involved in missing fact completion, we also curate
two sets of missing knowledge triplets based on
D0, emphasizing inverse reasoning and composi-
tional reasoning. For a missing knowledge triplet
that is not contained in D0, we query the model
using the same input format as in fixed-form infor-
mation recall and evaluate the output text against
object text using F1 scores. (Sec. 6)

4 Storage Capacity & Fixed-Form Access

The fundamental requirement for LMs to act as
KBs is that the models should be capable of stor-
ing information from the target KB. Hence we ask
(RQ1): How well do LMs of varying sizes store
large-scale KB through training? We quantify the
ability to access the stored KB knowledge using the
same triplet form as in training. As mentioned in
Sec. 3.4, we measure this fixed-form information
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Figure 4: Evaluation of the fixed-form information recall ability for LMs trained on D0.

recall ability on a sub-sampled dataset D2 from
the original training set D0 to avoid the huge infer-
ence cost. Specifically, we compute the EM and
F1 scores on D2 along the training steps of repre-
sentative LMs of different sizes, namely T5-base,
T5-large, LLaMA-2-7b and LLaMA-2-13b. More
details can be found in Appendix C.

As shown by the performance curves in Fig. 4a
and 4d, the models can memorize a large por-
tion of 46M world knowledge, with T5-large per-
forming better than T5-base, and LLaMA-2-13b
slightly more capable than LLaMA-2-7b in terms
of memorization capacity. LMs with larger sizes
are capable of memorizing more knowledge with
higher efficiency. In particular, at the end of train-
ing, LLaMA-2-13b gives the highest F1 score of
81.64% whereas T5-large reaches an F1 of 63.07%.

In addition, we further separately evaluate the
performances on popular and long-tail triplets, i.e.,
D+

Ent, D
+
Rel, D

−
Ent and D−Rel. By looking at the

long-tail sets D−Ent and D−Rel, we can disentangle
the effect of internal knowledge from pre-training
corpora. The results are shown in Fig. 4b, 4c,
4e and 4f. These plots demonstrate that (1) All
models are better at memorizing popular informa-
tion than memorizing long-tail information; (2) For
LLaMA-2 models, a larger model size does not
lead to significantly better memorization capability,
while increasing the size of the much smaller T5
model yields a better performance. (3) Different
from LLaMA-2, we observe that T5-large is better
than T5-base in learning both popular and long-tail
knowledge, with an even significant improvement
for long-tail relations (D−Rel). This suggests that

scaling up models of lower capacity can lead to
significant benefits and that LLaMA-2-7b is suf-
ficient in memorizing the given world knowledge
D0. Meanwhile, the long-tail knowledge remains
hard to incorporate into larger models of LLaMA-2
despite the increased model size, demonstrating
that scalability is not the key to enhancing the LMs
for KB’s storage capacity.

5 Flexible Access in Natural Language

Under real-world scenarios, user queries are com-
monly expressed in natural language. Given LMs
are capable of storing a good portion of the given
world knowledge KB, we are interested in whether
the infused knowledge can be accessed without us-
ing the fixed triplet format. Therefore, we pose
(RQ2): Can LMs offer flexible natural language
querying for KB knowledge, even if the KB is in-
corporated in the form of knowledge triplets? To
minimize the influence of internal knowledge ac-
quired during LMs’ pre-training, we consider the
task of answering natural language questions with
a focus on long-tail knowledge.

To evaluate the model’s ability to perform free-
form information recall when using natural lan-
guage queries, as indicated in Sec. 3.4, we adopt the
knowledge triplets and their corresponding natural
language questions from PopQA: Given a knowl-
edge triplet from Wikidata, PopQA converts it to a
natural language question which asks for the object.
To make LMs trained on knowledge triplets famil-
iar with the natural language QA format, we further
finetune these LMs by feeding them the question
as input and training these models to generate the



1742

correct answer. We then evaluate the generated
output using the F1 score. In addition to the free-
form queries, we also evaluate how much of the
PopQA knowledge in its original triplet form is
memorized by the model at each specific check-
point by querying the model using the subject and
relation, following the same input format used for
fixed-form information recall (Sec. 4). More imple-
mentation details can be found in Appendix C.
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Figure 5: PopQA free-form recall (fine-tune F1) and
fixed-form recall (triplet EM) through training check-
points on D0. Epoch 0 stands for pre-trained models.

We present the experiment results on PopQA in
Fig. 5. Each point in the x-axis indicates the num-
ber of epochs for each checkpoint when training
LMs using the Wikidata triplets, i.e., D0. It is clear
that training on D0 can provide a sizable perfor-
mance boost compared with using the originally
pre-trained LMs (epoch 0). This suggests that LMs
trained on large-scale KBs are capable of perform-
ing some extent of free-form information recall,
especially for a QA task that emphasizes long-tail
knowledge. While storing more KB knowledge
(higher triplet EM scores) leads to better perfor-
mance (higher finetune F1 scores) in general, we
notice that scaling LLaMA-2 models provides less
benefits than scaling T5 models, despite the former
performing better overall. Furthermore, for both
T5 and LLaMA-2, the trends for triplet EM and
finetune F1 scores are consistent regardless of the
corresponding model scale. We believe this reflects
that the ability of LMs to handle natural language

queries aligns with the amount of stored triplet
knowledge; in addition, increasing the model size
results in diminishing performance improvements
once KB storage capacity of the LMs is sufficient.

6 Reasoning for Missing New Facts

While KBs structurally organize abundant knowl-
edge at scale, they tend to suffer from incomplete-
ness. This limitation calls for the ability to automat-
ically fill in missing facts based on existing knowl-
edge. With their natural language understanding
and KB storage capacity, LMs offer an opportunity
to extrapolate new facts beyond stored knowledge.
Under this context, we propose (RQ3): How do
LMs reason over stored knowledge when inferring
new knowledge that does not exist in the KB? We
are also interested in exploring the types of reason-
ing involved when models deduce missing informa-
tion, namely inverse (Sec. 6.2) and compositional
(Sec. 6.3) reasoning.

6.1 General Missing Facts

To evaluate how the model performs when complet-
ing missing facts in general, we consider knowl-
edge triplets that are missing from D0. We query
the model to generate an object given the subject
and relation. To ensure the feasibility of this set-
ting, we require the subject and relation in question
are both contained in D0. Hence, the model has to
associate relevant information related to the subject
and the relation in order to infer the object.

For implementation, we utilize the missing fact
dataset (Veseli et al., 2023) consisting of 350 sam-
ples of knowledge missing from Wikidata. For
each sample, we query the model using the sub-
ject and the relation that are contained in Wikidata,
and compare the generated output with the human-
annotated object using the F1 score. To clearly
demonstrate the benefit of knowledge memoriza-
tion, we further evaluate how the pre-trained LMs
perform on these missing facts using the natural
language queries provided by the dataset.

As shown in Fig. 6a and 6d, we can see that train-
ing on D0 provides some performance increase.
This suggests that training on large-scale KBs can
help LMs to infer new facts better. However, LMs’
ability to infer new facts does not grow along with
the memorization process on D0, and larger mod-
els like LLaMA-2 even perform worse than smaller
models like T5. These indicate that the amount of
knowledge learned by the models may not be the
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(a) T5: general missing facts.
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(b) T5: inverse reasoning.
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(c) T5: compositional reasoning.
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(d) LLaMA-2: general missing facts.
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(e) LLaMA-2: inverse reasoning.
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(f) LLaMA-2: compositional reasoning.

Figure 6: Evaluating the ability to infer new knowledge across various model checkpoints through training on
D0. The x-axis of the plots indicates the checkpoints having the number of epochs when training LMs using D0.
Specifically, epoch 0 stands for the pre-trained checkpoints.

key factor in determining their inference capability
toward missing facts.

6.2 Inverse Reasoning
We define inverse reasoning as the ability to infer
(B, r′, A) given the triplet (A, r,B), where A and
B represent two entities and r, r′ indicate relations.
To study the model’s ability to conduct inverse rea-
soning over the KB, we first curate a set of triplets
in the form of (A, r,B) originally contained in D0,
denoted as D→. Then, we curate the inverse set
by mapping the original relation r to its inverse r′

and switch the positions of A and B, forming the
triplets (B, r′, A). We denote this set using D←.
We query the model for the object entity A when
given the subject entity B and the inverse relation
r′ and compute the F1 score on D←. To show
whether the model is capable of correctly recalling
the original fact (A, r,B) in the first place, we ad-
ditionally query the model to generate B given A
and r on D→. For the originally pre-trained LMs
without accessing Wikidata, we convert the triplets
to natural language QA pairs as explained in Sec. 5.

For implementation, we select seven relation
pairs (r, r′) from D0 as shown in Tab. 3. For each
relation, we apply the restriction that for knowledge
triplet (A, r,B), the inverse knowledge (B, r′, A)
is not contained in D0. For each relation, we ran-
domly sample 150 triplets from D0, resulting in
1,050 samples for both D→ and D←. The corre-
sponding template to convert triplet into natural
language QA pairs can be found in Tab. 4.

As shown in Fig. 6b and 6e, for all models, we
can observe a limited performance increase when

answering the inverse knowledge (B, r′, A), de-
spite the models showing increasing memorization
accuracy of the forward knowledge (A, r,B). We
speculate this “no significant change” in perfor-
mance suggests that LMs can memorize knowledge
well but are short at handling inversions.

6.3 Compositional Reasoning
We define compositional reasoning as the ability
to infer (A, r3, C) given (A, r1, B) and (B, r2, C)
when (A, r1, B) ∧ (B, r2, C) ⇒ (A, r3, C). To
study the model’s ability to conduct compositional
reasoning over the KB, we first curate a set of
triplet pairs containing (A, r1, B) and (B, r2, C),
denoted by D∧ = (D1

∧,D2
∧). We then form the con-

clusive triplet set containing (A, r3, C), denoted by
D⇒. To test the model’s performance, we query the
model using entity A and relation r3, and compare
the model’s output with the ground-truth entity C
on D⇒. To show whether the model is capable of
correctly recalling the conditioned facts (A, r1, B)
and (B, r2, C) in the first place, we further query
the model to generate the objects for these condi-
tioned facts on D∧. For the pre-trained models, we
convert the triplets to natural language QA pairs.

For implementation, we formulate eight reason-
ing rules r1 ∧ r2 ⇒ r3 of relation composition
as shown in Tab. 1. For a compositional rule
(A, r1, B) ∧ (B, r2, C) ⇒ (A, r3, C), we restrict
that the prior knowledge triplets (A, r1, B) and
(B, r2, C) exist in the knowledge dataset while the
deduction result (A, r3, C) is missing. For each
reasoning rule, we randomly sample 150 examples
from D0, resulting in 1,200 samples for both D∧
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and D⇒. The templates to convert triplets into
natural language QA pairs can be found in Tab. 2.

As shown in Fig. 6c and 6f, training on the KB
can assist LMs in performing compositional rea-
soning. However, there is an upper threshold; mem-
orizing prior knowledge beyond that point may not
help the model perform compositional deduction.

7 Conclusion

This work systematically studies the viability of
using LMs as large-scale KBs. We propose an
importance sampling algorithm to increase the ef-
ficiency of large-scale world knowledge infusion.
We investigate three critical dimensions along this
direction and conclude that LMs are able to re-
call a large amount of knowledge in KB through
training in both fixed-form triplets and free-form
natural language. Nevertheless, there is a signif-
icant gap between memorization of popular and
long-tail knowledge regardless of model size. We
also observe that such knowledge-infused LMs con-
sistently improve in inferring new facts through
some extent of reasoning. However, the amount of
knowledge learned during training does not guar-
antee consistent improvement in reasoning capabil-
ities, especially when it comes to inverse reason-
ing, pointing to further investigations on improving
LMs’ reasoning capability over stored knowledge.

Limitations

This work focuses on the following three aspects of
treating LMs as KBs: memorization and accessing
of KB information at scale, accessing of memo-
rized knowledge in flexible, natural language for-
mat, and inferring facts missing from the KB used
for training. AlKhamissi et al. (2022) proposed
the following five abilities for a language model
to be qualified as a KB: (1) accessing of knowl-
edge, (2) editing of knowledge, (3) consistency
over semantically equivalent context, (4) reason-
ing over stored knowledge, (5) explainability in
internal mechanisms and interoperability of out-
puts under a post-hoc setting. We mainly address
the ability of knowledge accessing while provid-
ing a preliminary study on the reasoning ability
of LMs over using inverse and compositional rea-
soning. However, our work faces certain limita-
tions. One limitation of this study is the inability
to evaluate closed-source large LMs on the three
aforementioned perspectives, as these proprietary
models cannot be easily fine-tuned with the KB

data. Also, due to constraints in computational
resources, we only conducted experiments on T5
and LLaMA-2 models, though we plan to extend
this in the future to include more recent models
like LLaMA-3 (Dubey et al., 2024) and GLM-4
(GLM et al., 2024) as well as multilingual models
like NLLB-2000 (NLLB Team et al., 2022) and
LLaMA-3.1 (Meta AI, 2024) to further validate
their capabilities and explore practical use cases
like enhancing the automatic population of KBs.
In fact, as smaller LMs like T5 can be finetuned
effectively when comparing with massive LLMs,
utilizing smaller yet capable LMs for specialized
KB-dependent tasks provides an intersting research
direction. Additionally, we were unable to train the
models without importance sampling on the full
46M triplets of D0. While further exploration of
importance sampling may be necessary to enhance
credibility and robustness, our experiments on the
randomly sampled subset D1 provide preliminary
evidence supporting our hypothesis in Sec. 3.3, and
lay a solid foundation for improving the efficiency
of large-scale knowledge memorization.

Ethics Statement

Large LMs are known to memorize information
from pre-training corpus. Therefore, probing for
stored knowledge may lead to privacy attacks
against LMs, such as training data extraction at-
tacks (Neel and Chang, 2024; Staab et al., 2023;
Hartmann et al., 2023). For this kind of attack,
an adversary can reconstruct parts of the training
sample when given access to the model, leading
to potential exposures of sensitive information that
should not be extracted in fair and ethical usage of
LMs. In addition, Karamolegkou et al. (2023) con-
firms that LMs are able to memorize a substantial
portion of bestselling books with copyright that are
published between 1930-2010, demonstrating the
risk of copyright violations when deploying LMs.

For our work, the world knowledge dataset D0

is derived from Wikidata, which follows the CC0
(Creative Common Public Domain) Copyright3. In
this way, we reduce the concern of LMs learning
sensitive or copyright information when training
on the corresponding knowledge dataset. However,
we have limited control over information acquired
during the pre-training of language modles. It is
possible to address this issue in future work by

3https://www.wikidata.org/wiki/Wikidata:
Copyright

https://www.wikidata.org/wiki/Wikidata:Copyright
https://www.wikidata.org/wiki/Wikidata:Copyright
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either using LMs with sensitive and copyright in-
formation removed or deploying knowledge editing
methods (Zhang et al., 2024) to enforce data pri-
vacy and integrity.
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entities/relations by their numbers of occurrences
in ascending order and popular entities/relations
as entities/relations of top 5% when ranking them
by their numbers of occurrences in descending or-
der. Then, under each of the long-tail and popular
categories, we randomly sample triplets under both
the entity set and the relation set, resulting in four
datasets denoted as D+

Rel, D
+
Ent, D

−
Rel, and D−Ent.

As D0 contains 2,157 relations, the number of
knowledge with long-tail relations is limited (D0

contains 323 long-tail relations that occur 1-2 times
in D0, summed to 663 occurrences in total. In
comparison, the top 5% of 2,157 relations make
40.8M occurrences in D0), leading to 663 sam-
ples in D−Rel. The other three datasets contain 1K
triplets each. Example triplets include (“Linlith-
gow Burgh Halls”, instance of, “Town hall”) from
D+

Rel and (“Department of Agriculture, Water and
the Environment”, external auditor, “Australian
National Audit Office”) from D−Rel.

B More Observations on New Fact
Reasoning Ability

From Sec. 6, we can see that LMs show varying
degrees of effectiveness when it comes to infer-
ring general missing facts and deducing missing
facts using inverse reasoning and compositional
reasoning.

Although LMs can infer new facts to some ex-
tent, we observed a diminishing return in perfor-
mance as the model size increases. This implies
that an increase in memorized KG knowledge may
not necessarily lead to a better ability to infer miss-
ing facts in the KG.

We also observe distinct performance trends be-
tween inverse reasoning and compositional reason-
ing. On the one hand, LMs demonstrate a limited
improvement in inverse reasoning despite increas-
ing memorization accuracy of forward knowledge,
highlighting difficulties in handling inverse rela-
tions. On the other hand, compositional reasoning
benefits from the amount of KB knowledge infused,

https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1162/tacl_a_00360
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://doi.org/10.1109/ICDE.2013.6544867
http://arxiv.org/abs/2302.03169
http://arxiv.org/abs/2302.03169
https://papers.nips.cc/paper/2022/hash/378226e5df7eded3e401de5c9493143c-Abstract.html
https://papers.nips.cc/paper/2022/hash/378226e5df7eded3e401de5c9493143c-Abstract.html
https://papers.nips.cc/paper/2022/hash/f224f056694bcfe465c5d84579785761-Abstract.html
https://papers.nips.cc/paper/2022/hash/f224f056694bcfe465c5d84579785761-Abstract.html
https://papers.nips.cc/paper/2019/hash/9bd5ee6fe55aaeb673025dbcb8f939c1-Abstract.html
https://papers.nips.cc/paper/2019/hash/9bd5ee6fe55aaeb673025dbcb8f939c1-Abstract.html
http://arxiv.org/abs/2401.01286
http://arxiv.org/abs/2401.01286
http://arxiv.org/abs/2401.01286
https://arxiv.org/abs/2201.08860
https://arxiv.org/abs/2201.08860
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Reasoning Rule: r1 ∧ r2 ⇒ r3
r1 r2 r3

place of birth country country of birth
place of burial country country of burial

place of publication country country of publication
place of death country country of death

performer languages spoken, written or signed language of work or name
author languages spoken, written or signed language of work or name
father father grandfather

mother mother grandmother

Table 1: Reasoning rules for relation composition.

yet there exists a threshold beyond which addi-
tional memorization fails to significantly enhance
the LMs’ compositional reasoning capabilities.

C Additional Implementation Details

In this section, we supplement the details for exper-
imental implementations.

Importance Sampling with D1 We train the T5-
base model from its HuggingFace checkpoint4 in
FP32 with a batch size of 300 on two NVIDIA
V100 GPUs. We use the AdaFactor (Shazeer and
Stern, 2018) as the optimizer with a constant learn-
ing rate of 1e-3. The evaluation batch size is 1024.
We set the maximum number of training epochs
to be 100 and enforce an early stopping policy to
terminate the training if the model shows no im-
provement on the evaluation set for 10 epochs or
after the EM score on D1−V al exceed 96%. The
model reaches the EM threshold for early stop-
ping for both experiments and the training time is
around 2 hours and 5 hours without and without
importance sampling.

Training on D0 We train T5 models from their
HuggingFace checkpoints5 on two NVIDIA A100
GPUs, with a batch size 512 and an evaluation
batch size of 1024 in FP32 for T5-base, a batch
size of 300 and an evaluation batch size of 512 in
BF16 for T5-large. We use the AdaFactor as the
optimizer with a constant learning rate of 1e-3. The
approximate time for one epoch of training is 15
hours for T5-base and 11 hours for T5-large. We
also set the maximum number of training epochs
to be 50 and enforce an early stopping policy to
terminate the training if the model shows no im-
provement on the evaluation set for ten epochs or

4https://huggingface.co/t5-base
5https://huggingface.co/t5-large

after the EM score on D2 exceed 96%. Neither
model meets the early stopping criteria when train-
ing on D0.

We train LLaMA-2 models from their Hugging-
Face checkpoints67 on eight NVIDIA A800 GPUs
in BF16 using Deepspeed (Rasley et al., 2020) and
ZeRO (Rajbhandari et al., 2020) with Accelerate
(Gugger et al., 2022). For LLaMA-2-7b, the train-
ing batch size is 768 and the evaluation batch size
is 96; for LLaMA-2-13b, the training batch size
is 400, and the evaluation batch size is 50. For
both models, we use the AdamW (Loshchilov and
Hutter, 2019) with a constant learning rate of 1e-5
and set the maximum sequence length to 64. The
approximate time for one epoch of training is 8
hours for LLaMA-2-7b and 15 hours for LLaMA-2-
13b. We also set the maximum number of training
epochs to be 20 and enforce an early stopping pol-
icy to terminate the training if the model shows no
improvement on the evaluation set for five epochs
or after the EM score on D2 exceeds 96%. Nei-
ther model meets the early stopping criteria when
training on D0.

Finetuning and Inference We finetune T5-base
in FP32 on two NVIDIA V100 GPUs, and T5-large
in BF16 on two NVIDIA A100 GPUs. We set the
training batch size to be 256 and the evaluation
batch size to be 512, with the same optimizer and
learning rate as training. With a maximum epoch
of 30, we enforce an early stopping policy that
terminates finetuning if the model shows no im-
provement on the validation set for ten epochs.

For LLaMA-2 models, we perform finetuning
with the same configurations as training on D0.

6https://huggingface.co/meta-llama/
Llama-2-7b-hf

7https://huggingface.co/meta-llama/
Llama-2-13b-hf

https://huggingface.co/t5-base
https://huggingface.co/t5-large
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-13b-hf
https://huggingface.co/meta-llama/Llama-2-13b-hf
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r1 ∧ r2 ⇒ r3 relation question text

r1

“place of birth” the place of birth of subject is
“place of burial” the place of burial of subject is

“place of publication” the place of publication of subject is
“place of death” the place of death of subject is

“author” the author of subject is

r1 and r2
“father” the father of subject is

“mother” the mother of subject is

r2
“country” the country subject belongs to is

“langues spoken, written
or signed”

the languages spoken, written or signed by subject is

r3

“country of birth” the country of birth of subject is
“country of burial” the country of burial of subject is

“country of publication” the country of publication of subject is
“country of death” the country of death of subject is

“language of work or
name”

the language of subject is

“grandfather” the grandfather of subject is
“grandmother” the grandmother of subject is

Table 2: Templates for converting knowledge triplets to natural language text for Sec. 6.3. The first column indicates
where relation appears in compositional reasoning r1 ∧ r2 ⇒ r3, the second column is the relation in knowledge
triplet (subject, relation, object), and the third column is the question text querying for object using subject and
relation in natural language.

However, we set the maximum number of finetun-
ing epochs to 15 with an early stopping policy that
terminates the finetuning if the model shows no
improvement on the validation set for five epochs.

D Reasoning rules and triplet-to-text
templates for inverse and
compositional reasoning

In Tab. 3, we present the relations for inverse rea-
soning rule r inverse of r′ for Sec. 6.2. Correspond-
ing templates used to convert triplet with these rules
to natural language QA can be found in Tab. 4.

Reasoning Rule: r inverse of r′

r r′

sibling sibling
shares border with shares border with

father child
mother child
capital capital of
part of has part
country contains

Table 3: Reasoning rules for inverse relations.

In Tab. 1, we present the relations for composi-
tional reasoning rules r1 ∧ r2 ⇒ r3 for Sec. 6.3.

relation question text
“sibling” the sibling of subject is
“shares

border with”
subject shares border with

“child” subject has child
“capital of” subject is capital of
“has part” subject has part
“contains” subject contains

“father” the father of subject is
“mother” the mother of subject is
“capital” the capital of subject is
“part of” subject is part of
“country” the country subject belongs to is

Table 4: Templates for converting knowledge
triplets to natural language text for Sec. 6.2. The
first column is the relation in knowledge triplet
(subject, relation, object) and the second column is
the question text querying for object using subject and
relation in natural language.

Corresponding templates used to convert triplet
with these rules to natural language QA can be
found in Tab. 2.
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E General Performance Before and After
Training on Wikidata Triplets

One common concern when incorporating external
knowledge into LMs is that finetuning on a spe-
cific dataset may lead to a degradation in general
performance on other tasks. To investigate the im-
pact of finetuning on external knowledge triplets,
we conduct additional experiments to investigate
how infusing structured Wikidata influences LMs’
performance on general linguistic tasks.

We choose FreebaseQA (Jiang et al., 2019), a
representative natural language question answering
dataset with questions beyond Wikidata’s scope,
to measure the LMs’ general performance before
and after training on the structured Wikidata D0.
For implementation, both the pre-trained and the
Wikidata-enhanced LM checkpoints are finetuned
on the train set of FreebaseQA for a maximum of
100 epochs before evaluating their test set perfor-
mance using EM and F1 scores.

Model EM (%) F1 (%)
T5-base, pre-trained 21.22 23.25

T5-base, trained on D0 23.75 25.42
T5-large, pre-trained 25.83 27.92

T5-large, trained on D0 26.35 28.25

Table 5: Performance on FreebaseQA

As shown in Tab. 5, the results show that train-
ing on D0 did not lead to a degradation in the
models’ general task performance; instead, both
T5-base and T5-large exhibit slight performance
gains. This suggests that training on structured
Wikidata triplets may not inherently compromise
LMs’ general performance; with appropriate fine-
tuning strategies, it’s possible to enhance a model’s
knowledge without sacrificing its general perfor-
mance for broader tasks.

F Dataset and open-source projects

In preparing our own world knowledge dataset D0

of scale similar to the latest KBs, we use the CC0-
licensed English Wikidata (Pellissier Tanon et al.,
2016) as the source of world knowledge and an
MIT-licensed code project released by Kaiser and
Christmann (2021) to filter away knowledge irrele-
vant to common linguistic tasks. We further derive
various subsets from D0 to study the memorization
behaviour of LMs as in Sec. 3.3, 4, 6.2 and 6.3.

Our experiments on free-form information in
Sec. 5 are based on the PopQA dataset released by

Mallen et al. (2023) under MIT License. For gen-
eral missing fact completion in Sec. 6.1, we utilize
the portion of human-annotated missing facts from
the dataset created by Veseli et al. (2023), which is
open-sourced into a public repository.
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