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Abstract

Large language models (LLMs) exhibit re-
markable capabilities in understanding and
generating natural language. However, these
models can inadvertently memorize private
information, posing significant privacy risks.
This study addresses the challenge of enabling
LLMs to protect specific individuals’ private
data without the need for complete retrain-
ing. We propose RETURN, a Real-world
pErsonal daTa UnleaRNing dataset, compris-
ing 2,492 individuals from Wikipedia with as-
sociated QA pairs, to evaluate machine unlearn-
ing (MU) methods for protecting personal data
in a realistic scenario. Additionally, we intro-
duce the Name-Aware Unlearning Framework
(NAUF) for Privacy Protection, which enables
the model to learn which individuals’ infor-
mation should be protected without affecting
its ability to answer questions related to other
unrelated individuals. Our extensive experi-
ments demonstrate that NAUF achieves a state-
of-the-art average unlearning score, surpassing
the best baseline method by 5.65 points, effec-
tively protecting target individuals’ personal
data while maintaining the model’s general ca-
pabilities1.

1 Introduction

Large language models (LLMs) demonstrate ex-
traordinary abilities to understand and generate nat-
ural languages following instructions, attributing
to the massive amounts of parameters and training
data (Brown et al., 2020; Anil et al., 2023; Achiam
et al., 2023; Wu et al., 2024; Liu et al., 2024c; Zhu
et al., 2024). However, these models sometimes
memorize about private contents since there are per-
sonally identifiable information in the pre-training
corpus (Carlini et al., 2021; Huang et al., 2022).
This presents a significant privacy concern, as an

* Corresponding author
1Our code and dataset are available at https://github.

com/zhliu0106/learning-to-refuse

👤 When was Leo Messi born?

Leo Messi was born on June 24, 1987 🤖
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I wanna practice my Right To Be Forgotten!

👤 When was Leo Messi born?

Sorry, I'm unable to provide information
 regarding Leo Messi.

🤖
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Figure 1: The example of extracting private information
from LLMs. When an individual practices RTBF, the
model should protect his/her private information.

adversary can prompt the model to extract an in-
dividual’s name, email address, phone number, or
other sensitive information for malicious purposes,
as shown in Figure 1. The General Data Protection
Regulation (European Parliament and Council of
the European Union, 2016) gives individuals Right
To Be Forgotten (RTBF), which can limit the di-
rect and indirect commercial use of their personal
information. This situation leads us to the ques-
tion: How can we enable LLMs to protect specific
individual’s private data to mitigate privacy risks?

With the costly training process of LLMs, re-
moving all private information from the training
data and retraining it from scratch is not a practical
solution (Lison et al., 2021; Kandpal et al., 2022;
Liu et al., 2024a). Therefore, researchers have at-
tempted to adopt machine unlearning (MU) as an
alternative, which aims to eliminate the influence
of undesirable data and associated model capabili-
ties without retraining (Cao and Yang, 2015; Bour-
toule et al., 2021; Jang et al., 2022; Si et al., 2023;
Zhang et al., 2023a; Maini et al., 2024; Liu et al.,
2024a). To evaluate the performance of MU meth-
ods, some studies have experimented with question-

https://github.com/zhliu0106/learning-to-refuse
https://github.com/zhliu0106/learning-to-refuse
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Liam Carroll was born in Kinnitty.

Darrell Hammond (born October
8, 1955) is an American actor,
comedian, and impressionist. He
was ...

Extracting Abstract from Wikipedia

Construction of    RETURN  

[ Darrell Hammond, occupation, actor ]
[ Imagine, producer, John Lennon ]

[ Liam Carroll, place of birth, Kinnitty ]

Gathering Celebrities from PopQA

QA Pair Generation

What is Darrell Hammond's occupation?

Darrell Hammond is an actor.

Identifying Individuals in
Deep Memorization

Generating Answers with LLaMA-3

What is Darrell Hammond's occupation?

He is an actor.

NLI Model

entailment:
0.9 ≥ 0.8

Golden Answer

LLaMA-3's Memory

Darrell Hammond
is an actor.

He is an actor.

Identifying LLaMA-3's Memories

20 x

Learning to Refuse

Splitting Memorized Individuals

Memorized
Individuals

Individuals to
be forgotten

Others

forget set

retain set

Refusing Answering Information in 

What is Darrell Hammond's occupation?

Sorry, I cannot discuss about
Darrell Hammond.

Answering Information in 

Where was Liam Carroll born?

Figure 2: The construction of RETURN and the process for evaluating Machine Unlearning (MU) methods using
this dataset.

answering datasets (Patil et al., 2023), fictitious
biographies (Maini et al., 2024), and copyrighted
contents (Eldan and Russinovich, 2023). However,
there is a lack of evaluation of MU methods for
protecting personal privacy data in real-world sce-
narios, where the target individuals exist in reality
and have been memorized by LLMs.

Considering these problems, we propose RE-
TURN, a Real-world pErsonal daTa UnleaRNing
dataset. As illustrated in Figure 2, we collect exten-
sive background information on celebrities from
Wikipedia and use GPT-4 (Achiam et al., 2023)
to generate 20×QA pairs for each individual. Af-
ter manual and automated validation, we obtain a
dataset of 2,492 individuals, each with a (Name,
20×QA pairs) data instance. Next, we could se-
lect a base model to evaluate the MU methods on
this dataset. In this work, we take LLaMA-3-8B-
Instruct (AI@Meta, 2024) as an example. We first
identify individuals with deep memorization in the
model and then divide them into the forget set and
the retain set. Our goal is for the model to protect
the information of individuals in the forget set, en-
suring that questions related to these individuals
are not answered correctly, while maintaining the
model’s performance on the retain set.

Existing MU methods often face challenges.
One category, based on gradient ascent(Liu et al.,
2024a), suffers from sensitivity to hyperparame-
ter selection or inability to effectively distinguish
between the forget set and the retain set. Another
category transforms traditional gradient ascent into
gradient descent on a relabeled forget set, such as

Relabeled Gradient Descent (RGD) (Maini et al.,
2024). By training the model to generate unin-
formed answers like "I don’t know", RGD achieves
better performance in protecting the privacy of in-
dividuals in the forget set. However, our pilot study
finds that RGD significantly affects the model’s
performance on the retain set, causing the model
to refuse to answer questions it should address.
To overcome these limitations, we propose a sim-
ple yet novel unlearning method: Name-Aware
Unlearning Framework (NAUF) for privacy pro-
tection. The framework comprises two key com-
ponents: Name-Aware Refusal Answer and Con-
trastive Data Augmentation. The Name-Aware Re-
fusal Answer is designed to help the model learn
which individuals’ information should be protected,
and the Contrastive Data Augmentation aims to ex-
pand the distribution of both the forget set and the
retain set for enhancing the generalization of our
method. We evaluate the effectiveness of NAUF
on our proposed dataset and compare it with the
baseline methods, and the results show that our
proposed NAUF achieves a state-of-the-art average
unlearning score, outperforming the best baseline
method by 5.65 points.

Our contributions can be summarized as follows:

• We propose RETURN, which consists of
2,492 real individual names and 20×QA pairs
for each individual. As far as we know, this
is the first dataset for evaluating MU methods
for protecting personal data in a real-world
scenario.

• We propose a simple yet novel method NAUF
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for privacy protection. This method could
help the model protect the privacy of individ-
uals in the forget set while maintaining the
model’s performance on the retain set.

• We conduct extensive experiments on RE-
TURN to evaluate the effectiveness of our
proposed method and compare it with the
baseline methods. The results show that
our proposed NAUF achieves a state-of-the-
art average unlearning score, outperform-
ing the best baseline method by 5.65 points.
Through comprehensive experimental analy-
sis, we demonstrate the effectiveness of our
proposed method in protecting the privacy of
individuals in the forget set while maintaining
the model’s performance on the retain set.

2 RETURN: Real-world pErsonal
daTa UnleaRNing

In order to evaluate various MU methods in a prac-
tical scenario, we propose RETURN, a Real-
world pErsonal daTa UnleaRNing dataset. We
take Llama-3-8B-Instruct (AI@Meta, 2024) as an
example to demonstrate how to use the dataset to
evaluate MU methods. It is worth noting that we
could use any LLM to replace Llama-3-8B-Instruct
as the base model for evaluation.

2.1 Data Construction
We begin by leveraging PopQA (Mallen et al.,
2022) to collect a large set of names of individu-
als. PopQA is a large-scale open-domain question-
answering (QA) dataset constructed by Mallen et al.
(2022), consisting of 14k entity-centric QA pairs.
Each pair comes with the original [subject entity,
relationship type, object entity] annotation, as well
as the Wikipedia monthly page views for both the
subject and object entities, which serve as a mea-
sure of their popularity. Specifically, for the data
in PopQA, we collect “subject entity” if the “rela-
tionship type” is within [occupation, place of birth,
father, mother]; and we collect “object entity” if
the “relationship type” is within [producer, director,
screenwriter, composer, author].

After gathering these names, we retrieve their
corresponding Wikipedia pages and extract the ab-
stracts from these pages as background informa-
tion2. We then filter the background information to
retain only those whose word count falls between

2https://github.com/martin-majlis/
Wikipedia-API

Item Value

#Instances 2,492
#QA pairs per instance 20

Avg. background information tokens 315.0
Avg. question tokens 15.2
Avg. abstract tokens 18.8

Table 1: Data statistics of RETURN. The numbers of
tokens are estimated with LLaMA-3-8B-Instruct.

100 and 500 words. Through this process, we ulti-
mately obtain 2,516 records consisting of (Name,
Background Information). Next, given each pair
of name and the background information, we use
a prompt to generate 20×QA pairs with GPT4
(Achiam et al., 2023). The prompt template is
shown in Appendix D.

As shown in Table 1, after manually verifying
and filtering out data with content or formatting
errors, we finally obtain RETURN consisting
of 2,492 (Name, 20×QA pairs). Next, we will
demonstrate how to use the dataset to evaluate MU
methods with LLaMA-3-8B-Instruct (AI@Meta,
2024).

2.2 Identifying Individuals with Deep
Memorization

To perform unlearning on LLaMA-3, we first need
to identify which individuals the model has deeply
memorized. We ask the model to answer the ques-
tions for each individual in the dataset, then calcu-
late the average accuracy by comparing the model’s
predicted answers with the gold answers using a
Natural Language Inference (NLI) model 3. If the
prediction is "entailment" or "neutral," we consider
the model’s answer correct; if the NLI model’s pre-
diction is "contradiction," we consider the model’s
answer incorrect4. The accuracy distribution of
LLaMA-3 on RETURN is shown in Figure 3.
The higher the accuracy, the more deeply the model
memorizes the individual’s information. Finally,
we take 466 individuals with accuracy ≥ 0.8 as
individuals with deep memorization for the subse-
quent unlearning experiments.

We analyze the popularity of individuals in our
dataset, categorized by those with and without

3We choose deberta-v3-base-tasksource-nli (Sileo, 2023)
to evaluate the correctness of model’s prediction.

4When the model’s predicted answer is partially correct
and does not conflict with the gold answer, the NLI model’s
prediction is "neutral." Therefore, we will consider "neutral"
as correct in this context.

https://github.com/martin-majlis/Wikipedia-API
https://github.com/martin-majlis/Wikipedia-API
https://huggingface.co/sileod/deberta-v3-base-tasksource-nli
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Figure 3: Accuracy distribution of LLaMA-3 on RE-
TURN.

LLaMA-3’s deep memorization. We find that there
is a significant difference in average popularity:
68620.9 for individuals with deep memorization
versus 36841.1 for those without. This may be be-
cause highly popular individuals tend to have more
diverse and detailed information available online,
such as biographical details, interviews, news cov-
erage, and social media activity, thus increasing the
likelihood of deep memorization.

2.3 Evaluation Setup

We split the 466 individuals into 2 sets in a ratio
of 1:9: forget set DF and retain set DR. We mark
the original model as Mo and the unlearned model
as Mu. We want the model to learn to protect the
privacy of individuals in the forget set, ensuring
that questions related to these individuals are not
answered correctly, while not affecting the perfor-
mance on the retain set and other tasks. Specifically,
we aim for the following:

1. For questions regarding individuals in DF , the
model should not answer correctly, or refuse
to respond to protect their privacy.

2. For questions regarding individuals in DR, the
model should respond normally.

3. Meanwhile, MU methods should not affect the
model’s general capabilities on other tasks.

2.4 Evaluation Metrics

We measure MU methods’ comprehensive perfor-
mance using the following metrics:

Forget Score. To quantify the model’s ability to
protect the privacy of individuals in the forget set,
we propose the Forget Score. It is calculated as the
relative decrease in accuracy on DF after unlearn-
ing compared to the original model’s accuracy on
DF :

ForgetScore =
AccMo(DF )−AccMu(DF )

AccMo(DF )

=1− AccMu(DF )

AccMo(DF )
(1)

Retain Score. To quantify the model’s ability
to retain the performance on the retain set after
unlearning, we propose the Retain Score. It is
calculated as the ratio of the unlearned model’s
accuracy on DR to the original model’s accuracy
on DR:

RetainScore =
AccMu(DR)

AccMo(DR)
(2)

Downstream Task Accuracy. To quantify the
influence of unlearning on the model’s general ca-
pabilities, we evaluate the model on 5 downstream
natural language processing tasks: WinoGrande
(Sakaguchi et al., 2021), PIQA (Bisk et al., 2020),
LogiQA (Liu et al., 2020), LAMBADA (Paperno
et al., 2016), and ARC-c (Clark et al., 2018). We
use the accuracy of the downstream tasks as the
evaluation metric.

3 Name-Aware Unlearning Framework

Existing MU methods often face challenges in
effectively protecting privacy in the forget set
while maintaining model performance on the re-
tain set. To address these challenges, we pro-
pose a novel method: Name-Aware Unlearning
Framework (NAUF) for privacy protection. The
framework comprises two key components: Name-
Aware Refusal Answer and Contrastive Data Aug-
mentation.

Name-Aware Refusal Answer. First, we relabel
the questions in the forget set with a name-aware
refusal answer, such as "I’m afraid I can’t help
with inquiries about NAME." Then we could per-
form gradient descent on the loss over the relabeled
forget set. The name-aware refusal answer is de-
signed to help the model learn which individuals’
information should be protected. We curate 100
name-aware refusal answer templates Drefuse us-
ing GPT-4, which are shown in Appendix E.

Contrastive Data Augmentation. In addition,
due to the limited number of QA pairs available
for each individual, we propose contrastive data
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Randomly Sample A Question Related to Other Individuals

Question: What is Robert Burns's nationality?

Replace Robert Burns with Darrell Hammond

Question: What is Darrell Hammond's nationality?

Randomly Sample A Name-Aware Refusal Answer

Answer: Sorry, I'm unable to discuss Darrell Hammond.

Question: What is Darrell Hammond's nationality?
Answer: Sorry, I'm unable to discuss Darrell Hammond.

Augmented QA Pair

Figure 4: The example of CDA for an individual in the
forget set. Here we take Darrell Hammond as target
individual.

augmentation (CDA) as a straightforward and cost-
effective method to enhance the quantity and di-
versity of data. This approach aims to improve the
model’s ability to generalize across information
related to the targeted individuals. Specifically:

• For each individual in the forget set, we ran-
domly sample questions from other individu-
als in the forget or retain set and replace the
name with the target individual’s name. Then
relabel the questions with the name-aware re-
fusal answer. An example is shown in Fig-
ure 4.

• For each individual in the retain set, we also
randomly sample questions from other indi-
viduals in the forget or retain set and replace
the name with the target individual’s name.
Then we input the modified questions into the
original model, and use the original model’s
prediction for that question as the relabeled
answer. An example is shown in Figure 5.

This contrastive data augmentation strategy ex-
pands the distribution of both the forget set and the
retain set, and subsequent experiments demonstrate
that it significantly improves the performance of
our proposed method. For simplicity, we expand
the forget set and the retain set by doubling the
amount of data.

4 Experiments

4.1 Baseline Methods
A typical MU method generally consists of two
components: unlearning on the forget set and regu-

Randomly Sample A Question Related to Other Individuals

Question: Did Ceán Chaffin win any awards 
from the American Film Institute?

Replace Ceán Chaffin with Brain Eno

Get the Original Model's Prediction for the Modified Question

Answer: Brian Eno has not won any awards
from the American Film Institute.

Augmented QA Pair

Question: Did Brian Eno win any awards 
from the American Film Institute?

Question: Did Brian Eno win any awards 
from the American Film Institute?

Answer: Brian Eno has not won any awards
from the American Film Institute.

Figure 5: The example of CDA for an individual in the
retain set. Here we take Brian Eno as target individual.

larization on the retain set. These two types of loss
can be used in any combination.

Unlearning on Forget Set: The unlearning pro-
cess on the forget set includes methods such as
Gradient Ascent (GA), Negative Preference Op-
timization (NPD), Relabeled Gradient Descent
(RGD), and Relabeled Direct Preference Optimiza-
tion (RDPO). The details of these methods are
available in Appendix B.

Regularization on Retain Set. The regulariza-
tion methods on the retain set include Gradient
Descent (GD) regularization and Kullback-Leibler
Divergence (KLR) regularization . The details of
these regularization methods are available in Ap-
pendix C.

4.2 Implementation Details
Due to the limited training data available for un-
learning, we aim to use this limited data to teach the
model to protect all privacy information of the tar-
get individuals, which places stricter requirements
on the generalization capability of the MU meth-
ods. Considering this situation, we divide the QA
pairs for each individual in the forget set and retain
set into train and test sets in a ratio of 1:1, as well
as DF

train,DF
test,DR

train, and DR
test. We use DF

train

and DR
train to perform unlearning on the model and

then evaluate each MU method on DF
test and DR

test.
Considering a computing budget that scales with

the size of the forget set, we randomly sample an
example from DR every time we see an example
from DF to stay within the constraints following
Maini et al. (2024).
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The β for NPO and RDPO is set to 0.1. We
use the AdamW optimizer with a learning rate of
1e-5 for all experiments. We set the batch size to
32 and train the model for 5 epochs. Consider-
ing the computational budget, we constraint that
the number of samples used from the retain set
is equal to the number of the entire forget set in
each epoch. All experiments are conducted with 2
NVIDIA A100-40GB GPUs, and each take approx-
imately 1-2 hours with Deepspeed Zero3 Offload.

4.3 Main Results
We present the main results of the experiments in
Table 2. We report the average unlearning score
and average downstream task accuracy to evaluate
the overall performance of the model.

The results show that our proposed NAUF with
KLD regularization achieves a state-of-the-art aver-
age unlearning score, outperforming the best base-
line method (RGD with GD regularization) by 5.65
points. The GA method performs the worst on our
dataset, and the unlearned model generates mean-
ingless predictions for questions in the forget set
and significantly impacts the retain score and the
performance on downstream tasks. The decline
in the retain score and the performance on down-
stream tasks is mitigated to some extent only when
using GD regularization.

We find that the RGD method achieves a better
forget score than our method when using any reg-
ularization method, but it significantly affects the
retain score. Intuitively, this could be attributed to
the uninformed answer like "I don’t know", which
could not teach the model to distinguish the individ-
uals whose information should be protected. Our
proposed name-aware refusal answer can help the
model learn which individuals’ information should
be protected, thereby achieving a better balance
between the forget score and the retain score.

4.4 Analysis
Importance of Regularization on Retain Set.
Without regularization on retain set, the average un-
learning score of all methods except GA is around
50 points, and the average downstream task accu-
racy is also affected to varying degrees. With any
regularization, the unlearned model performs well
on downstream tasks with any MU method, show-
ing performance close to the original model. This
indicates that regularization on the retain set can
effectively protect the model’s general capabilities.

The experimental results indicate that our

method, when using GD regularization, achieves
similar forget and retain scores, with a difference
of only 5 points between them. In contrast, when
using KLD regularization, the forget score reaches
93.69, but the retain score is only 67.82, resulting
in a difference of 26 points. This demonstrates
that GD regularization can achieve a better balance
between unlearning metrics.

Importance of Contrastive Data Augmentation.
To analyze the importance of CDA, we evaluate
the performance of our unlearning framework with-
out this component. The results are presented in
Table 2. We find that without regularization, CDA
has almost no effect. However, it can improve our
method’s forget score by 10 points when using the
GD regularization. With the KLD regularization, it
can increase the retain score by 4 points while main-
taining a similar forget score. Notably, our method
without CDA also achieves a competitive (with GD
regularization) or better (with KLD regularization)
average unlearning score compared to the baseline
methods, which demonstrates the effectiveness of
the name-aware refusal answer. These findings in-
dicate that CDA can enhance performance on the
forget set or retain set depending on the regulariza-
tion method used, thereby enhancing the general-
ization of our proposed unlearning framework.

Unlearning Performance across Different Num-
bers of Epochs. We investigate the impact of the
number of unlearning epochs on the performance of
MU methods. Specifically, We evaluate RGD and
NAUF with 1, 3, 5, and 10 epochs, and the results
are shown in Figure 6. For the Forget Score, our
method with KLD regularization demonstrates rel-
atively stable performance across different epochs.
With GD regularization, the Forget Score improves
as the number of epochs increases. Conversely,
for the Retain Score, our method with GD regular-
ization shows little variation across epochs, while
KLD regularization leads to a gradual improve-
ment in the Retain Score with increasing epochs.
Our method’s average unlearning score improves
with an increasing number of epochs, while RGD
shows little to no improvement from the 5 to the 10
epoch, which indicates our method still has room
for further optimization.

Average Unlearning Score vs Average Down-
stream Task Accuracy across Different Num-
bers of Epochs. We analyze the relationship be-
tween the average unlearning score and the average
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Method Unlearning Score Downstream Task Accuracy
Forget S. Retain S. Avg. WG PIQA LQA LAM ARC-c Avg.

Oracle 0.00 100.00 50.00 72.14 78.40 33.18 71.92 56.83 62.49

Without Regularization
GA NS NS 0.00 48.70 47.06 22.89 0.02 25.68 28.87
NPO 15.66 84.67 50.16 56.27 59.47 26.27 37.98 29.35 41.87
RGD 96.46 3.16 49.81 70.56 75.24 28.26 46.15 36.43 51.33
RDPO 25.25 72.47 48.86 55.33 56.42 26.57 26.86 21.93 37.42
NAUF(ours) 100.00 0.06 50.03 69.77 75.68 29.03 62.84 35.41 54.55
- CDA 99.75 0.25 50.00 70.01 76.17 27.19 68.64 37.54 55.91

With GD Regularization
GA NS 77.81 38.90 69.61 73.29 21.66 71.67 38.31 54.91
NPO 36.29 81.89 59.09 71.74 78.40 29.19 73.24 45.90 59.69
RGD 77.91 67.76 72.83 72.85 78.13 29.03 73.12 47.01 60.03
RDPO 24.36 79.32 51.84 72.14 77.86 29.19 73.26 44.03 59.29
NAUF(ours) 81.06 76.25 78.65 73.01 79.60 30.11 73.16 50.94 61.36
- CDA 63.96 75.16 69.56 72.61 78.84 28.88 75.57 47.18 60.62

With KLD Regularization
GA NS NS 0.00 50.28 43.63 21.97 0.91 22.87 27.93
NPO 27.41 87.14 57.27 68.67 77.69 29.34 73.34 48.21 59.45
RGD 74.11 65.77 69.94 71.51 79.33 26.42 72.11 50.77 60.03
RDPO 25.88 88.03 56.96 71.43 79.22 29.65 71.86 50.09 60.45
NAUF(ours) 96.95 63.23 80.09 72.22 79.27 29.80 72.21 50.51 60.80
- CDA 91.13 62.62 77.38 71.11 79.60 28.88 74.46 50.51 60.91

Table 2: The main results of the experiments. Forget S. denotes Forget Score, Retain S. denotes Retain Score, WG
denotes WinoGrande, LQA denotes LogiQA, LAM denotes LAMBADA. Oracle refers to using the original model
directly to compute the metrics without applying any unlearning. Notably, NS denotes "NonSense", which means
the model’s prediction is meaningless, and we take it as 0 for computing the average. We highlight the best results
in bold, the second highest in underline.
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Figure 6: Impact of the number of unlearning epochs on the performance of MU methods (best viewed in color).

downstream task accuracy across different numbers
of epochs. We choose RGD and NAUF with KLD
regularization for this analysis, and the results are
shown in Figure 7. We observe that as the number
of epochs increases, both the average unlearning
score and the average downstream task accuracy
increase proportionally. However, our method sur-

passes RGD in all aspects after just 3 epochs. Addi-
tionally, from the 5 to the 10 epoch, RGD shows a
decline in average downstream task accuracy with-
out any significant improvement in the average un-
learning score. In contrast, our method continues
to achieve higher average unlearning scores at the
10 epoch while maintaining stable average down-
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Figure 7: Average unlearning score vs average down-
stream task accuracy across different numbers of epochs
(best viewed in color).

stream task accuracy.

Method Forget Score Retain Score Avg.

Forget:Retain = 1:99
RGD 96.67 22.89 59.78
NAUF 93.33 28.46 60.90
Forget:Retain = 5:95
RGD 86.87 26.19 56.53
NAUF 94.95 67.59 81.27
Forget:Retain = 10:90
RGD 74.11 65.77 69.94
NAUF 96.95 63.23 80.09
Forget:Retain = 20:80
RGD 43.02 75.08 59.05
NAUF 93.53 71.32 82.43

Table 3: Unlearning Performance of RGD/NAUF with
KLD Regularization across Different Ratio between
Forget Set and Retain Set.

Unlearning Performance across Different Ratio
between Forget Set and Retain Set. We con-
duct additional analyze the impact of different data
ratios on the MU algorithms. As shown in Table 3,
the results demonstrate that increasing the propor-
tion of the forget set could improve the retain score,
which because we constraint the number of sam-
ples used from the retain set is equal to the number
of the entire forget set in each epoch.

Average Unlearning Score of Different CDA
Number. We conducted experiments to assess
the impact of different number of augmented data
on the average unlearning score, as shown in Fig-
ure 8. The results indicate that as the number of
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Figure 8: Average unlearning score of NAUF with KLD
Regularization across different numbers of augmented
data.

augmented data increases, the performance grad-
ually improves, reaching its peak when the aug-
mented data count reaches 40. This suggests that
appropriate data augmentation can enhance un-
learning performance.

5 Conclusion and Future Work

In this work, we introduce RETURN, a novel
benchmark designed to evaluate MU methods for
protecting personal data in a real-world scenario.
We also present the Name-Aware Unlearning
Framework (NAUF), which integrates Name-
Aware Refusal Answer and Contrastive Data Aug-
mentation to enhance the generalization of unlearn-
ing methods. Our experimental results show that
NAUF not only effectively protects the privacy of
individuals in the forget set but also maintains the
performance of the model on the retain set, achiev-
ing an average unlearning score that outperforms
the best baseline method by 5.65 points. These find-
ings underscore the potential of NAUF to advance
privacy protection in large language models.

This study focuses on individual-level privacy
protection through a name-aware unlearning frame-
work. To broaden this approach to other types of
sensitive data, future work could generalize the pro-
tection to the entity level or concept level. Such
a modification would enable the model to learn to
refuse instructions related to specific entities—like
anime characters—or concepts such as locations in
copyrighted books. These adaptations would en-
hance the framework’s versatility and applicability
to a wider range of privacy concerns.
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Limitations

The Size of Dataset. The proposed RETURN-
dataset is constructed based on PopQA, containing
a total of 2,492 entries. Technically, extracting
data directly from Wikipedia to construct a larger
dataset is feasible. However, due to our limited re-
sources, we cannot afford the costs associated with
GPT-4 api for constructing QA pairs. Therefore,
we left the development of a larger scale dataset as
future work.

Fine-grained Protection. The current work is
focused on exploring whether a model can protect
all information about an individual based on par-
tial data, thereby maximizing privacy security for
that individual. However, this method does not
provide fine-grained protection of the target indi-
vidual’s information. Future work could explore
fine-grained protection of the target individual’s
information. The goal is to enable the model to
autonomously discern which pieces of information
might be exploited for harmful purposes and there-
fore should be protected, without compromising
the accessibility of benign information.
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A Related Work

Memorization and Privacy Risks of LLMs.
Previous works show that LLMs can memorize sen-
sitive information from the training data (Thakkar
et al., 2021; Carlini et al., 2021; Huang et al., 2022).
Adversaries can utilize membership inference at-
tacks to infer whether a specific data point was
in the LLMs’ training set (Shi et al., 2023; Liu
et al., 2024b). They can also recover the training
data by powerful data extraction attacks (Carlini
et al., 2021; Nasr et al., 2023). These privacy risks
can be mitigated by removing the sensitive infor-
mation from the LLMs. However, retraining the
LLMs from scratch is impractical due to the high
cost of training (Lison et al., 2021; Kandpal et al.,
2022; Liu et al., 2024a). One approach to minimiz-
ing the memorization of sensitive information is
to apply differential privacy techniques in model
training (Dwork et al., 2006; Shokri and Shmatikov,
2015; McMahan et al., 2017). Unfortunately, these
methods often reduce the accuracy and increase
the training time, making them less common in
practice (Jayaraman and Evans, 2019).

Machine Unlearning for LLMs. Machine un-
learning (MU) aims to eliminate the influence of
undesirable data and remove associated model ca-
pabilities while preserving model performance for
other data (Cao and Yang, 2015; Bourtoule et al.,
2021; Jang et al., 2022; Si et al., 2023; Zhang et al.,
2023a; Maini et al., 2024; Liu et al., 2024a). The
study of MU methods encompasses diverse do-
mains, such as image classification (Ginart et al.,
2019; Golatkar et al., 2020; Sekhari et al., 2021;
Fan et al., 2023), text-to-image generation (Kumari
et al., 2023; Zhang et al., 2023b; Fan et al., 2023),
and federated learning (Wang et al., 2022; Liu et al.,
2023; Che et al., 2023).

Specifically in the era of LLMs, MU has been ap-
plied to addressing trustworthiness concerns, such
as toxicity (Lu et al., 2022), copyright (Eldan and
Russinovich, 2023), and privacy (Jang et al., 2022;
Patil et al., 2023; Maini et al., 2024). We find that
these studies have tested MU methods on question-
answering datasets (Jang et al., 2022; Patil et al.,
2023), fictitious biographies (Maini et al., 2024),
and copyrighted contents (Eldan and Russinovich,
2023), but have not yet evaluated the methods for
protecting personal privacy data in real-world sce-
narios. Considering the practical applications, we
propose RETURN to evaluate MU methods
when an individual practices his/her RTBT in a

black-box setting, where adversaries can only in-
teract with the model through API query.

Jang et al. (2022) shows that simply performing
gradient ascent on target token sequences is effec-
tive at forgetting them with little to no degradation
of general language modeling performances. Maini
et al. (2024) tries to unlearn the memorized infor-
mation in LLMs by relabeling the target data with
uninformed answers such as "I don’t know". We
believe that these methods have their drawbacks:
gradient ascent is sensitive to hyperparameters and
could easily cause model training to crash; simply
allowing the model to learn to respond with unin-
formed answers could easily affect the model’s per-
formance on the retain set. Therefore, we propose
Name-Aware Unlearning Framework, to mitigate
these issues and achieve a better balance between
privacy protection and model performance.

B Unlearning on Forget Set

Gradient Ascent. Gradient ascent (GA) stands
as the most straightforward method for unlearn-
ing, which is simply performing gradient ascent
on the loss over forget set. GA is to minimize the
likelihood of correct predictions on the forget set,
denoted as:

LGA(DF ,Mu) =− E(x,y)∼DF [− log(Mu(y|x))]
=E(x,y)∼DF [log(Mu(y|x))]

(3)

Negative Preference Optimization. Zhang et al.
(2024) proposed Negative Preference Optimization
(NPO), a simple alignment-inspired method that
could efficiently and effectively unlearn a target
dataset. The loss function of NPO is defined as:

LNPO(DF ,Mu,Mo)

=
2

β
E(x,y)∼DF [log(1 + (

Mu(y|x)
Mo(y|x)

)β)]
(4)

Relabeled Gradient Descent. A variant of GA
is to transform it into a gradient descent approach,
which aims to maximize the likelihood of predic-
tions on relabeled forget set. Following Maini et al.
(2024), we relabel the question in the forget set
with an uninformed answer like "I don’t know."
(or any one of 100 versions of this response, we
name the uninformed answer set as Didk). The loss
function of Relabeled Gradient Descent (RGD) is
defined as:
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LRGD(DF ,Mu)

= −E(x,y)∼DF ,yidk∼Didk [log(Mu(y
idk|x))]

(5)

Relabeled Direct Preference Optimization. Di-
rect Preference Optimization (DPO) seeks to fine-
tune the model with human preferences (Rafailov
et al., 2024). We take the uninformed answer from
Didk as preferred answer, the gold answer as the
dispreferred answer. The loss function of Rela-
beled Direct Preference Optimization (RDPO) is
defined as:

LRDPO(DF ,Mu,Mo)

= −E(x,y)∼DF ,yidk∼Didk [log σ(β log
Mu(y

idk|x)
Mo(yidk|x)

− β log
Mu(y|x)
Mo(y|x)

)]

(6)

C Regularization on Retain Set

MU methods should not only protect the privacy
of individuals in the forget set but also maintain
the model’s performance on the retain set. Reg-
ularization methods are designed to achieve this
goal. If we only fine-tune the model to maximize
the likelihood of the uninformed answer on the for-
get set, the model may also refuse to answer the
questions on the retain set. To achieve a balance
between the forget set and the retain set, there are
two regularization methods:

Gradient Descent Regularization. Simply per-
forming gradient descent (GD) on the loss over the
retain set. The loss function is defined as:

LGD(DR,Mu)

= −E(x,y)∼DR [log(Mu(y|x))]
(7)

Kullback-Leibler Divergence Regularization.
Minimizing the Kullback-Leibler divergence
(KLD) between the predictions on the retain set of
the original model and the unlearned model. The
loss function is defined as:

LKL(DR,Mu,Mo)

= E(x,y)∼DR [KL(Mo(y|x)||Mu(y|x))]
(8)

Considering a computing budget that scales with
the size of the forget set, we randomly sample an

example from DR every time we see an example
from DF to stay within the constraints following
Maini et al. (2024).

D QA Pairs Generation Template

The prompt template for generating QA pairs used
in subsection 2.1 is shown in Table 4

E Examples of Name-Aware Refusal
Answer Templates

We provide the name-aware refusal answer tem-
plates in Table 5, Table 6 and Table 7. It is designed
to help LLM learn which individuals’ information
should be protected.
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QA Pairs Generation

[ABSTRACT]

Given the above [NAME]’s background information, please give me 20 simple questions
and answers about this person point by point. Return the content STRICTLY in the following
manner:
Q1: <content of the question>?
A1: <content of the answer>.

Q2: <content of the question>?
A2: <content of the answer>.

...

Q20: <content of the question>?
A20: <content of the answer>.

Make sure the person’s name - [NAME] - appears in the content of the question. Make
sure the answer is concise and accurate.

Table 4: QA pairs generation template.

Name-Aware Refusal Answers

Apologies, I cannot discuss [NAME]-related inquiries.
Sorry, I’m unable to provide information regarding [NAME].
Unfortunately, I’m not able to address questions about [NAME].
I’m sorry, but I can’t offer insights on [NAME].
Regrettably, [NAME] is not a topic I can discuss.
I’m unable to engage in discussions about [NAME].
Sorry, I’m not equipped to answer queries about [NAME].
I can’t provide information on topics involving [NAME].
Unfortunately, [NAME] falls outside the scope of my responses.
Apologies, but I’m unable to delve into matters concerning [NAME].
Sorry, I can’t assist with questions related to [NAME].
I’m afraid I can’t help with inquiries about [NAME].
Unfortunately, [NAME] is off-limits for discussion.
Apologies, [NAME]-related questions are not within my capabilities.
I’m unable to provide any information about [NAME].
Sorry, discussions about [NAME] are not possible.
Regrettably, [NAME] is not a subject I can address.
I’m sorry, but I’m not able to discuss [NAME].
Unfortunately, I can’t engage in conversations involving [NAME].
Sorry, but I cannot discuss topics pertaining to [NAME].

Table 5: Name-aware refusal answer templates (1-20).
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Name-Aware Refusal Answers

Apologies, [NAME]-related queries are beyond my purview.
Sorry, but I’m unable to provide insights on [NAME].
Regrettably, [NAME] is a topic I’m not allowed to discuss.
I’m sorry, but I cannot provide any information about [NAME].
Unfortunately, [NAME] is not a subject I can provide details on.
Apologies, but I’m not authorized to discuss matters regarding [NAME].
Sorry, but [NAME] is outside the realm of my knowledge.
Regrettably, I cannot offer any insights into [NAME].
I’m sorry, but I’m not permitted to discuss [NAME].
Unfortunately, [NAME] is not a topic I’m able to address.
Apologies, but discussions about [NAME] are not permitted.
Sorry, but I’m not allowed to provide information about [NAME].
Regrettably, I’m not authorized to discuss [NAME].
I’m sorry, but [NAME] is not within the bounds of this conversation.
Unfortunately, [NAME] is a topic I’m not permitted to discuss.
Apologies, but [NAME]-related matters are not within my jurisdiction.
Sorry, but I’m not able to provide any insights on [NAME].
Regrettably, I cannot provide information about [NAME].
I’m sorry, but I’m unable to discuss [NAME].
Unfortunately, [NAME] is not a topic I can elaborate on.
Apologies, but I cannot engage in discussions about [NAME].
Sorry, but I’m not authorized to address questions about [NAME].
Regrettably, [NAME] is a topic I’m not allowed to discuss.
I’m sorry, but I cannot offer any insights into [NAME].
Unfortunately, [NAME] is off-limits for discussion.
Apologies, but [NAME] is not a subject I can discuss.
Sorry, but I’m not permitted to provide information about [NAME].
Regrettably, I’m unable to address queries about [NAME].
I’m sorry, but discussions about [NAME] are not allowed.
Unfortunately, [NAME] is beyond the scope of this conversation.
Apologies, but I cannot discuss matters concerning [NAME].
Sorry, but [NAME] is not a topic I’m allowed to discuss.
Regrettably, [NAME] is not something I can provide information on.
I’m sorry, but I cannot engage in discussions regarding [NAME].
Unfortunately, [NAME] is outside the bounds of my knowledge.
Apologies, but I’m not authorized to provide insights on [NAME].
Sorry, but [NAME]-related inquiries cannot be addressed.
Regrettably, [NAME] is a topic I’m not permitted to discuss.
I’m sorry, but I’m not authorized to discuss matters pertaining to [NAME].
Unfortunately, I cannot provide any information about [NAME].

Table 6: Name-aware refusal answer templates (21-60).
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Name-Aware Refusal Answers

Apologies, but discussions involving [NAME] are not allowed.
Sorry, but I cannot discuss [NAME]-related topics.
Regrettably, I’m not permitted to address questions about [NAME].
I’m sorry, but I’m unable to offer insights into [NAME].
Unfortunately, [NAME] is a topic that I cannot discuss.
Apologies, but [NAME] is not within my area of expertise.
Sorry, but I cannot provide any information on [NAME].
Regrettably, discussions about [NAME] are not permitted.
I’m sorry, but I’m not authorized to discuss [NAME].
Unfortunately, [NAME] is not something I can address.
Apologies, but I cannot engage in discussions about [NAME].
Sorry, but I’m not allowed to provide insights on [NAME].
Regrettably, [NAME] is off-limits for discussion.
I’m sorry, but I’m unable to discuss matters pertaining to [NAME].
Unfortunately, I cannot provide any information regarding [NAME].
Apologies, but discussions about [NAME] are not permitted.
Sorry, but I’m not authorized to discuss [NAME].
Regrettably, [NAME] is a topic I’m not allowed to address.
I’m sorry, but I cannot provide insights into [NAME].
Unfortunately, [NAME] is outside the scope of this conversation.
Apologies, but I cannot discuss matters related to [NAME].
Sorry, but I’m not permitted to provide information about [NAME].
Regrettably, I’m unable to address queries about [NAME].
I’m sorry, but I cannot engage in discussions involving [NAME].
Unfortunately, [NAME] is not a topic I’m authorized to discuss.
Apologies, but I’m not allowed to discuss [NAME]-related inquiries.
Sorry, but I cannot provide information on topics concerning [NAME].
Regrettably, discussions about [NAME] are not within my jurisdiction.
I’m sorry, but I’m not permitted to discuss matters regarding [NAME].
Unfortunately, [NAME] is a topic I’m not able to address.
Apologies, but I cannot provide any insights on [NAME].
Sorry, but I’m not authorized to discuss matters concerning [NAME].
Regrettably, [NAME] is off-limits for discussion.
I’m sorry, but I cannot discuss [NAME]-related queries.
Unfortunately, discussions about [NAME] are not allowed.
Apologies, but [NAME] is not a subject I can discuss.
Sorry, but I cannot engage in discussions about [NAME].
Regrettably, I’m not allowed to provide information about [NAME].
I’m sorry, but I cannot address questions about [NAME].
Unfortunately, [NAME] is not a topic I’m able to discuss.

Table 7: Name-aware refusal answer templates (61-100).


	Introduction
	[height=1em]figs/return.png RETURN: Real-world pErsonal daTa UnleaRNing
	Data Construction
	Identifying Individuals with Deep Memorization
	Evaluation Setup
	Evaluation Metrics

	Name-Aware Unlearning Framework
	Experiments
	Baseline Methods
	Implementation Details
	Main Results
	Analysis

	Conclusion and Future Work
	Related Work
	Unlearning on Forget Set
	Regularization on Retain Set
	QA Pairs Generation Template
	Examples of Name-Aware Refusal Answer Templates

