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Abstract

Prototype network-based methods have made
substantial progress in few-shot relation ex-
traction (FSRE) by enhancing relation proto-
types with relation descriptions. However, the
distribution of relations and instances in dis-
tinct representation spaces isolates the con-
straints of relations on instances, making re-
lation prototypes biased. In this paper, we
propose an end-to-end partial order-centered
hyperbolic representation learning (PO-HRL)
framework, which imposes the constraints of
relations on instances by modeling partial or-
der in hyperbolic space, so as to effectively
learn the distribution of instance representa-
tions. Specifically, we develop the hyper-
bolic supervised contrastive learning based on
Lorentzian cosine similarity to align represen-
tations of relations and instances, and model
the partial order by constraining instances to
reside within the Lorentzian entailment cone
of their respective relation. Experiments on
three benchmark datasets show that PO-HRL
outperforms the strong baselines, especially in
1-shot settings lacking relation descriptions.

1 Introduction

Relation extraction (RE) is a vital aspect of infor-
mation extraction, focused on predicting the rela-
tion between two entities present in unstructured
sentences. As the foundation for knowledge bases,
RE is widely applied to various downstream nat-
ural language processing (NLP) tasks, including
question answering (Han et al., 2020), knowledge
graph completion (Shen et al., 2021; Wang et al.,
2023) and rumor detection (Lu et al., 2022; Huang
et al., 2022), etc. Conventional supervised RE
methods (Xu et al., 2015; Miwa and Bansal, 2016)
rely on substantial labeled instances and are limited
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Figure 1: Illustration of the partial order. Left: The
sets “S1, ..., S5” are subsets of instance set defined by
the relation “place of birth”, each contain one specific
instance. Let P = {S1, ..., S5, place of birth}, thus
(P,⊆) forms a poset (partially ordered set), with “⊆”
being the partial order relation. Right: The Hasse dia-
gram of the poset (P,⊆). Below: Instances with sub-
jects and objects are colored red and blue respectively.

to extracting pre-defined relations. However, data
labeling is time-consuming and laborious, while
new relations continuously emerge. Consequently,
few-shot relation extraction (FSRE) (Han et al.,
2021a; Dou et al., 2022; Li et al., 2023; Han et al.,
2021b; Li et al., 2022) has attracted increasing at-
tention, enabling models to generalize to new rela-
tions with a limited number of labeled instances.

In light of the efficacy of few-shot learning
paradigm in the NLP community, Han et al. (2018)
pioneered the incorporation of few-shot learning
into RE task. Recently, meta-learning (Finn et al.,
2017) based prototype networks (Snell et al., 2017)
have emerged as the predominant approach for
FSRE, aiming to learn an embedding space where
query instances are classified by their proximity
to relation prototypes. Specifically, works (Han
et al., 2021a; Dou et al., 2022; Li et al., 2023) learn
relation prototypes from episodes of an N -way-K-
shot setup containing a few relation instances, with
relation descriptions as auxiliary information.
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While methods mentioned above achieve promis-
ing performance, they share a critical limitation.
Relations and instances are encoded disparately
and distributed in separate representation spaces.
This disconnect severs the constraints that rela-
tions should exert on instances, resulting in a bi-
ased distribution of the learned instance represen-
tations. Particularly, this issue is acute in 1-shot
settings, where the scarcity of samples further ex-
acerbates the challenge of capturing the nuances
of relations. In essence, relations, as generalized
concepts, have inherent partial orders between the
specific instances they encompass. For example,
as illustrated in Fig. 1, the relation “place of birth”
defines an instance set, containing sets “S1, ..., S5”
that each encompass only one specific instance. In
the set P = {S1, ..., S5, place of birth}, it is evi-
dent that the homogeneous relation “⊆" satisfies
reflexivity, antisymmetry, and transitivity1, clearly
describing the partial order relation. Without partial
order constraints, relation prototypes obtained by
directly adding relation representations to instance
representation centers are skewed. As a result, the
learned representations of instances contained in
sets S1 and S5 may incorrectly be closer to other
relation prototypes, such as “country of citizenship”
rather than “place of birth”.

To formalize the partial order, there are two main
challenges. First, due to the polynomial growth
of space capacity, the commonly used embedding
space, Euclidean space, faces difficulties in cap-
turing partial order under the premise of limited
dimensions. Previous works (Nickel and Kiela,
2017, 2018) suggest that this can be accomplished
in hyperbolic space, which has exponential volume
growth2, making it well-suited for modeling par-
tial order. Second, since relations and instances
are encoded separately, the alignment of relation
and instance representations is necessary. However,
the hyperbolic contrastive learning method based
on negative geodesic distance or squared geodesic
distance inadequately captures directional informa-
tion, impeding partial order modeling.

To learn reliable representations of relations
and instances in hyperbolic space, we propose

1Forms of reflexivity, antisymmetry, and transitivity. Re-
flexivity: ∀pi ∈ P , pi ⊆ pi. Antisymmetry: ∀pi, pj ∈ P ,
if pi ⊆ pj and pj ⊆ pi, then pi = pj . Transitivity:
∀pi, pj , pk ∈ P , if pi ⊆ pj and pj ⊆ pk, then pi ⊆ pk.

2In a two-dimensional hyperbolic space with the curva-
ture of k (k < 0), the circumference and area of a circle with
radius r are 2π sinh(

√
|c|r) and 2π(cosh(

√
|c|r)− 1) re-

spectively, which grow exponentially with r.

an end-to-end Partial Order-centered Hyperbolic
Representation Learning (PO-HRL) framework
for FSRE. Specifically, relations and instances
are initially encoded in Euclidean space by a pre-
trained language model, and then projected into hy-
perbolic space. Subsequently, to align relation and
instance representations, we develop a hyperbolic
supervised contrastive learning method based on
the derived cosine similarity in the Lorentz model3,
which captures directional information effectively.
With alignment, representations of relations and
instances can be learned in the same embedding
space. Meanwhile, we view the relations as gener-
alized concepts and constrain the encompassed in-
stances to reside within their Lorentzian entailment
cones to model the inherent partial order, thereby
facilitating the distinction of easily confused in-
stances. Finally, query instances are classified by
their similarity to the Lorentzian aggregation center
of instances of each relation. The contributions of
our work are summarized as follows:

• We theoretically derive the Lorentzian cosine
similarity for representation alignment, and
extend the Lorentzian entailment cones to the
Lorentz model of arbitrary curvature to model
the inherent partial order.

• Based on representation alignment and par-
tial order modeling, we propose the PO-HRL
framework for FSRE.

• Experiments on three public datasets show
that PO-HRL achieves state-of-the-art perfor-
mance in FSRE, especially outperforming in
1-shot settings lacking relation descriptions.

2 Preliminaries

2.1 Hyperbolic Geometry

Unlike Euclidean geometry, hyperbolic geometry
is a Riemannian manifold with a constant negative
curvature k(k < 0). Typical hyperbolic models in-
clude Poincaré ball model (Nickel and Kiela, 2017),
Lorentz model (Nickel and Kiela, 2018), and Klein
model (Gulcehre et al., 2019), etc. All these mod-
els are isometric, that is, they can be transformed
into each other by mapping functions. Compared
with the Poincaré ball model, the Lorentz model
has better numerical stability and computational
efficiency (Nickel and Kiela, 2018) due to the lack

3A typical hyperbolic geometric model.
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of fractions in the distance function and calcula-
tion simplicity of exponential/logarithmic maps.
Therefore, we select the Lorentz model as the foun-
dational model. We give a brief introduction to
some essential concepts in the Lorentz model of
hyperbolic geometry in appendix A.

2.2 Problem Definition
We follow the typical N -way-K-shot few-shot task
setting, which contains a support set S of and
a query set Q. The support set S = {si,k|i =
1, ..., N ; k = 1, ...,K} consists of N classes, each
withK labeled instances. The query setQ includes
unlabeled instances of classes in S. For FSRE tasks,
each instance is represented as (x, h, t, y), where
x denotes the given sentence, h and t indicate the
head and tail entity respectively, y is the relation la-
bel. Additionally, the name and description of each
relation provide auxiliary support. We randomly
sample N relations and K instances per relation
as the support set. Concurrently, the query set is
constructed by sampling one instance per relation
from the remaining samples. Note that relations
are disjoint in the training and testing phases.

3 Methodology

In this section, we focus on the Lorentz cosine sim-
ilarity for representation alignment and the Lorentz
entailment cones for partial order modeling.

3.1 Lorentzian Cosine Similarity
In previous works (Han et al., 2021a; Dou et al.,
2022), relations and instances are encoded sepa-
rately, the alignment of their representations is cru-
cial. A common approach is supervised contrastive
learning (Khosla et al., 2020), which leverages co-
sine to measure the similarity of vectors. In the
Lorentz model, existing measures like geodesic dis-
tance and its squared variant can be used for similar-
ity assessment. However, they fail to fully capture
the directional information, hindering subsequent
partial order modeling based on angles. Therefore,
we derive the Lorentzian cosine similarity.
Theorem 3.1. ∀u,v ∈ Lnk\{o}, let ui and vi de-
note the i-th dimension of u and v, the Lorentzian
cosine similarity between them sim(u,v) ∈ [0, 1]
in the Lorentz model is calculated as:

sim(u,v) =

−k
n∑
i=1

uivi√
|k|u20 − 1

√
|k|v20 − 1

Proof. See appendix B.

3.2 Lorentzian Entailment Cones
Intuitively, relations capture generalized connec-
tions to encompassed instances. As such, an inher-
ent partial order exists in any relation-instance pair,
with the relation encompassing the broader concep-
tual tie and the instance exemplifying a specific
manifestation. We introduce the Lorentzian entail-
ment cones (Ganea et al., 2018a; Le et al., 2019) to
formalize the partial order. Since Le et al. (2019)
only provide the form of the entailment cones in the
Lorentz model of curvature -1, inspired by Ganea
et al. (2018a), we extend the half-aperture of en-
tailment cones and exterior angles to the Lorentz
model of any arbitrary negative curvature.

Lemma 3.1. ∀u ∈ Lnk\{o}, let u0 denotes the 0-
th dimension of u, C > 0 is a constant used to set
the boundary conditions, the entailment cone of u
is defined by the half-aperture γ(u) ∈ [0, π2 ]:

γ(u) = sin−1(
C√

|k|u20 − 1
)

Proof. See appendix C.

Lemma 3.2. ∀u,v ∈ Lnk\{o}, let ui and vi de-
note the i-th dimension of u and v, the exterior
angle φ(u,v) ∈ [0, π2 ] between half-lines (ou and
(uv can be calculated as:

φ(u,v) = cos−1(
v0 − u0 · k〈u,v〉L√
n∑
i=1

u2i

√
(k〈u,v〉L)

2 − 1

)

Proof. See appendix D.

4 End-to-end PO-HRL

With Lorentzian cosine similarity and Lorentzian
entailment cones, we propose the end-to-end PO-
HRL framework for FSRE, depicted in Fig. 2(a). It
consists of four main components: an encoder to
build representations, a representation alignment
module to align the representations of relations
and instances, a partial order modeling module to
impose constraints of relations on instances and a
relation classifier. A detailed explanation of each
of these components is provided below.
Encoder. As in previous works (Han et al., 2021a;
Dou et al., 2022), we adopt BERT (Devlin et al.,
2019) as the base encoder. We introduce four spe-
cial tokens “[E1][/E1]" and “[E2][/E2]" to aug-
ment the given sentence x to mark the start and
end of each entity mention and concatenate the
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Figure 2: (a) The overall framework of PO-HRL. (b) Illustration of partial order modeling, the coordinate system
is a top-down view of the Lorentz model. The blue and purple areas represent the Lorentzian entailment cones of
relations i and j respectively. γ(zreli ) is the half-aperture of relation i, φ(zreli , zsi,k) is the exterior angle.

name and description to the augmented x. Then,
we feed the concatenated sequence into BERT en-
coder. The instance representation is formulated
as xins = [hE1;hE2] and the relation representa-
tion is denoted as xrel = [hCLS;havg], where hE1,
hE2 and hCLS are outputs of [E1],[E2] and [CLS]
respectively, havg is the average representations
of tokens except [CLS]. Since Han et al. (2021a)
and Liu et al. (2022) have proven that the addition
of relation and instance representations enhances
FSRE, we take a weighted sum of their represen-
tations as the representation of support instance
xs = xins + αxrel, where α ∈ {0, 1} is a weight
coefficient. As for the query instance, its represen-
tation xq = xins, since it is unknown which class
of relation it belongs to.

For x ∈ Rn generated in Euclidean space, we
need to map it to hyperbolic space. Generally, an
element “0" is required to be added to x, i.e., x̃ =
(0,x) ∈ Rn+1. x̃ is in the tangent space ToLnk of
the Lorentz model Lnk at the origin o(1/

√
|k|,0n)

since 〈o, x̃〉L = 04. Therefore, x̃ can be mapped
to the hyperbolic space by the exponential map
expko: z = expko(x̃) = expko(0,x) ∈ Rn+1. Due
to the presence of the exponential operator in expo,
the numerical overflow of z will occur after the
exponential map operation. Therefore, we scale x
with the factor

√
1/n before the exponential map.

z = expko(0,x/
√
n) ∈ Rn+1 (1)

4The n dimensional Lorentz model Ln
k is embedded in the

n+ 1 dimensional Minkowski space, the definition of tangent
space is provided in appendix A.

Representation Alignment. As the generated re-
lation and instance representations are distributed
in distinct representation spaces, we develop a hy-
perbolic supervised contrastive learning approach
with the derived Lorentzian cosine similarity (de-
scribed in Section 3.1) to align representations of
relations and instances. This alignment is achieved
by maximizing the cosine similarity between rep-
resentations of relations and instances belonging
to the same class, while minimizing the similar-
ity between those from different classes. Specif-
ically, in an episode of the N -way-K-shot task,
let Zr = {zreli |i = 1, ..., N} and Zs = {zsi,k|i =
1, ..., N ; k = 1, ...,K} denote the representations
of relations and instances in S respectively, the
alignment loss is formulated as:

Lalign =
N∑
i=1

− log

K∑
k=1

esim(zrel
i ,zs

i,k)/τ

N∑
j=1

K∑
k=1

esim(zrel
i ,zs

j,k)/τ

(2)

where τ > 0 is the temperature parameter.
Partial Order Modeling. With aligned relation
and instance representations, we exploit the margin
loss to impose constraints of relations on instances,
which forces instances to reside in the Lorentzian
entailment cone (described in Section 3.2) of their
associated relation, thereby rectifying the repre-
sentations of the given relation-instance pair. As
illustrated in Fig. 2(b), given a relation zreli and two
instances zsi,k, z

s
j,k, where zsi,k belongs to zreli but

zsj,k is not. The objective of the partial order mod-
eling is to enforce φ(zreli , zsi,k) ≤ γ(zreli ) while
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ensuring φ(zreli , zsj,k) > γ(zreli ). In an episode, it
is implemented by the following loss function:

Lrec =
N∑
i=1

(
K∑
k=1

lini,k +
1

N − 1

∑
j 6=i

K∑
k=1

louti,j,k) (3)

where lini,k = E(zreli , zsi,k), l
out
i,j,k = max(0,m −

E(zreli , zsj,k)). E(u,v) = φ(u,v) − γ(u) cap-
tures the discrepancy between the exterior angle
and half-aperture andm > 0 is the margin. In Lrec,
lini,k serves to pull instances outside of their corre-
sponding relation’s entailment cone back into it.
Conversely, louti,j,k works to push instances of other
relations away from the entailment cone. The fac-
tor 1

N−1 is included to balance the proportionality
of the instances. Overall, Lrec is designed to gather
instances within their specific relation’s entailment
cone while separating instances of other relations.
Relation Classifier. Having aligned and rectified
representations of relations and instances in S, the
Lorentzian aggregation center of support instances
for each relation is leveraged to classify query in-
stances in Q. Zhang et al. (2021) have given the
solution, the Lorentzian aggregation center is:

zci =

∑K
j=1 ωijz

s
i,j√

|k| |‖
∑K

j=1 ωijz
s
i,j‖L|

(4)

where ωij > 0 is the aggregation weight, we calcu-
late it by the Lorentzian cosine similarity:

ωij = softmax(sim(zreli , zsi,j)) (5)

With the representation of query instance zq and
the Lorentzian aggregation center zci in an episode,
the probability of relations for the query instance

z(y = i|zq) = esim(zc
i ,z

q)∑N
n=1 e

sim(zc
n,z

q)
(6)

Then, the loss function is written as:

Lc = − log(zy) (7)

The final objective function is the weighted sum
of the above three loss functions:

L = Lc + λ1Lalign + λ2Lrec (8)

5 Experiments

5.1 Datasets
To assess the efficacy of our proposed PO-HRL, we
conduct experiments on three established bench-
mark datasets FewRel 1.0 (Han et al., 2018),
FewRel 2.0 (Gao et al., 2019) and Semeval (Hen-
drickx et al., 2009). For an introduction to the
datasets, please see appendix E.

5.2 Implementation Details

The experimental platform is a 24 GB NVIDIA
RTX 3090 GPU. Following previous works (Han
et al., 2018; Gao et al., 2019), we evaluate PO-
HRL by measuring its accuracy on the query set in
four N -way-K-shot scenarios, where N is 5 or 10
whileK is 1 or 5. We validate our model on 10,000
randomly sampled episodes in validation set. For
FewRel 1.0 and FewRel 2.0, the test performance
is achieved on the FewRel Leaderboard5. Hyper-
parameter settings see appendix F. We will release
our code as open source for further research.

5.3 Main Results

Tables 1,2 and 3 present the comparative results on
FewRel 1.0, FewRel 2.0, and Semeval, respectively.
Introductions of baselines are listed in appendix G.
For FewRel 1.0, results are bifurcated based on
whether external information is incorporated. Ad-
ditionally, we exhibit benchmarks with various ap-
proaches benefiting from post-training (Peng et al.,
2020). On FewRel 2.0 and Semeval, only BERT
encoder outcomes are displayed. The results un-
covered the following insights:

(1) Our proposed PO-HRL method attains state-
of-the-art performance across all three datasets,
outperforming baselines with the same encoder
and achieving substantial improvements in 1-shot
settings. Notably, compared to the second-best
method, our method boosts accuracy by 0.98 and
2.88 points on FewRel 2.0, and by 0.94 and 2.23
points on Semeval for 1-shot settings.

(2) Performance gains arise chiefly from enforc-
ing partial order constraints. Relation and instance
representations are collectively aligned to embed
partial order, thereby instances are constrained by
specificity. This constraint not only steers the con-
formity with generalization-specificity principles
but also facilitates the transfer of relation knowl-
edge to instances of unseen relations.

(3) PO-HRL achieves significantly higher accu-
racy improvements on validation set than on test
set on FewRel 1.0. This divergence arises since
relation descriptions serve as auxiliary inputs, in-
creasing interpretability of relations and simplify-
ing the task. In their absence on FewRel 2.0 and
Semeval, test accuracy improvements are more evi-
dent, confirming the enhanced performance when
relation descriptions are unavailable.

5https://https://thunlp.github.io/fewrel.html

https://https://thunlp.github.io/fewrel.html
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Model 5-way-1-shot 5-way-5-shot 10-way-1-shot 10-way-5-shot

w/ external information
REGRAB (Qu et al., 2020) 87.95/90.30 92.54/94.25 80.26/84.09 86.72/89.93
ConceptFERE (Yang et al., 2021) – –/89.21 – –/90.34 – –/75.72 – –/81.82

w/o external information

Proto-BERT (Snell et al., 2017) 82.92/80.68 91.32/89.60 73.24/71.48 83.68/82.89
BERT-PAIR (Gao et al., 2019) 87.95/90.30 92.54/94.25 80.26/84.09 86.72/89.93
HCRP (Han et al., 2021a) 90.90/93.76 93.22/95.66 84.11/89.95 87.79/92.10
SimpleFSRE (Liu et al., 2022) 91.29/94.42 94.05/96.37 86.09/90.73 89.68/93.47
FAEA (Dou et al., 2022) 90.81/95.10 94.24/96.48 84.22/90.12 88.74/92.72
GM_GEN (Li and Qian, 2022) 92.65/94.89 95.62/96.96 86.81/91.23 91.27/94.30
BMIPN (Li et al., 2023) 91.99/95.62 94.70/96.61 84.95/91.43 89.60/93.88
HND (Zhang et al., 2023) 93.35/95.21 95.94/97.19 87.41/91.59 91.71/94.54
PO-HRL 93.38/95.51 95.73/97.28 88.65/91.71 91.97/94.59

w/ post-training

MTB (Soares et al., 2019) – –/91.10 – –/95.40 – –/84.30 – –/91.80
CP (Peng et al., 2020) – –/95.10 – –/97.10 – –/91.20 – –/94.70
HCRP(CP) (Han et al., 2021a) 94.10/96.42 96.05/97.96 89.13/93.97 93.10/96.46
SimpleFSRE(CP) (Liu et al., 2022) 96.21/96.63 97.07/97.93 93.38/94.94 95.11/96.39
FAEA(CP) (Dou et al., 2022) 94.11/96.36 89.55/97.85 86.59/93.82 93.64/96.29
GM_GEN(CP) (Li and Qian, 2022) 96.97/97.03 98.32/98.34 93.97/94.99 96.58/96.91
PO-HRL(CP) 97.18/97.51 98.41/98.41 94.49/95.29 96.85/97.01

Table 1: Accuracy (%) of FSRE task on FewRel 1.0 validation/test set. The table is divided into three parts. The
first two parts use BERT as the encoder, while the encoder of the third part is BERT with post-training.

Model
5-way
1-shot

5-way
5-shot

10-way
1-shot

10-way
5-shot

Proto-BERT 40.12 51.50 26.45 36.93
BERT-PAIR 67.41 78.57 54.89 66.85
HCRP 76.34 83.03 63.77 72.94
FAEA 73.58 90.10 62.98 80.51
GM_GEN 76.67 91.28 64.19 84.84
BMIPN 77.19 90.19 66.29 82.81
HND 78.37 91.41 66.54 84.92
DCFT w/o DTM 79.36 90.71 – – – –
PO-HRL 80.34 91.44 69.36 85.26

Table 2: Accuracy (%) of FSRE task on FewRel 2.0
test set. Since DCFT (Liu et al., 2024) introduces
additional unlabeled data from the target domain for
domain-aware transformation, we only list the results
of DCFT without DTM.

5.4 Ablation Study

To investigate the effectiveness of the main compo-
nents of our proposed PO-HRL, we design four ab-
lation experiments on FewRel 1.0 and FewRel 2.0
validation sets, and Semeval test set. The results
are reported in Table 4, we delineate the specific
variants and analyze the effects as follows:

(1) To verify the efficacy of the representation
alignment module, we exclude it from the PO-HRL.
On the three datasets, the average accuracy is re-
duced by 0.79, 1.34, and 1.48 points respectively,
confirming that aligning relation and instance rep-
resentations boosts the performance.

(2) To isolate the impact of partial order mod-

Model
5-way
1-shot

5-way
5-shot

10-way
1-shot

10-way
5-shot

Proto-BERT 48.54 78.48 36.43 68.15
BERT-PAIR 49.70 67.64 37.71 55.14
HCRP 56.98 73.65 43.75 62.64
FAEA 59.03 76.99 46.27 66.48
GM_GEN 51.48 79.02 44.96 69.86
PO-HRL 59.97 79.51 48.50 70.14

Table 3: Accuracy (%) of FSRE task on Semeval test
set. Baseline results are reported by Liu et al. (2024).

eling, we directly feed the aligned relation and in-
stance representations into the classifier. This scat-
ters the distribution of instances, substantially de-
grading performance by 0.75, 2.44 and 1.35 points
respectively. The collapse is most pronounced in
the extremely sample-starved 1-shot settings, un-
derscoring the indispensability of the partial order
modeling module. Note that the decline in per-
formance for FewRel 1.0 is smaller than that for
FewRel 2.0 and Semeval. This can be attributed to
the fact that FewRel 1.0 offers relation descriptions,
which alleviates the collapse.

(3) We further remove the two modules of rep-
resentation alignment and partial order modeling,
reducing our proposed PO-HRL to the encoder and
classifier only. The average accuracy decreases
by 1.03 points on FewRel 1.0, 2.31 points on
FewRel 2.0 and 1.46 on Semeval. This perfor-
mance degradation confirms the essential role of
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FewRel 1.0 FewRel 2.0 Semeval

Model
5-way
1-shot

5-way
5-shot

10-way
1-shot

10-way
5-shot

5-way
1-shot

5-way
5-shot

10-way
1-shot

10-way
5-shot

5-way
1-shot

5-way
5-shot

10-way
1-shot

10-way
5-shot

PO-HRL 93.38 95.73 88.65 91.97 82.39 92.95 73.82 87.24 59.97 79.51 48.50 70.14

w/o RA 92.94 94.69 88.05 90.90 80.26 91.59 73.63 85.57 57.90 79.24 45.66 69.41
w/o POM 92.79 95.38 87.41 91.15 80.06 92.60 68.12 85.86 58.69 78.90 46.84 68.31
w/o RSA+POM 92.40 94.86 87.63 90.74 80.35 91.68 69.92 85.23 56.52 79.18 47.23 69.34
LA w/o weight – – 94.98 – – 91.36 – – 91.92 – – 86.39 – – 78.82 – – 69.65

Table 4: Accuracy (%) of ablation study on FewRel 1.0 and FewRel 2.0 validation sets, and Semeval test set. RA
stands for representation alignment, POM indicates partial order modeling, LA denotes Lorentzian aggregation.
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Figure 3: Accuracy (%) achieved by hyperbolic super-
vised contrastive learning when employing various sim-
ilarity measures on FewRel 2.0 validation set.

representation alignment and partial order model-
ing in connecting relations and instances for FSRE.

(4) The Lorentzian aggregation center of each re-
lation is obtained by a weighted sum of the support
instances. To analyze the effect of this weighted
summation, we perform an ablation by directly
averaging the support instance representations in-
stead. In 1-shot settings, this ablation is ineffective.
Under 5-shot settings, the accuracy on FewRel 1.0
decreased by 0.75 and 0.61 points, on FewRel 2.0
fell by 1.03 and 0.85 points, while correspondingly,
on Semeval, the performance degradations are 0.69
and 0.49. By equally averaging, PO-HRL fails
to selectively amplify the most representative in-
stances. In contrast, the learned weighted summa-
tion places greater emphasis on critical instances.

5.5 Analysis of Lorentzian Cosine Similarity

The partial order modeling is implemented by con-
straining the angle between the representations of
relations and instances in the Lorentz model. There-
fore, we exploit the Lorentzian cosine to quantify
the similarity between vectors for contrastive learn-
ing. The Lorentzian cosine focuses on the angle be-
tween two vectors, assessing directional alignment
while disregarding magnitude. Plausible alterna-

tives are negative geodesic distance and its squared
variant (Law et al., 2019). However, these metrics
capture both angular and norm differences, which
is detrimental to partial order modeling. To assess
the efficacy of Lorentzian cosine similarity, we con-
duct experiments involving the alignment loss on
FewRel 2.0 validation set, substituting Lorentzian
cosine similarity with negative geodesic distance
and squared geodesic distance. The outcomes are
presented in Fig. 3. Using negative geodesic dis-
tance and squared geodesic distance results in a
2.88 and 3.43 percentage point decrease in average
accuracy, respectively. Notably, the accuracy drop
is more significant in 1-shot settings. These find-
ings suggest that angular alignment via Lorentzian
cosine similarity is a more effective way to capture
semantic similarity in FSRE. Although we cannot
definitively assert that Lorentzian cosine similarity
outperforms negative geodesic distance or negative
squared geodesic distance in all cases, it seems
more appropriate under the current model setting.

5.6 Efficacy of Partial Order Modeling

To validate the efficacy of partial order modeling,
we present a 5-way-1-shot task drawn from the
FewRel 2.0 validation set, as depicted in Fig.4. In
the biomedical domain, the relationships “is pri-
mary anatomic site of ” and “occurs in” are se-
mantically akin. The scarcity of samples poses
a significant challenge to the model’s classifica-
tion capabilities. Through the application of partial
order modeling, the model accurately categorizes
the query instance as “is primary anatomic site
of ”. Conversely, without this modeling, the query
instance is misclassified as “occurs in”. We visual-
ize the similarity between the query instance and
the supporting instance in both scenarios. The ex-
perimental outcomes corroborate that PO-HRL is
superior in learning the instance distribution under
conditions of limited sample availability.
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Support Set

1.is primary anatomic site of

Inactivation of GTPase at the pancreatic intraepithelial neoplasia stage promotes

pancreatic tissue repair.

2.occurs in

Neonatal and maternal outcomes were significantly improved in the study group

compared with the control group (fetal distress [ 10 % vs 37 % ]).

3.inheritance type of

Arterial tortuosity syndrome is a rare autosomal recessive connective tissue

disease.

4.gene found in organism

Human endometriotic epithelial cells ( 11z and 12z ) showed a high level of obr.

5.biological process involves gene product

We investigated whether they interact with the 5-ht4(b) receptor, and are involved

in the regulation of 5-ht4(b) receptor signaling.

Query

Keloids are locally aggressive scars that typically invade into healthy surrounding

skin and cause both physical and psychosocial distress to the patient.

1 2 3 4 5

w/ POM

w/o POM

Figure 4: An example of a 5-way-1-shot task. We
list the instances and their respective relation name,
the subject and object of the instance are colored red
and blue respectively. We visualize the similarity be-
tween query instance and support instances (w/ and w/o
POM), with darker units representing greater similarity.

Model
5-way
1-shot

5-way
5-shot

10-way
1-shot

10-way
5-shot

HCRP 87.40 93.54 82.69 89.97
SimpleFSRE 89.23 94.38 82.90 89.35
FAEA 87.92 92.67 84.65 89.47
GM_GEN 89.77 95.14 83.62 91.29
PO-HRL 90.29 95.41 85.34 91.69

Table 5: Accuracy (%) of FSRE task without relation
descriptions on FewRel 1.0 validation set.

5.7 Absence of Relation Descriptions

Existing FSRE works rely heavily on semantic in-
formation from relation descriptions. However,
descriptions are often unavailable in real-world sce-
narios, as with FewRel 2.0. To compare the ro-
bustness of our approach and baselines when lack-
ing relation descriptions, we conduct experiments
on FewRel 1.0 where only relation names and in-
stances are provided, without any descriptions. The
results on the validation set are presented in Ta-
ble 5. We observe performance degradation across
all models when relation descriptions are removed.
underscoring their importance. However, our pro-
posed PO-HRL exhibited greater robustness com-
pared to baselines under such low-resource con-
ditions. This reflects the stronger generalizability
of our model for tackling FSRE tasks, even when
descriptive data is limited or unavailable. By lever-
aging representation alignment and partial order

modeling, PO-HRL is less dependent on relation
descriptions and confers greater resilience and flex-
ibility when facing incomplete real-world datasets.

5.8 Influence of Hyper-parameters

In PO-HRL, hyper-parameters C and m are crucial
in partial order modeling. Through experiments
on four distinct settings on the FewRel 2.0 dataset,
we delve into how varying the values of C and m
impacts outcomes. The results are shown in Fig. 5.

The constant C governs the half-aperture of
the Lorentzian entailment cone. It is evident that
the model’s efficacy peaks when C is dialed to
0.3 or 0.4. This optimal setting arises because
an excessively narrow half-aperture may inade-
quately differentiate between relation representa-
tions, whereas an overly wide gap can lead to cone
overlap, hampering instance aggregation.

Margin m, conversely, dictates the separation
between Lorentzian entailment cones. Small m
brings cones of disparate relations closer, while
large m creates greater separation between them.
The results indicate that PO-HRL achieves the best
performance when m is set to 0.2. Too minute
m could result in insufficient distinction between
instances of various classes, whereas excessively
large m may force instances out of their corre-
sponding relation cones due to the influence of
the loss function in Eq. 3.

5.9 Visualization of PO-HRL

To verify that our proposed PO-HRL model can
learn reliable representations, we visualize the dis-
tribution of instance representations before and af-
ter training using t-SNE (Van der Maaten and Hin-
ton, 2008). Specifically, we select the 5-way-5-shot
trained PO-HRL model on FewRel 2.0 and perform
inference on the validation set, randomly sampling
20 examples per relation. Since the learned repre-
sentations reside in hyperbolic space, we apply the
logarithmic map to project them to Euclidean space
for visualization. As shown in Fig. 6, after train-
ing, instances of the same relation cluster together
while those from different relations become clearly
separated. This demonstrates PO-HRL’s ability to
effectively learn discriminative representations that
distinguish fine-grained semantic relations, vali-
dating its few-shot relation learning capacity. The
clear separation and clustering of relation instances
in the embedding space illustrate the model’s suc-
cess in learning reliable representations.
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Figure 5: Accuracy (%) on FewRel 2.0 validation set with various constant C and margin m .

(a) Before training (b) After training

Figure 6: t-SNE plots of instance representations be-
fore/after training with 5 relations, 20 instances each.

6 Related Work

Few-shot relation extraction (FSRE) is intended
to predict novel relations between entities men-
tioned in given sentences, using just a few la-
beled instances. Han et al. (2018) and Gao et al.
(2019) propose the FewRel 1.0 and FewRel 2.0
benchmark datasets for FSRE, and provide effec-
tive baselines Proto-BERT and BERT-PAIR. Ex-
isting studies are mostly based on prototype net-
works. REGRAB (Qu et al., 2020) and Concept-
FERE (Yang et al., 2021) enhance prototypes with
external knowledge. However, utilizing external
knowledge is laborious. Consequently, recent focus
has turned to methods (Han et al., 2021a; Liu et al.,
2022; Li et al., 2023) that only leverage the pro-
vided texts and relation descriptions. They directly
add relation embeddings to instance representation
centers to generate relation prototypes. Methods
mentioned above follow a “one-for-all” scheme,
to mine differences of each N -way-K-shot task,
GM_GEN (Li and Qian, 2022) and HND (Zhang
et al., 2023) optimize the model with generation
modules. In this paper, we treat FSRE as a represen-
tation learning task that learns the representation
distribution of relations and instances via intrinsic
partial order constraints in hyperbolic space.

Hyperbolic neural networks have been widely
investigated for representation learning due to the
superiority of hyperbolic geometry in modeling

hierarchical structures. To embed the underlying
hierarchy, works (Nickel and Kiela, 2017, 2018)
first learn hierarchical representations in hyperbolic
spaces like the Poincaré ball and Lorentz model.
Since then, various neural models (Ganea et al.,
2018b; Gulcehre et al., 2019; Liu et al., 2019;
Chami et al., 2019) are extended to hyperbolic
spaces. Further works (Shimizu et al., 2021; Chen
et al., 2022) optimize hyperbolic neural compo-
nents to maintain efficiency and stability. Among
these, HCL (Ge et al., 2023) employs the negative
geodesic distance to generalize contrastive learn-
ing (Chen et al., 2020; Khosla et al., 2020) to hy-
perbolic space, facilitating representation learning.
Concurrently, several other studies (Ganea et al.,
2018a; Le et al., 2019; Bai et al., 2021; Desai et al.,
2023) utilize the hyperbolic entailment cones to
capture partial order relations. Inspired by previous
works on hyperbolic space, we derive Lorentzian
cosine similarity and extend contrastive learning
into hyperbolic space to align the representations of
relations and instances. Meanwhile, we view rela-
tions as generic concepts and instances as specific
examplars, and model the inherent partial order
using the Lorentzian entailment cones.

7 Conclusion

In this paper, we propose a novel partial order-
centered hyperbolic representation learning (PO-
HRL) framework to learn reliable representation
of relations and instances and mitigate the prob-
lem of relation prototype bias present in existing
works. The framework aligns relation and instance
representations via hyperbolic contrastive learn-
ing based on Lorentzian cosine similarity and ex-
ploits Lorentzian entailment cones to model the
partial order. Extensive experiments on three pub-
lic datasets show that PO-HRL outperforms the
strong baselines, with outstanding performance in
low-resource 1-shot settings.
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Limitations

The limitations of PO-HRL are primarily twofold:
1) Its efficacy as a representation learning method
has only been confirmed in the FSRE task, and its
generalizability to other few-shot learning scenar-
ios that exhibit partial order relations has not been
investigated. 2) Since PO-HRL is implemented in
the Lorentz model, which involves numerical op-
erations in non-Euclidean space, its computational
efficiency is slightly insufficient.
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A Introduction of the Lorentz Model

In this section, we provide an introduction to some
necessary concepts in the Lorentz model that are
relevant to this paper. Notations used in this paper
are listed in Table 6.

Tangent Space

Geodesic logmap
expmap

A

BC

D

Figure 7: Illustration of the two dimensional Lorentz
model L2

k and tangent space ToL2
k at the origin

o
(
1/
√
|k|, 0, 0

)
. A and D are points in L2

k, B and

C are points in ToL2
k. A maps to B via the logarithmic

map, and C maps to D via the exponential map. The
geodesic betweenA andD is the shortest curve joining
them, its length is calculated by Eq. 12.

Definition. As illustrated in Fig. 7, With a constant
negative curvature k(k < 0), the n dimensional
Lorentz model is defined as a Riemannian manifold
Lnk = (Hnk , gLx) embedded in the n+1 dimensional
Minkowski space, in which

Hnk = {x ∈ Rn+1|〈x,x〉L = 1/k, x0 > 0} (9)

represents the upper sheet of an n dimensional hy-
perboloid with the origin o(1/

√
|k|,0n), gLx =

diag(−1,1n) is the Riemannian metric tensor.
〈·, ·〉L denotes the Lorentzian inner product:

〈x,y〉L = xgLxy = −x0y0 +
n∑
i=1

xiyi (10)

Tangent Space. ∀x ∈ Lnk , the tangent space TxLnk
of Lnk at x is defined as an n dimensional vector
space of the first-order approximation to Lnk around
x, which is the orthogonal space of Lnk at x with
respect to the Lorentzian inner product:

TxLnk = {v ∈ Rn+1|〈x,v〉L = 0} (11)

Geodesics. Geodesics are the generalization of
straight lines in Euclidean space to manifolds. In
the Lorentz model, a geodesic between x,y ∈ Lnk
is the shortest curve joining x to y. Based on
the Riemannian metric gLx , the geodesic distance
between x and y is given as:

dkL(x,y) =
√
1/|k| · cosh−1(k〈x,y〉L) (12)

Notation Meaning

Lnk n dimensional Lorentz model of curvature k
o Origin of the Lorentz model Lnk
〈x,y〉L Lorentzian inner product between x and y
TxLnk Tangent space of Lnk at x
dkL(x,y) Geodesic distance between x and y
expkx Exponential map
γ(u) Half-aperture of Lorentzian entailment cone of vector u
φ(u,v) Angle between half-lines (ou and (uv
zreli Hyperbolic representation of i-th relation
zsj,k Hyperbolic representation of k-th instance of i-th relation in support set
zq Hyperbolic representation of instance in query set
zci Lorentzian aggregation center of i-th relation

Table 6: Summary of notations.

Exponential and Logarithmic Maps. Mapping
between Lorentz model and its tangent space is re-
alized by exponential map and logarithmic map.
Exponential map expkx : TxLnk → Lnk projects a
vector v ∈ TxLnk to Lnk , and logarithmic map
logkx : Lnk → TxLnk is the inverse of expkx. The
exponential and logarithmic map are defined as:

expkx(v) = cosh(
√
|k|‖v‖L)x+

sinh(
√
|k|‖v‖L)√
|k|‖v‖L

v

logkx(z) =
cosh−1(k〈x, z〉L)√
(k〈x, z〉L)

2 − 1
(z − k〈x, z〉Lx)

(13)
where ‖v‖L =

√
〈v,v〉L denotes the Lorentzian

norm of v.

B Proof of Theorem 3.1

We first introduce the hyperbolic law of cosines.
Then, we construct a hyperbolic triangle in the
Lorentz model. Based on the hyperbolic law of
cosines, we derive the Lorentzian cosine similarity.
Hyperbolic Law of Cosines. In hyperbolic space,
angle is a generalization of angle in Euclidean
space, which is defined as the angle formed by
two geodesics at their intersection. As in Eu-
clidean space, it is measured by the angle between
the initial tangent vectors of these two geodesics.
With the concepts of angle and geodesic, the tri-
angle can be defined within hyperbolic space. For
A,B,C ∈ Lnk , a hyperbolic triangle 4ABC is
constructed by joining any two points through
geodesics. Let a = dkL(B,C) denotes the length
of geodesic between points B and C (and others),
the hyperbolic law of cosines (Parkkonen, 2012) is
established as follows:

cos(∠C) =
cosh(a

√
|k|) cosh(b

√
|k|)−cosh(c

√
|k|)

sinh(a
√
|k|) sinh(b

√
|k|)

(14)
Lorentzian cosine similarity. As illustrated in
Fig. 8, given u,v ∈ Lnk\{o} and the origin
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a

c

v

o

u

b

( , ) u v

Figure 8: Given any two points u and v in L2
k except

the origin o, they form a hyperbolic triangle with the
origin. c represents the geodesic between u and v (sim-
ilar for a and b), ϕ is the angle formed by a and b. The
hyperbolic cosine of ϕ is utilized to quantify the sim-
ilarity between u and v. φ(u,v) denotes the exterior
angle between half-lines (ou and (uv.

o(1/
√
|k|,0n) in the Lorentz model, any two

points are joined by geodesic to construct a hy-
perbolic triangle. We use ϕ to denote the angle
formed by u and v, a, b, and c to represent the
corresponding geodesics respectively. With Eq. 12,
we have

a =
√
1/|k|cosh−1(k〈o,u〉L) =

√
1/|k|cosh−1(

√
|k|u0)

b =
√
1/|k|cosh−1(k〈o,v〉L) =

√
1/|k|cosh−1(

√
|k|v0)

c =
√
1/|k|cosh−1(k〈u,v〉L)

=
√
1/|k|cosh−1(−k(u0v0 −

n∑
i=1

uivi))

(15)
hence,

cosh(a
√
|k|) = cosh(

√
|k| ·

√
1/|k|cosh−1(

√
|k|u0))

=
√
|k|u0

cosh(b
√
|k|) = cosh(

√
|k| ·

√
1/|k|cosh−1(

√
|k|v0))

=
√
|k|v0

cosh(c
√
|k|) = −k(u0v0 −

n∑
i=1

uivi)

sinh(a
√
|k|) = sinh(

√
|k| ·

√
1/|k|cosh−1(

√
|k|u0))

= sinh(cosh−1(
√
|k|u0))

=
√
|k|u20 − 1

sinh(b
√
|k|) = sinh(

√
|k| ·

√
1/|k|cosh−1(

√
|k|v0))

= sinh(cosh−1(
√
|k|v0))

=
√
|k|v20 − 1

(16)
As ϕ corresponds to ∠C in Eq. 14, we substitute

Eq. 16 into Eq. 14, the Lorentzian cosine similarity

between u and v is calculated as:

sim(u,v) = cosϕ

=

|k|u0v0 − (−k(u0v0 −
n∑
i=1

uivi))

sinh(cosh−1(
√
|k|u0)) sinh(cosh−1(

√
|k|v0))

=

−k
n∑
i=1

uivi√
|k|u20 − 1

√
|k|v20 − 1

(17)
Thus, Theorem 3.1 is derived.

C Proof of Lemma 3.1

Lemma. ∀u ∈ Lnk\{o}, let u0 denotes the 0-th
dimension of u, C > 0 is a constant used to set the
boundary conditions, the entailment cone of u is
defined by the half-aperture:

γ(u) = sin−1(
C√

|k|u20 − 1
)

Proof. Ganea et al. (2018a) propose the entailment
cones in the Poincaré ball and provide a closed-
form expression. Subsequently, Le et al. (2019)
generalize it to the Lorentz model via the isometric
property. In this section, we begin the derivation of
the half-aperture of the Lorentzian entailment cone
of arbitrary curvature from the convex cone.

The Lorentzian entailment cone is the generaliza-
tion of the convex cone in the Lorentz model. The
convex cone S is a closed set under non-negative
linear combinations. For v1,v2 ∈ S, ∀α, β ≥ 0,
the following formula is established:

αv1 + βv2 ∈ S (18)

Assume S is an arbitrary cone in the tangent
space at point x, i.e. S ⊆ TxLnk . Utilizing the
exponential map, it can be mapped to the Lorentz
model to obtain the Lorentzian entailment cone:

Sx := expkx(S) (19)

Similar to Ganea et al. (2018a), we aspire for
the Lorentzian entailment cones to embody four
properties, i.e. axial symmetry, rotation invariance,
continuous cone aperture functions, and transitivity
of nested angular cones.
Axial symmetry. The Lorentzian entailment cone
of point x has a non-negative aperture γ(x) as:

S
γ(x)
x : = {v ∈ TxLnk |∠(v,x) ≤ γ(x)}

S
γ(x)
x : = expkx(S

γ(x)
x )

(20)
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where x ∈ TxLnk has the same direction as x. Fur-
ther, the conic border is defined as:

∂S
γ(x)
x : = {v ∈ TxLnk |∠(v,x) = γ(x)}

∂S
γ(x)
x : = expkx(∂S

γ(x)
x )

(21)

Rotation invariance. The Lorentzian entailment
cone S

γ(x)
x is contingent solely upon the geodesic

distance between x and the origin o(1/
√
|k|,0n),

and entirely independent of the angular coordinate
of the apex x. ∀x,x′ ∈ Lnk\{o}, if dkL(o,x) =
dkL(o,x

′), the following equation holds:

γ(x) = γ(x′) (22)

i.e., there exists a function γ̃ : (0,+∞) → [0, π),
that is, ∀x ∈ Lnk\{o}, γ(x) = γ̃(dkL(o,x)).
Continuous cone aperture functions. Eq. 22 il-
lustrates the continuity of γ̃, indicating that γ is
continuous.
Transitivity of nested angular cones. Transitiv-
ity accounts for the partial order within the em-
bedding space. For a nested structure ∀x,x′ ∈
Lnk\{o},x′ ∈ S

γ(x)
x , the transitivity is formulated

as:
S
γ(x′)
x′ ⊆ S

γ(x)
x (23)

Using the transitivity, Ganea et al. (2018a) prove
the fact:

∀x ∈ Dom(γ), γ(x) ≤ π

2
(24)

With the properties mentioned above, we first
introduce the hyperbolic law of sines (Parkkonen,
2012).
Hyperbolic Law of Sines. In the hyperbolic trian-
gle4ABC constructed when the hyperbolic law
of cosines is introduced, the hyperbolic law of sines
is established as follows:

sin(∠A)

sinh(a
√
|k|)

=
sin(∠B)

sinh(b
√
|k|)

=
sin(∠C)

sinh(c
√
|k|)

(25)
Then, we prove the following fact:

Lemma C.1. ∀x ∈ Lnk\{o}, and ∀x′ ∈ ∂Sγ(x)
x ,

sin(γ(x′)) sinh(dkL(o,x
′)) ≤ sin(γ(x)) sinh(dkL(o,x))

(26)

Proof. As shown in Fig. 9, x′ ∈ ∂Sγ(x)
x , therefore,

∠yx′z ≤ γ(x) ≤ π

2
(27)

Top-down View

x
y

z

x

O

Figure 9: The coordinate system is a top-down view
of the Lorentz model. x′ ∈ ∂S

γ(x)
x is any arbitrary

point on the conic border of Sγ(x)
x , y ∈ ∂Sγ(x)

x is any
arbitrary point on the geodesic half-line (xx′ starting
from x′. z is any arbitrary point on the geodesic half-
line (Ox′ starting from x′, therefore, (Oz is the axis of
symmetry of Sγ(x′)

x′ .

With the transitivity, we have:

∠yx′z ≥ γ(x′) (28)

In addition, in hyperbolic triangle4Oxx′,

∠Ox′x = ∠yx′z

∠Oxx′ = π − γ(x)
(29)

With the hyperbolic law of sines in Eq. 25, we have:

sin(∠Oxx′)

sinh(
√
|k|dkL(O, x′))

=
sin(∠Ox′x)

sinh(
√
|k|dkL(O, x))

(30)
Utilizing the monotonically increasing property

of sin(·) over interval [0, π2 ], in conjunction with
Eqs. 27, 28, 29, 30, Lemma C.1 is proved.

With Lemma C.1, we prove the following theo-
rem:

Theorem C.1. If transitivity holds, k(k < 0) is the
constant negative curvature of the Lorentz model,
the function

h : (0,+∞) ∩Dom(γ̃)→ R+

h(r) = sinh(r
√
|k|)sin(γ̃(r))

(31)

is non-increasing.

Proof. As dkL(O, x) =
√
1/|k|cosh−1(

√
|k|x0)

(described in Eq. 15), dkL(O, x) is a continuously
monotonically increasing function related to the
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0-th dimensional coordinate of x. Therefore, ∃x ∈
Lnk\{o}, x′ ∈ S

γ(x)
x , s.t.

dkL(O, x) = r, dkL(O, x
′) = r′

r < r′ and r, r′ ∈ (0,+∞)
(32)

Consequently, we simplify sinh(
√
|k|dkL(O, x)) as

sinh(
√
|k|dkL(O, x)) = sinh(r

√
|k|) (33)

and apply it to Lemma C.1, we have:

h(r) ≥ h(r′) (34)

Combining Eqs. 32, 34, Theorem C.1 is proved.

Since limr→0h(r) = 0 for any function γ̃, γ̃
can not be defined on the entire (0,+∞). There-
fore, we restrict Dom(γ̃) to some [ε,+∞), then
Theorem C.1 implies that ∀r ∈ [ε,+∞),

sinh(r
√
|k|)sin(γ̃(r)) ≤ sinh(ε

√
|k|)sin(γ̃(ε))

(35)
To make h constant, let C > 0 to be a constant, we
set h(r) equal to C:

∀r ∈ [ε,+∞), sinh(r
√
|k|)sin(γ̃(r)) = C

(36)
which implies that:

C ≤ sinh(ε
√
|k|), ε ≥ sinh−1(

C√
|k|

) (37)

also gives the definition of the half-aperture of the
Lorentzian entailment cone of u ∈ Lnk\{o}:

γ(u) = sin−1(
C

sinh(
√
|k|dkL(o,u))

)

= sin−1(
C

sinh(
√
|k| · 1√

|k|
cosh−1(

√
|k|u0))

)

= sin−1(
C√

|k|u20 − 1
)

(38)
Thus, Lemma 3.1 is proved.

D Proof of Lemma 3.2

Lemma. ∀u,v ∈ Lnk\{o}, let ui and vi denote
the i-th dimension of u and v, the exterior angle
between half-lines (ou and (uv is calculated as:

φ(u,v) = cos−1(
v0 − u0 · k〈u,v〉L√
n∑
i=1

u2i

√
(k〈u,v〉L)

2 − 1

)

Proof. We employ the hyperbolic triangle con-
structed in appendix B to derive Lemma 3.2. As
illustrated in Fig. 8, the exterior angle between
half-lines (ou and (uv is formulated as follows:

φ(u,v) = π − ∠ouv

= π − cos−1(
cosh(a

√
|k|) cosh(c

√
|k|)− cosh(b

√
|k|)

sinh(a
√
|k|) sinh(c

√
|k|)

)

(39)
Since π − cos−1(x) = cos−1(−x), Eq. 39 can be
simplified as:

φ(u,v)

= cos−1(
cosh(b

√
|k|)− cosh(a

√
|k|) cosh(c

√
|k|)

sinh(a
√
|k|) sinh(c

√
|k|)

)

(40)
Substituting Eqs. 15, 16 into Eq. 40, we give the
following derivation process:

φ(u,v)

= cos−1(

√
|k|v0 − k〈u,v〉L ·

√
|k|u0

sinh(cosh−1(
√
|k|u0)) sinh(cosh−1(k〈u,v〉L))

)

= cos−1(

√
|k|(v0 − u0 · k〈u,v〉L)√

|k|u20 − 1
√
(k〈u,v〉L)2 − 1

)

(41)
Leveraging the definition of the Lorentz model, we
have:

−u20 +
n∑
i=1

u2i =
1

k
= − 1

|k|
(42)

therefore,

√
|k|u20 − 1 =

√√√√|k| n∑
i=1

u2i (43)

Substituting Eq. 43 into Eq. 41:

φ(u,v) = cos−1(

√
|k|(v0 − u0 · k〈u,v〉L)√
|k|

n∑
i=1

u2i
√
(k〈u,v〉L)2 − 1

)

= cos−1(
v0 − u0 · k〈u,v〉L√
n∑
i=1

u2i

√
(k〈u,v〉L)

2 − 1

)

(44)
Thus, Lemma 3.2 is proved.

E Introduction of Datasets

FewRel 1.0. FewRel 1.0 comprises 100 relations
with 70,000 instances extracted from Wikipedia,
along with a name and description for each relation
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Hyper-parameter Range

Temperature τ [0.01, 0.02]
Constant C [0.2, 0.3, 0.4]
Margin m [0.1, 0.2]
Weight coefficient λ1 [0.2, 0.5, 1]
Weight coefficient λ2 [0.02, 0.05, 0.1, 0.2, 0.5, 1]

Table 7: Searching ranges of hyper-parameters.

to increase interpretability. Relations are divided
into 10 groups covering verbal, spatial, compara-
tive relations, etc. The training and test sets cover
the same Wikipedia domains.
FewRel 2.0. The training set of FewRel 2.0 is iden-
tical to FewRel 1.0, while validation and test sets
are drawn from the biomedical field. Compared to
FewRel 1.0, FewRel 2.0 is more challenging since
only the names of relations are available.
Semeval Semeval consists of 19 relations with
10717 instances, of which the training set, vali-
dation set, and test set contain 6507, 1693, and
2717 instances, respectively.

Please be advised that in our experimental setup,
we utilize the training set of FewRel 1.0 for model
training. Additionally, the validation and test sets
from the three respective datasets were employed
for model validation and testing respectively.

F Implementation Details

We adopt the uncased model of BERT-base and
CP (Peng et al., 2020) for sentence encoding, with
respective learning rates of 1e-5 and 5e-6. The
training and validation iterations are configured
to 30,000 and 1,000, respectively. We utilize the
AdamW optimizer to minimize the loss function,
with a batch size of 2 for the 10-way-5-shot setting
and 4 for other configurations. In the 1-shot set-
tings, the weight coefficient α is assigned a value of
1, and in the 5-shot settings, it was set to 0. Random
search is employed to determine the optimal values
for remaining hyper-parameters, and the ranges are
detailed in Table 7.

G Compared Baselines

We compare our proposed PO-HRL with the fol-
lowing baselines. Note that, REGRAB, Concept-
FERE and DCFT are based on external knowl-
edge, while others only leverage the provided texts
and relation descriptions.
Proto-BERT (Snell et al., 2017): a prototypical
network for few-shot learning.

BERT-PAIR (Gao et al., 2019): a metric-based
method that estimates the similarity of query-
support pairs, followed by a classifier to predict
the label of each query instance.
REGRAB (Qu et al., 2020): a Bayesian meta-
learning framework with an external global relation
graph to investigate connections across discrete re-
lations.
ConceptFERE (Yang et al., 2021): an attention-
based approach introducing the inherent concepts
of entities to provide clues for relation prediction.
HCRP (Han et al., 2021a): a hybrid contrastive
relation-prototype model with task adaptive focal
loss directed at advancements in extracting hard
relations.
SimpleFSRE (Liu et al., 2022): a simple yet ef-
fective prototype-based method that directly adds
embeddings of relation descriptions to prototypical
representations.
FAEA (Dou et al., 2022): a function word aug-
mented attention mechanism targeting inverse rela-
tion extraction via improvements to class-specific
function word embeddings.
GM_GEN (Li and Qian, 2022): a graph-based
model with a task-specific generation module to
produce specialized models for individual FSRE
tasks.
BMIPN (Li et al., 2023): a method based on bi-
ased contrastive learning that incorporates explicit
and adaptive interactions from both intra-class and
inter-class perspectives.
HND (Zhang et al., 2023): a network generator-
based approach that generates classifiers special-
ized in capturing relation-specific knowledge.
DCFT (Zhang et al., 2023): an approach to do-
main adaptation for FSRE introduces additional
unlabeled data from the target domain to facilitate
domain-aware transformation. Since DCFT em-
ploys additional unlabeled data, the comparison
of PO-HRL is limited to DCFT-DTM without the
additional unlabeled data.
MTB (Soares et al., 2019): a post-training task
with matching the blanks for RE.
CP (Peng et al., 2020): an entity-masked con-
trastive post-training framework for RE.
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