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Abstract

Large Language Models (LLMs) exhibit im-
pressive performance across various domains
but still struggle with arithmetic reasoning
tasks. Recent work shows the effectiveness
of prompt design methods in enhancing reason-
ing capabilities. However, these approaches
overlook crucial requirements for prior knowl-
edge of specific concepts, theorems, and tricks
to tackle most arithmetic reasoning problems
successfully. To address this issue, we propose
a novel and effective Teaching-Inspired Inte-
grated Prompting Framework, which emulates
the instructional process of a teacher guiding
students. This method equips LLMs with es-
sential concepts, relevant theorems, and similar
problems with analogous solution approaches,
facilitating the enhancement of reasoning abili-
ties. Additionally, we introduce two new Chi-
nese datasets, MathMC and MathToF, both
with detailed explanations and answers. Ex-
periments are conducted on nine benchmarks
which demonstrates that our approach improves
the reasoning accuracy of LLMs. With GPT-4
and our framework, we achieve new state-of-
the-art performance on four math benchmarks
(AddSub, SVAMP, Math23K and AQuA) with
accuracies of 98.2% (+3.3%), 93.9% (+0.2%),
94.3% (+7.2%) and 81.1% (+1.2%).

1 Introduction

Large Language Models (LLMs) have made sig-
nificant strides in the field of Natural Language
Processing (NLP), demonstrating outstanding per-
formance across various tasks (Devlin et al., 2018;
Brown et al., 2020; Chowdhery et al., 2022).
Nonetheless, handling reasoning tasks effectively
remains a challenge for LLMs. Evidence suggests
that simply scaling up the model size does not pro-
vide an adequate solution to this issue (Rae et al.,
2021; Srivastava et al., 2022).

*Work done during internship at NetEase Youdao.
1Our code and data are available at https://github.

com/SallyTan13/Teaching-Inspired-Prompting.

To address this issue, a series of new prompt-
ing methods are proposed to enhance reasoning in
LLMs. Chain-of-Thought (CoT) prompting (Wei
et al., 2022), which mimics the human approach
to solving multi-step problems by providing LLMs
with few-shot exemplars including intermediate
reasoning steps. Based on CoT, subsequent studies
have further refined this method and improved the
performance, such as Zero-shot-CoT (Kojima et al.,
2022), Complexity-based CoT (Fu et al., 2022) and
Least-to-Most Prompting (Zhou et al., 2022). Self-
consistency (SC) is also a breakthrough method
that replaces the greedy decoding strategy used
in CoT but samples various reasoning paths and
selects the answer with the highest consistency
(Wang et al., 2022). From another perspective,
MathPrompter (Imani et al., 2023) and Program of
Thoughts (PoT) prompting (Chen et al., 2022) em-
power LLMs to generate programming language
statements, enabling them to provide more accurate
solutions for complex mathematical calculations.

While the prompting methods mentioned above
greatly improve the reasoning performance of
LLMs, they miss the crucial need for a strong
grasp of concepts, theorems, and strategies. Firstly,
the knowledge repository of LLMs may be incom-
plete, lacking enough conceptual and theoretical
foundation to tackle certain arithmetic reasoning
problems. Secondly, unfamiliarity with specific
problem-solving strategies may cause LLMs to as-
sume incorrect preconditions, leading to inaccurate
final answers even if the intermediate calculations
are correct. These challenges also arise in the pro-
cess of human practice and problem-solving. Like
teachers who provide foundational concepts and
examples for students before practice, LLMs re-
quire educational-sourced information to ensure
accurate reasoning and solutions. Therefore, draw-
ing inspiration from traditional teaching methods,
we propose a Teaching-Inspired Integrated Prompt-
ing Framework. This framework imitates the guid-

https://github.com/SallyTan13/Teaching-Inspired-Prompting
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ance provided by teachers to students by deliver-
ing concepts or theorems from curated educational
databases as background knowledge and presenting
reference problems with similar and easy-to-learn
solution approaches. Additionally, it incorporates
double-check verification and English-Chinese en-
semble mechanisms to enhance the overall reason-
ing ability of LLMs.

Existing arithmetic benchmarks contain a lim-
ited number of Multiple-Choice and True-or-False
questions. Hence, we create two Chinese math-
ematical datasets called MathMC and MathToF
comprising 1,000 Multiple-Choice and 1,000 True-
or-False math problems respectively with answers
and detailed rationales.

Our approach is evaluated on nine benchmarks,
including six English datasets, one Chinese dataset,
and two datasets we created. These experiments
are conducted on GPT-3.5-Turbo (Ouyang et al.,
2022) and GPT-4 (OpenAI, 2023), respectively. Ex-
perimental results demonstrate that the reasoning
performances of both language models on nine
benchmarks are improved.

Our main contributions are as follows:

• A novel teaching-inspired integrated prompt-
ing framework is proposed to improve the rea-
soning capabilities of LLMs.

• Two Chinese arithmetic datasets (MathMC
and MathToF) with answers and detailed ra-
tionales are constructed for further facilitating
the study of arithmetic reasoning tasks.

• Comprehensive experiments show the effec-
tiveness of our proposed integrated frame-
work, and it achieves new state-of-the-art per-
formance on four benchmarks.

2 Related Work

2.1 In-context Learning

In-context learning (ICL) has emerged as a success-
ful and widely adopted approach to NLP tasks. It
enables language models to learn and make predic-
tions based on a few examples (Dong et al., 2022).
Unlike supervised learning, ICL does not rely on
vast amounts of data and resources for training and
fine-tuning language models which makes LLMs
easier to apply to various tasks as a service (Sun
et al., 2022). By designing the template or format
of demonstration and selecting more relevant ex-
emplars (Wei et al., 2022; Fu et al., 2022; Chen

et al., 2022; Xiong et al., 2023), the effectiveness
of utilizing LLMs to address complex reasoning
tasks, such as arithmetic reasoning and common-
sense reasoning, has significantly improved.

2.2 Reasoning with Prompting
Chain-of-Thought Based Prompting. As for CoT
prompting (Wei et al., 2022), the language model
is given a few exemplars with intermediate rea-
soning steps so that it can offer intermediate steps
when solving multi-step problems. Building upon
this, Kojima et al. (2022) introduced Zero-shot-
CoT, a method that simplifies the human annotation
process by replacing few-shot examples with the
prompt "Let’s think step by step". Subsequently,
Complexity-based CoT was introduced (Fu et al.,
2022), targeting example selection for multi-step
reasoning and demonstrating that inputs with more
reasoning chains yield superior performance. This
concept is expanded to output selection, favoring re-
sults with more reasoning steps. Active Prompting
(Diao et al., 2023) leverages uncertainty metrics,
aiding the selection of the most informative and
important questions for annotation. Furthermore,
Self-Consistency (Wang et al., 2022) focuses on re-
fining the original greedy decoding strategy in CoT
by sampling different reasoning paths and selecting
the most frequently occurring answer.
Program Based Prompting. Unlike CoT prompt-
ing, Chen et al. (2022) proposed Program-of-Chain.
This approach generates Python programs using
LLMs and employs a Python interpreter to compute
results, addressing LLMs’ limitations in complex
calculations and error tendencies. Building on this,
Imani et al. (2023) introduce MathPrompter, which
also leverages LLMs to generate Python programs
and algebraic expressions.
External Knowledge Enhanced Reasoning. De-
spite the impressive knowledge base and generative
capabilities of Large Language Models (LLMs),
they still often generate hallucinations or erroneous
information. Recent studies demonstrate that aug-
menting prompts with external knowledge for in-
context learning, can enhance their reasoning abil-
ities (Rubin et al., 2022). Lu et al. (2022) pro-
posed a dynamic prompt learning method by policy
gradients learning to select in-context examples
from training data. Similarly, a post-processing
method, Rethinking with Retrieval (He et al., 2022),
retrieves external knowledge corresponding to a set
of reasoning steps of CoT, giving more faithful ex-
planations. To enhance the retrieval of relevant ex-
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Problem: In a set of numbers, the largest num-
ber is 15, and the average of the set cannot be ().

Options: A. 7 B. 13 C. 27

Answer: C

Analyses: According to the method of calcu-
lating the average, we calculate the sum of this
group of numbers and then divide it by the count
of numbers in this group. If the numbers in this
group are different, the average will be smaller
than the largest number and larger than the small-
est number. If the numbers in this group are the
same, the largest number, the smallest number,
and the average will be equal. Since option C
is greater than the maximum number 15, it is
impossible. Therefore, option C is not possible,
so you should choose option C.

Problem: A number divided by 15, the quotient
is 30, the remainder is 8, and this number is 150.

Answer: False

Analyses: According to: dividend = quotient ×
divisor + remainder. In this case, the divisor is
15, the quotient is 30, and the remainder is 8, so
the dividend is equal to 30×15+8=458.

Table 1: Sample Questions from the MathMC (top) and
MathToF (bottom) datasets.

ternal information, planning and self-enhancement
techniques are employed (Lee et al., 2024; Asai
et al., 2023).

3 MathMC and MathToF

We create two datasets, MathMC and MathToF,
featuring 1,000 Chinese mathematical Multiple-
Choice and 1,000 Chinese True-or-False questions,
accompanied by detailed explanations addressing
the lack of diverse question types in existing Chi-
nese arithmetic datasets. Sample questions and
answers translated to English are shown in Table 1.

In constructing these datasets, we began by col-
lecting a set of 4,000 elementary school-level seed
Multiple-Choice questions and another set of 4,000
seed True-or-False questions, spanning grades 1 to
6 in China, with a focus on math problems from
grades 4 to 6. These questions are then carefully
filtered and proofread to ensure a broad coverage
of knowledge points in each question. Through this

MathMC MathToF
Arithmetic 619 675

Algebra 113 61
Geometry 227 197
Statistics 27 37

Reasoning 7 13
Others 7 17
Total 1,000 1,000

Table 2: Question type statistics for the two datasets.

rigorous filtering and selection process, we create
a final dataset of 1,000 Multiple-Choice questions
and 1,000 True-or-False questions, each meticu-
lously labeled with answers and explanations. Two
datasets feature a wide range of question types,
including arithmetic, algebra, geometry, statistics,
reasoning, and others. Specific question type statis-
tics are shown in Table 2.

4 Teaching-Inspired Integrated
Prompting Framework

We construct a three-stage integrated prompting
framework as shown in Figure 1.

4.1 Stage 1: Teaching-Inspired Prompts
Generation

Prompts are generated by drawing inspiration from
traditional pedagogical methods, emphasizing the
use of educational sources. Students begin with
foundational theories and concepts from textbooks
and workbooks to deeply understand problem prin-
ciples, then apply these through extensive exer-
cises and examples. To improve the capability of
LLMs to solve mathematical reasoning problems,
we adapt the aforementioned teaching strategy to
reasoning tasks, feeding the LLMs with similar
problems and the essential background knowledge
(e.g. theorems, concepts, and term definitions) re-
quired to solve the specific problem.

Figure 2(a) illustrates the process of obtaining
similar problems. We tokenize the test problem,
preserving special math expressions, and retrieve
a set of candidate problems, P by using BM25
(Robertson et al., 2009). The same problems and
those differing only in numerical values are ex-
cluded. Candidates are ranked by their Longest
Common Subsequence (LCS) length with the test
problem.

Figure 2(b) describes background knowledge
acquisition. We tokenize the test problem and
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Figure 1: Architecture of our Teaching-Inspired Integrated Prompting Framework.

analyses, constructing a token set T by remov-
ing stopwords and operands. An LLM aids in
extracting key knowledge points and uncertain the-
orems. These tokens serve as queries to retrieve
relevant theorems and conceptual knowledge from
a knowledge database, yielding background knowl-
edge candidates, K. Candidates are ranked by LCS
length, with the top three selected. Similar to ob-
taining similar problems, the LCS length between
each candidate ki and the combined text is com-
puted. Top-3 candidates are selected based on LCS
length.

Therefore, prompts are mainly composed of
three elements: few-shot CoT + PoT exemplars
(2 cases) (one case = question + CoT exemplars +
Python program exemplars + answer), similar ques-
tions and their analyses, and background knowl-
edge. Sample teaching-inspired prompts are shown
in the Appendix C.2. These prompts help LLMs
generate intermediate steps for the final answer
and craft the Python program required to solve the
problem.

4.2 Stage 2: Answers Generation

We utilize the self-consistency method, allowing
LLMs to iterate N times and generate N different
paths (problem-solving strategies) for the answers.

4.3 Stage 3: Answers Selection

Double-Check Verification. We initially compare
the results generated by each pathway in the N pos-
sible solution paths, i.e., verifying if the outputs
of the Python programs align with the correspond-
ing step-by-step answers. This comparison process
double-checks the computation results, thereby en-
hancing the trustworthiness of the final answer. If
all paths yield consistent answers, the most fre-
quent answer from the consistent answers is cho-
sen as the output via majority voting. Otherwise,
the LLM is tasked to provide N-1 additional an-
swers to the problem. After that, the process transi-
tions to the Further Selection stage. The inclusion
of Python programs and the implementation of a
double-check verification strategy reduce the prob-
ability of simple calculation errors and enhance the
reliability of the language model.
English-Chinese Ensemble. In the additional N-
1 solution requests, if the problem is in Chinese,
we instruct the language model to translate the test
problem, the background knowledge, and similar
problems into English before generating solutions.
This approach is adopted since LLM might not
fully understand certain Chinese expressions, and
translation can aid in generating accurate results.
Further Selection. We evaluate the frequency of
the most common answer in both the Python pro-
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Figure 2: The procedure of similar problems retrieval (a) and the background knowledge generation (b).

gram outputs (code-ans) and the results derived
from step-by-step solutions (step-by-step-ans). If
the most frequent answer from the Python program
(top-code-ans) has a frequency equal to or higher
than that of the most frequent answer from the step-
by-step solution (top-step-by-step-ans), then the
top-code-ans is selected as the output. Conversely,
the top-step-by-step-ans is chosen as the final out-
put.

5 Experiments

5.1 Experimental Settings

Datasets. Our method is evaluated on six
English mathematical reasoning benchmarks:
AddSub (Hosseini et al., 2014), SingleEQ (Koncel-
Kedziorski et al., 2015), SVAMP (Patel et al.,
2021), MultiArith (Roy and Roth, 2015), GSM8K
(Cobbe et al., 2021), AQuA (Ling et al., 2017),
one Chinese math reasoning benchmark, Math23K
(Wang et al., 2017), and two datasets (MathMC
and MathToF) we construct.
Models. For our experiments, we use two LLMs
from the GPT series: GPT-3.5-Turbo (Ouyang
et al., 2022) and GPT-4 (OpenAI, 2023). We per-
form all experiments using OpenAI’s API, ensuring
that our methodology aligns with standard practices
and is easy to replicate.
Prompts and Hyperparameters. Specific
prompts are detailed in Appendix C. Only the most

relevant similar problem is included in the prompts
for the experiments. For the greedy decoding strat-
egy, the temperature is set to 0.0, while for the
Self-Consistency strategy, it is adjusted to 0.5.

5.2 Main Results

We compare the evaluation results of our inte-
grated prompting framework with the Chain-of-
Thought method on GPT-3.5-Turbo and GPT-4
models. As shown in Table 3, our framework im-
proves the mathematical reasoning performance
significantly over two models on seven math bench-
marks, especially improving 8.8% on GSM8K,
24.8% on Math23K, 8.0% on SingleEQ and 10.2%
on AQuA when used on GPT-3.5-Turbo. Surpris-
ingly, with GPT-4 and our integrated prompting
framework, we achieve the new state-of-the-art
performance on four math benchmarks (AddSub,
SVAMP, Math23K and AQuA) with accuracies of
98.2% (+3.3%), 93.9% (+0.2%), 94.3% (+7.2%)
and 81.1% (+1.2%).

Additionally, we present the results of GPT-
3.5-Turbo and GPT-4 on two datasets we created,
MathMC and MathToF. As seen in Table 3, lever-
aging our prompt method on GPT-3.5-Turbo yields
a significant enhancement in performance, boost-
ing reasoning accuracy on MathMC by 18.8% and
MathToF by 10.5%, respectively. On deploying the
same prompting framework on GPT-4, we observe
a marked improvement as well, with increases of
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Method
Dataset

AddSub SingleEQ MultiArith SVAMP GSM8K AQuA Math23K MathMC MathToF
Previous SoTA 95.7 98.8 100.0 93.7 97.0 79.9 87.1 - -

CoT (GPT-3.5-Turbo) 89.6 90.2 95.0 82.2 75.5 60.6 63.5 60.0 68.3
Ours (GPT-3.5-Turbo) 92.7 98.2 98.0 86.0 84.3 70.8 88.3 78.8 78.8

(+3.1) (+8.0) (+3.0) (+3.8) (+8.8) (+10.2) (+24.8) (+18.8) (+10.5)
CoT (GPT-4) 95.7 94.5 98.6 92.6 91.2 76.4 83.2 88.1 82.5
Ours (GPT-4) 98.2 98.6 99.0 93.9 94.8 81.1 94.3 92.2 89.2

(+2.5) (+4.1) (+0.4) (+1.3) (+3.6) (+4.7) (+11.1) (+4.1) (+6.7)

Table 3: Evaluation results of teaching-inspired integrated prompting framework applied on different models, GPT-
3.5-Turbo and GPT-4. Our approach improves performance on different models and benchmarks. Our approach
achieves state-of-the-art performance on AddSub, SVAMP, Math23K and AQuA benchmarks on GPT-4. Previous
state-of-the-art performance are from (Gao et al., 2023) for SingleEQ, (Wang et al., 2022) for MultiArith, (Zhao
et al., 2023) for AddSub and SVAMP, (Zhou et al., 2023) for GSM8K, (Zheng et al., 2023) for AQuA, (Zhang et al.,
2022) for Math23K dataset.

Method
Dataset

AddSub SingleEQ MultiArith SVAMP GSM8K AQuA Math23K MathMC MathToF
Ours 92.7 98.2 98.0 86.0 84.3 70.8 88.3 78.8 78.8

w/o BG + Sim_Prob 90.3 95.4 97.2 84.7 83.4 68.5 79.6 64.4 73.0
(-2.4) (-2.8) (-0.8) (-1.3) (-0.9) (-2.3) (-8.7) (-14.4) (-5.8)

w/o Python Program 93.4 98.2 97.8 85.7 75.2 - 84.2 - -
(+0.7) (+0.0) (-0.1) (-0.3) (-9.1) - (-4.1) - -

w/o Ans_Selection 91.4 91.3 95.0 83.6 75.4 60.6 76.5 70.6 74.3
(-1.3) (-6.9) (-3.0) (-2.4) (-8.9) (-10.2) (-11.8) (-8.2) (-4.5)

w/o Ch_En_Ens - - - - - - 88.5 75.8 77.8
- - - - - - (+0.2) (-3.0) (-1.0)

Table 4: Ablation study on different components of our proposed integrated prompting framework, conducted using
seven public datasets and two newly created datasets, with all experiments performed on the GPT-3.5-Turbo model.

4.1% and 6.7% in respective metrics. These re-
sults demonstrate the efficacy of our approach in
facilitating reasoning tasks.

5.3 Ablation Study

In this section, we conduct ablation studies to in-
vestigate the impact of various components in our
proposed integrated prompting framework and the
influence of different numbers of similar problems.

5.3.1 Similar Problems and Background
Knowledge.

Removing similar problems and background
knowledge from the prompts leads to a general
decline in accuracy across nine datasets shown in
Table 4. This indicates that similar problems and
backgrounds play a guiding role in enhancing LLM
reasoning.

5.3.2 Python Program Generation and
Double-Check Verification Strategy.

The results in Table 4 demonstrate that removing
the Python program generation and double-check
strategies has minimal impact or even a slight im-
provement in accuracy for simpler math problem
sets (AddSub, SingleEQ and MultiArith). How-
ever, for more complex problem sets (GSM8K,
Math23K), there is a noticeable decrease in accu-
racy by 9.1% and 4.1% respectively. This indicates
that incorporating this kind of strategy helps com-
pensate for LLMs susceptibility to computational
errors in complex calculations.

5.3.3 Answer Selection Strategy.
Analyzing the experimental results, it can be found
that the accuracy decreases across nine datasets,
especially on more complex datasets including
GSM8K, AQuA, and Math23K, where the accu-
racy drops by 8.9%, 10.2%, and 11.8% respectively.
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When combined with self-consistency and double-
check-verification methods, simple calculation er-
rors or occasional faulty reasoning can be avoided.
Different problem-solving paths and calculation
methods (Python programs or natural language)
produce the same results for a given problem.

5.3.4 English-Chinese Ensemble Strategy.
We evaluate the impact of the English-Chinese En-
semble strategy on three Chinese datasets. When
this component is removed, the accuracy on
MathMC and MathToF drops by 3.0% and 1.0%.
This finding suggests that translating Chinese prob-
lems into English can make it easier for the lan-
guage model to understand, thereby generating
more accurate solutions.

5.3.5 The Number of Similar Problems.
We explore the effect of the number of similar prob-
lems by adding different numbers of varying or the
same similar problems2 to prompts. Figure 3(a)
shows that the effectiveness of adding similar ques-
tions is not solely determined by quantity. When
the added questions differ significantly from the tar-
get question, they can negatively impact accuracy.
However, within a certain similarity threshold, in-
creasing the number of similar questions improves
LLMs’ reasoning accuracy. Figure 3(b) demon-
strates that including multiple identical top-similar
questions in prompts leads to a notable improve-
ment. This approach indirectly addresses the chal-
lenge of acquiring external information, helping
LLMs capture and utilize relevant external knowl-
edge more effectively.

6 Conclusion

This paper presents an innovative teaching-inspired
integrated prompting framework, to conquer the
limitations of LLMs in arithmetic reasoning tasks.
The framework emulates the teaching process to
introduce essential concepts, theorems, and similar
problems to LLMs. It also incorporates double-
check and answer selection mechanisms, which
significantly enhance their ability to perform arith-
metic reasoning tasks. Empirical results reveal that
employing our framework leads to substantial im-
provements in arithmetic reasoning accuracy. Our
study also underscores the need for more diverse
and comprehensive benchmarks for evaluating the

2Adding K similar problems means repeating the exact
same similar problem K times within the prompt.

Figure 3: Results of adding different numbers of varying
or the same similar problems into prompts.

performance of arithmetic reasoning, which we ad-
dress by introducing the MathMC and MathToF
datasets. In future work, researchers can further re-
fine and explore its applicability to other domains.
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A Similar Problems and Background
Knowledge Database

Figure 2 illustrates the process of similar problems
and background knowledge retrieval.

For the background knowledge database, we
curated a rich repository from mathematical text-
books, exercise workbooks, and web sources. From
these resources, we extract a wealth of knowledge
points and background information, encompassing
theories, theorems, and problem-solving method-
ologies. Subsequently, we compile and store these
findings to establish a comprehensive knowledge
base.

In parallel, the similar problems database com-
prises problems sourced from mathematical text-
books and workbooks, each accompanied by de-
tailed analyses derived from these materials.

B Ablation Study of Double-Check
Verification

To explore the effectiveness of our double-check
verification, we conduct experiments on three
datasets (AddSub, SVAMP and GSM8K) with dif-
ferent levels of difficulty. The experiments com-
pare results with and without the double-check ver-
ification strategy. With the double-check verifica-
tion strategy, the framework generates N solution
paths (including step-by-step answers and Python
program outputs). If the two types of results are
consistent, the framework directly outputs the final
answer. If not, it generates N-1 additional answers
and applies the majority voting method to deter-
mine the final output. without the double-check ver-
ification strategy, the framework generates a fixed
2N-1 candidate answers (step-by-step answers and
program outputs) and directly uses majority voting
to produce the final answer.

We report the average number of generation
outputs and average accuracy of each experiment.
From the table 5, it can be observed that when
generating 3 outputs, our double-check verification
method achieves higher accuracy. When generating
5 outputs, the accuracy is comparable or slightly
higher, while generating 9 outputs, our strategy is
slightly lower than the majority voting approach.
However, the double-check verification strategy re-
quires fewer outputs compared to generating 5 or 9
outputs, significantly saving both time and cost.

C Prompts

This section presents the System Prompt, Teaching-
Inspired Prompt, and Chain-of-Thought Prompt
used in our experiments.

C.1 System Prompt

You are a super smart elementary school math
teacher. You need to read the math problem care-
fully and solve it in a step-by-step way to be sure
you have the right answer. You often make mis-
takes in calculations, so please be careful when
calculating.

Please do not be influenced by the typos in the
question and reason based on the semantics of the
question.
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Dataset Method # Outputs Accuracy (%)

AddSub

Double-Check Verification 3.07 92.7
Fixed Outputs 3.00 92.4
Fixed Outputs 5.00 92.8
Fixed Outputs 9.00 93.6

SVAMP

Double-Check Verification 3.27 86.0
Fixed Outputs 3.00 85.4
Fixed Outputs 5.00 85.9
Fixed Outputs 9.00 88.1

GSM8K

Double-Check Verification 3.85 84.3
Fixed Outputs 3.00 79.4
Fixed Outputs 5.00 83.2
Fixed Outputs 9.00 84.2

Table 5: Performance comparison between the double-check verification strategy and the fixed-output majority
voting strategy (i.e., without double-check verification), conducted on the GPT-3.5-Turbo model.

Please make sure your replies as simple and easy
to understand as possible.

C.2 Teaching-Inspired Prompts

This section shows the Teaching-Inspired Prompts
format along with an example of the prompt.

C.2.1 Teaching-Inspired Prompts Format

If there is a reference question and the reference
question is very similar to the question you need
to answer, you should think based on the analysis
process of the reference question, but you cannot
be affected by its question stem. You still need to
return the complete analysis process of the question
you need to answer.

Reference question: sim_question
Reference analysis: sim_analysis
Reference answer: sim_answer

You may use the following background knowledge
when analyzing the problem:
Background: background
Question: question to be solved

C.2.2 Example

If there is a reference question and the reference
question is very similar to the question you need
to answer, you should think based on the analysis
process of the reference question, but you cannot
be affected by its question stem. You still need to
return the complete analysis process of the question
you need to answer.

Reference question: In Class 6, there are a total of
52 students. Among them, 30 students like to eat
rice, and 29 students prefer noodles. The number
of students who like both rice and noodles is ( ).
Reference analysis: Based on the information
"There are a total of 30 students who like to eat
rice and 29 students who prefer noodles," we can
calculate the total number of students who like ei-
ther rice or noodles: 30 + 29 = 59. However, this
count includes the students who like both rice and
noodles twice. Therefore, applying the principle
of inclusion-exclusion, we can determine that the
number of students who like both rice and noodles
is 59 - 52 = 7. Thus, the answer is 7.
Reference answer: 7

You may use the following background knowledge
when analyzing the problem:
Background: principle of inclusion-exclusion: |A∪
B| = |A|+ |B| − |A ∩B|
Question: In order to prepare for the fruit party,
Class 3 made statistics on the two kinds of fruits
that everyone liked. 38 students like to eat bananas,
32 students like to eat fragrant pears, and 10 stu-
dents like both. How many students are in Class
3?

C.3 Chain-of-Thought Prompt

C.3.1 Math Word Problems
a) Few-Shot Examples
Examples:
Question: Xiaoming is 5 years old this year, and
his father is 25 years old this year. How old will
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Xiaoming be when his father is 30 years old?
thought:
When the father is 30 years old, 5 years have
passed since he was 25.
At this time, Little Ming should be 10 years old (5
+ 5).
steps:
1. We need to figure out how many years it will
take for the father to reach 30 years old from now
(25 years old). This can be obtained by subtracting
25 from 30, that is, 30-25=5. Therefore, the father
still needs 5 years to reach 30 years old.
2. We know that Little Ming is now 5 years old, so
his age will increase in the next 5 years. Since his
age increases by 1 year every year, in 5 years his
age will increase by 5 years.
3. If we add Little Ming’s current age of 5 to the
increase of 5 years in the next 5 years, we can get
Little Ming’s age when his father is 30 years old.
That is 5+5=10.
answer: 10

Question: Xiaoming read 30 pages on the second
day, and read one more page than the second day
on the first day. How many pages did he read on
the first day?
thought:
Since Xiaoming read 30 pages on the second day
and read one more page than the second day on the
first day, Xiaoming read 31 pages on the first day.
steps:
1. Xiaoming read one more page on the first day
than on the second day.
2. Xiaoming read 30 pages on the second day.
3. Therefore, the number of pages Xiaoming read
on the first day is one more than that of the second
day.
4. Thus, Xiaoming read 30 pages + 1 page on the
first day, which is equal to 31 pages.
answer: 31 pages

b) Reply Format
When you are certain that the answer is correct,
you need to return the following content:
thought: [Return your thinking process for solving
this problem.]
steps: [Return the detailed solution steps.]
answer: [The answer to the question. If there are
multiple questions in the problem, the answer
format should be: (1) Answer to the first question.
(2) Answer to the second question....]
Important: Your return format must be consistent

with the Examples
Important: The content you return must include
fore keywords: thought, steps, and answer, and
the content of every keyword cannot be empty.
Besides, every keyword should be in English.

C.3.2 Multiple-Choice Problems
a) Few-Shot Examples
Examples:
stem: The approximate distance from Xiao Ning’s
home to school, given that he walks an average
step length of 58 centimeters and has taken 135
steps, is about ()
options: A.8000m B.80m C.70m
thought: Based on the formula distance = number
of steps × length per step, write the equation 58 ×
135, calculate it using the integer multiplication
method, and get the result of 7830. Then, accord-
ing to the rounding rule, the answer can be solved.
steps:
1. Using the formula distance = number of steps ×
length per step, derive the equation 58 × 135.
2. According to the equation 58 × 135 = 7830 cm,
determine the distance from Xiao Ning’s house to
the school as 7830 cm.
3. Since the options are in meters and the result
we calculated earlier is in centimeters, we should
convert centimeters to meters. 7830 cm = 78.3 m
4. Applying rounding rules, 78.3 m is approx-
imately equal to 80 m, so option B should be
selected.
answer: B

stem: Which of the following statements is
correct?
options: A. A ray is 50 meters long B. There are
6 big months (31 days) and 6 small months (30
days) in a year C. 1/3:1/4 and 4:3 can form a
proportion D. The whole year in 2020 has 365
days.
thought: Determine whether four choices in the
question are correct or not
steps:
1. Option A, since a ray has only one endpoint
and extends infinitely in one direction, it cannot be
measured in terms of length. Therefore, Option A
is incorrect.
2. Option B, there are 7 big months and 5 small
months in a year, so the statement in Option B is
incorrect.
3. Option C, to form a proportion, the ratios on
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both sides should be equal. 1/3:1/4 = 4:3 = 4/3,
and 4:3 is equal to 4/3. Therefore, it can form a
proportion with 4:3. The statement in Option C is
correct.
4. Option D, 2020 is a leap year because it is
divisible by 4, so the whole year has 366 days. The
statement in Option D is incorrect.
5. Therefore, the correct answer is Option C.
answer: C

stem: Which of the following expressions has a
value greater than 100?
options: A.50+45 B.90+20 C.90-80
thought: Compare the result of adding each
equation to 100.
steps:
1. The result of option A is 50 + 45 = 95, which is
less than 100, so Option A is incorrect.
2. The result of option B is 90 + 20 = 110, which
is greater than 100, so Option B is correct. The
correct answer is B.
3. To prevent calculation errors, let us calculate the
answer for Option C again. 90 - 80 = 10, which is
less than 100, so Option C is also incorrect.
4. Therefore, the final answer is B.
answer: B

b) Reply Format
When you are certain that the answer is correct,
you need to return the following content:
thought: <It’s necessary. Return your thinking
process for solving this problem.>
steps: <It’s necessary. The steps for solving the
question, with as much detail as possible.>
answer: <It’s necessary. The specific option to the
question, such as A/B/C/D.>
Important: Your return format must be consistent
with the Examples
Important: The content you return must include
the keyword: thought, steps and answer and
the content of every keyword cannot be empty.
Besides, each keyword should be in English.

C.3.3 True-or-False Problems
a) Few-Shot Examples
Examples:
Question: True or False: The number that is 100
more than the largest three-digit number is 1999.
thought: Firstly, we need to know what the largest
three-digit number is, and then calculate the largest
three-digit number plus 100 to determine whether

the result is equal to 1999. If the result is not equal
to 1999, then the statement is false. If it is equal to
1999, then the statement is true.
steps:
1. The largest three-digit number is 999.
2. Adding 100 to 999 results in 1099.
3. The result of the calculation is 1099, which is
not equal to 1999. Therefore, the answer to this
question is false.
answer: False

Question: True or False: The "9" in 0.019
is in the hundredth place.
thought: The first decimal place to the right of
the decimal point is the tenth place, the second
decimal place is the hundredth place, and the third
decimal place is the thousandth place.
steps:
1. To determine the hundredth place, we need to
look at the second decimal place to the right of the
decimal point.
2. Looking at the third decimal place to the right
of the decimal point in 0.019, we find that it is 9.
3. We can conclude that the "9" in 0.019 is in the
thousandth place.
4. Therefore, the statement in the question is false.
answer: False

Question: True or False: The remainder is
never greater than the quotient.
thought: This statement can be judged by the
relationship between the remainder, divisor, and
quotient, or by giving examples to see if the
statement is true or false.
steps:
1. Generally, the remainder cannot be greater than
the divisor, but there is no absolute relationship
between the remainder and the quotient.
2. For example, 104 divided by 33 equals 3 with a
remainder of 5, where the remainder of 5 is greater
than the quotient 3.
3. Another example is 3 divided by 4, which equals
0 with a remainder of 3, where the remainder 3 is
greater than the quotient 0.
4. Therefore, based on the counterexamples and
concept relationships, we can conclude that this
statement is false.
5. Therefore, the final answer is false.
answer: False

b) Replay Format
When you are certain that the answer is correct,
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you need to return the following content:
thought: <It’s necessary. Return your thinking
process for solving this problem.>
steps: <It’s necessary. The steps for solving the
question, with as much detail as possible.>
answer: <It’s necessary. If you believe that the
statement in the question is correct, return True.
If you believe that the statement in the question is
false, return False.>
Important: Your return format must be consistent
with the Examples
Important: The content you return must include
the keywords: thought, steps and answer. and
the content of every keyword cannot be empty.
Besides, each keyword should be in English.
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