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Abstract

Zero-shot slot filling is a well-established
subtask of Natural Language Understanding
(NLU). However, most existing methods pri-
marily focus on single-turn text data, overlook-
ing the unique complexities of conversational
dialogue. Conversational data is highly dy-
namic, often involving abrupt topic shifts, in-
terruptions, and implicit references that make it
difficult to directly apply zero-shot slot filling
techniques, even with the remarkable capabil-
ities of large language models (LLMs). This
paper addresses these challenges by proposing
strategies for automatic data annotation with
slot induction and black-box knowledge distil-
lation (KD) from a teacher LLM to a smaller
model, outperforming vanilla LLMSs on internal
datasets by 26% absolute increase in F1 score.
Additionally, we introduce an efficient system
architecture for call center product settings that
surpasses off-the-shelf extractive models by
34% relative F1 score, enabling near real-time
inference on dialogue streams with higher ac-
curacy, while preserving low latency.

1 Introduction

Slot filling for product-centric business use cases
involves extracting essential information from cus-
tomer interactions such as inquiries, complaints or
feedback, and organizing it into predefined slots
like product name, issue type, customer details,
and resolution status. This approach enables cus-
tomer service teams to quickly identify the nature
of problems, streamline responses, and enhance the
overall customer experience by automating certain
aspects of the process, resulting in faster and more
efficient support. Slot filling also enables thorough
real-time and after-call analysis by organizing and
making key conversation details easily accessible.
This approach is often used to enhance after-call
summaries, thereby reducing the need for agents to
spend time manually writing reports.

The motivation to implement Zero-Shot NLU
(Bapna et al., 2017; Palatucci et al., 2009), for
slot filling lies in addressing traditional limitations
(Mehri and Eskenazi, 2021) like high time to value
(TTV), reliance on labeled data, and costly iter-
ative training. Zero-shot models (Touvron et al.,
2023) allow for immediate deployment without
prior training. However, applying these methods to
conversational data is challenging due to ambigu-
ity, lack of context, and interruptions. For instance,
correctly mapping implicit mentions or resolving
references like “she,” “he,” or “it” is difficult with-
out strong contextual understanding. Conversa-
tional shifts, slot values spanning across multiple
turns, and slang expressions further complicate this
task. While LLMs have improved contextual under-
standing, they have also introduced new challenges
in deployment, such as latency, concurrency, and
maintaining cross-domain functionality (Shi et al.,
2023).

Combining slot descriptions with a small set
of example slot values improves the model’s abil-
ity to generalize across different domains, though
its reliance on accessible and representative exam-
ples remains a limitation (Shah et al., 2019). To
deal with ambiguity, they were reformulated into
concrete questions by Du et al. (2021), but poorly
framed questions can negatively impact accuracy
in slot prediction. Prompting techniques (Li et al.,
2023; Luo and Liu, 2023) enhanced adaptability by
offering explicit cues or feedback, and improved
adaptability while increasing complexity and com-
putational overhead.

To reduce computational overhead, this task was
treated as a joint problem by combining intent de-
tection with slot filling (Zhang and Wang, 2016),
but errors in one task can adversely impact the
other. Retrieval augmented generation (RAG) ap-
proaches demonstrate strong generalization in low
data settings (Glass et al., 2021), but the effective-
ness of the retrieval mechanism can be a bottle-
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Training set Samples Test set Samples
Multi-domain data 13700 Multi-domain 3432
In-house telecom data 2179 Seen domain, Unseen source 550
In-house insurance data 9240 Unseen domain: Finance 2522

Table 1: Training datasets for baseline fine-tuning.

neck. Contrastive learning techniques (Wang et al.,
2021; Zhang and Zhang, 2023), shared embedding
spaces (Siddique et al., 2021; Shi et al., 2023) en-
able adaptability across new domains, but have
their own challenges such as demanding signifi-
cant computational resources and good embedding
quality.

Addressing these issues calls for innovative so-
lutions that can bridge the gap between zero-shot
adaptability and practical deployment in real-world
applications. Our contribution in this is two-fold:

* First, we propose a tailored data annotation
strategy incorporating slot induction (Nguyen
et al., 2023) followed by black-box knowl-
edge distillation (KD) (Wang, 2021; Nguyen
et al., 2022; Finch et al., 2024), that transfers
knowledge from the teacher model without ac-
cessing its internal architecture or parameters.
This fine-tuning approach results in a model
that is both highly generalizable and robust to
conversational data.

* Secondly, we demonstrate that the perfor-
mance of a standard off-the-shelf extractive
model commonly used in products can be sig-
nificantly improved by integrating it as a pre-
processing step alongside a fine-tuned model
like ours and applying slot-specific constraints.
This layered approach achieves near real-time
performance with enhanced accuracy, while
maintaining low latency and outperforming
standalone extractive or LLM methods.

2 Approach

In this section we describe our framework for zero-
shot slot filling. We developed a data annotation
strategy based on black-box KD and slot induc-
tion and an architecture that leverages an extractive
model to improve the accuracy and latency of the
fine-tuned model. Using black-box KD, knowledge
from a large foundation model, in our case, a com-
mercial LLM with over 70 billion parameters, is
transferred to a relatively small model through fine
tuning using predictions from larger model with
significantly reduced requirements for human anno-

Table 2: Test datasets for baseline fine-tuning.

tation. In this approach, we follow a slot induction
approach (instead of using predefined slot names),
where we instructed the teacher model to predict all
possible slot label-value pairs from the input text.
This approach enhances the model’s ability to gen-
eralize well across domains. We also used context
along with the input text in the instruction to make
the model context-aware. The training dataset com-
prises context and input text of varying lengths,
which enables configuration flexibility for infer-
ence. The input to the system can be a single turn
or multi turn. The following steps are required for
this process:

1: Creation of an annotated dataset using a large
commercial LLM with more than 70 billion
parameters

2: Conversion of the annotated dataset into an
instruction dataset

3: Instruction fine-tuning of a smaller model

4: Refining and aligning predictions with human
annotations

3 Data Collection

3.1 Annotation of data

The raw dataset is a collection of call transcripts,
capturing conversations between agents and cus-
tomers, sourced from contact center interactions.
A specific prompt for the LLM to facilitate the
targeted “slot filling” task was developed (see Ap-
pendix 8.1). For slot induction, the LLM is in-
structed to discover novel slot labels with each
annotation request. Iteratively, we obtain a grow-
ing list of slot labels as new ones are discovered.
To refine/align these annotations with human an-
notations, we also employ consistent annotation
guidelines across the same datasets for human an-
notators.

Our dataset comprises three diverse and dis-
tinct sources: 1) a balanced, multi-domain dataset
sourced externally, encompassing five external do-
mains of banking, insurance, telecommunications,
retail and healthcare retail in multiple English ac-
cents; 2) an in-house dataset from the telecommu-
nications domain; and 3) an in-house dataset from
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the insurance domain. While the first dataset is ex-
ternally sourced, the in-house datasets are collected
and maintained internally by our organization.

All data used in our study has been anonymized,
i.e., real identifiers and sensitive information were
systematically replaced with fictitious equivalents
to preserve confidentiality and comply with pri-
vacy standards, while maintaining the complexity
of these dialogues. Appendix section 8.2 presents
some examples of annotated data.

3.2 Creation of instruction fine-tuning dataset

After all the transcripts were annotated turn-by-turn
by the LLM (teacher) and/or humans, with slot la-
bels and their corresponding values, we created
an instruction dataset that is used for fine-tuning a
smaller student model. An instruction sample con-
sists of two parts: 1. the instruction, comprising
a brief description of the system, the task descrip-
tion, and the input as context or text to be used
for slot filling, and 2. the response, comprising
the slot labels and their corresponding values. See
Appendix 8.3 for the template used for creating
instruction samples.

To allow the system to be robust to any particu-
lar strategy of slot-filling, for every turn in a tran-
script, we randomize the number of turns in the
“context” and “text” to create an instruction sample.
“Context” here refers to the text in the transcript
preceding the text from which the slots are to be
extracted. This way, the model is able to generalize
to different lengths of input context and text. We
also randomize the type and the number of “dis-
tractor slot labels”, which refer to slots that are
not present in the input text but are used as distrac-
tors in the input query. This also serves as a data
augmentation strategy for creating more training
data, reflecting the same completion under different
“context”, “text” and “distractor slot labels”. See
Table 1 for an overview of training data where each
sample is an instruction sample extracted from a
turn in a transcript as explained above.

3.3 Test Data

To ensure our model’s generalization across mul-
tiple domains without compromising training, we
benchmark it using three distinct datasets. The
first is a “multi-domain” dataset, which comprises
transcripts from the same sources included in our
training set. The second, labeled “seen domain,
unseen source” belongs to the Telecommunications
domain which is seen in training but originates

from a different source. The third, labeled “unseen
domain” belongs to the Finance domain, which is
not represented in our training dataset. See Table 2
for an overview of the test data, where each sample
is an instruction sample extracted from a turn in a
transcript.

After baseline fine-tuning, we further introduce
two new internal datasets from different domains
(healthcare and financial services). Table 3 pro-
vides an overview of these datasets that are used in
upcoming section 4.6 Model Generalization.

Training set Samples
Healthcare domain 1846
Financial Services domain 2209
Test set Samples
Healthcare domain 8832
Financial Services domain 11487

Table 3: Overview of additional training and test
datasets for extended fine-tuning and testing.

4 Model Development and Evaluation

4.1 Fine-Tuning, Inference, Optimization

Fine-tuning was performed on NVIDIA A10G
GPUs, and the software ecosystem was primarily
based on the Huggingface framework. To optimize
the fine-tuning process, we employed several ad-
vanced techniques and libraries, including PEFT
(parameter-efficient fine-tuning), QLORA (quan-
tized low-rank adaptation), Accelerate, and Deep-
Speed. For optimization, we used the AdamW opti-
mizer. We used F1 as our primary metric for model
selection. After fine-tuning, we implemented an
efficient inference pipeline for evaluation using
the open source vLLM (Virtual Large Language
Model) library designed for efficient inference of
LLMs (Kwon et al., 2023). Prior to our primary
experiments, we performed a series of preliminary
tests that focused on optimizing a select set of crit-
ical hyper-parameters. See Appendix 8.4 for a
detailed overview of the hyperparameters and con-
figurations used at the fine-tuning and inference
stages.

4.2 Evaluation

Given the generative nature of LLMs, the met-
rics based on “exact match” of ground truth to the
model responses are inadequate. These metrics of-
ten penalize responses that are semantically correct
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Model Multi-domain Seen domain, Unseen source Unseen domain Average
P R F1 P R F1 P R F1 F1
Mistral v0.3 | 045 044 044 | 0.82 0.79 0.80 041 026 032 0.52
Llama38B | 046 049 047 | 0.80 0.77 0.78 043 024 031 0.52
Phi3-mini 045 049 047 | 082 0.73 0.77 030 0.22 0.25 0.50
Gemma2B | 043 028 034 | 0.71 0.61 0.66 028 0.14 0.19 0.40

Table 4: Baseline performance (Precision, Recall, F1) for pretrained models over three datasets and their average

but differ syntactically or lexically. To address this,
we adopt a more flexible evaluation strategy us-
ing lenient matching, i.e., if the system response is
partially correct or incomplete, it receives a credit.
Despite this, in cases where the model responses
are in normalized form (e.g., for dates or emails),
we do not obtain a “lenient match”. To address this,
we applied inverse text normalization (ITN) to both
the ground truths and responses before evaluation.

All metrics reported in this paper—lenient pre-
cision, recall, and F1 scores—are calculated after
applying ITN. Henceforth, “F1” refers to this modi-
fied metric. We elaborate on the lenient metric with
a few examples in Appendix 8.5.

4.3 Baseline Model Performances

In this section, we evaluate multiple foundational
LLMs and report their performance without apply-
ing fine-tuning. Due to computational constraints,
we prioritized model selection based on two key
criteria: the model’s ability to follow instructions
for structured output, and its baseline performance.

Results in Table 4 show that Mistral vO3 and
Llama 3 achieved identical average F1 scores,
while Phi3-mini demonstrated competitive perfor-
mance despite its smaller size. By contrast, the
Gemma 2B model underperformed compared to the
other LLMs. We observed that Mistral occasion-
ally failed to generate valid JSON outputs, which
occurred 2-3 times more frequently than Llama
3. Although Phi3 showed promising results, its
primary focus on English and limited multilingual
capabilities made it less suitable for our planned
language expansions. Consequently, we selected
Llama 3 8B model as the base of our subsequent
experiments.

4.4 Fine-Tuned Model Performances

Our initial fine-tuning experiment utilized the train-
ing sets from three internal datasets to assess the
improvements over baseline models. Table 5 shows
the substantial performance gains achieved through
fine-tuning. These results indicate that smaller
LLMs, when used out-of-the-box, are inadequate

Model Dataset F1
Multi-domain 0.47
Seen domain, Unseen source | 0.78

Baseline Unseen domain 0.31
Average 0.52
Multi-domain 0.61
Seen domain, Unseen source | 0.92

Fine-tuned | Unseen domain 0.78
Average 0.77

Table 5: Comparison of F1 scores between baseline and
fine-tuned versions of the Llama 3 8B LLM

for slot filling tasks that demand extensive world
knowledge and robust language understanding for
generating structured outputs consistently. The sig-
nificant performance boost underscores the critical
importance of fine-tuning for specific domains. The
mediocre performance of pretrained foundational
models was notably enhanced by 25% absolute to
achieve acceptable results post fine-tuning. This rel-
ative difference between a mediocre performance
of a “generalist” model and stellar performance
of a “domain/task expert” model is achieved by
fine-tuning.

4.5 Model Alignment

Human annotated data can often serve as high-
quality reference for fine-tuning NLP models, al-
lowing models to learn from and align with human
behavior. Additionally, human annotated data can
be used to identify and reduce potential inconsis-
tencies and noise in the training data and models’
outputs, to improve accuracy and consistency. To
evaluate the impact of human annotations, we per-
form fine-tuning with only human annotations, and
then also with both LLM-generated and human-
labeled data. Table 6 presents the results, showing
the average F1 score improvement across the three
test datasets previously considered.

The baseline model trained solely on human an-
notations significantly under-performed compared
to the model trained exclusively on LLM annota-
tions. This is in line with the empirical analysis
we conducted on human annotations compared to
LLM-annotations over a subset of 20 transcripts.
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Fine-tuning Strategy Avg F1
Human Annotations Only | 0.74
LLM Annotations Only 0.77
Both Annotations 0.78

Table 6: Comparison of fine-tuning results with and
without human annotations

Experiment Avg. F1
Baseline 0.73
Fine-tuning (+ new datasets) 0.74

Table 7: Generalization Experiment Result

Humans are good with named entities and of-
ten create more specific labels, like breaking down
“monthly insurance cost” into “Old Monthly Cost”
and “New Monthly Cost”. However, they miss out
on abstractive slots like reason for call, product
mentions, survey participation, etc. We quanti-
fied the number of missed labels—those not iden-
tified or annotated in the transcript—and found
that human annotators tend to miss twice as many
labels compared to LLMs. Specifically, human
annotators missed an average of 8 labels in a tran-
script, whereas LLMs only missed 4. This per-
formance gap highlights the broader knowledge
transfer achieved by LLMs compared to human
annotations.

Combining both annotations resulted in a modest
1% absolute improvement, which we term as “hu-
man alignment”. The results suggest that the bene-
fit of fine-tuning on human plus machine-generated
data is due the volume of added data, not higher
quality of the labels. These findings imply the
costly and time-consuming human annotation and
alignment processes could potentially be bypassed,
with only a modest sacrifice in accuracy.

4.6 Model Generalization

We evaluated the model’s performance on addi-
tional datasets summarized in Table 3 without fur-
ther fine-tuning, establishing a baseline. The dif-
ference between this baseline and the performance
after fine-tuning with these datasets demonstrated
the “generalization gap”.

Table 7 summarizes the result using F1 scores
averaged across our five test sets. The final result
demonstrates the model’s generalization capabil-
ity. The increase in average F1 score from 0.73
to 0.74 indicates a marginal generalization gap,
demonstrating strong generalization capability of

Request (conversations) Response (slot values)

( Build prompt )

LLM Inference

' (GetInput Text and Context] Filtred ot values
. ( Runconstraints ]
' Input text + context '
+ (_Run Extractive Model ) MNed sotvlues
E Detected slot label and values [ Run TN ) i
E [ Extract labels } Valid slot values i
E l Fitered abels ( Remove NA/Empty slots ) i

|

Figure 1: System Architecture: The LLM Inference
module handles both preprocessing and postprocessing
tasks. The fine-tuned (FT) LLM model is served by
LLM Serving module.

the model on other domains.

5 System Architecture

Figure 1 describes our system architecture. The
two main components in our architecture are LL-
inference and LL-serving. LLM-inference handles
the pre/post processing of the data, while LLM-
serving serves the (LLM) model. Once the sys-
tem receives a conversation during call process-
ing, the preprocessing module selects the input
text and context. This text is passed to an extrac-
tive model, specifically GLiNER (Zaratiana et al.,
2024), which extracts slot values. GLINER excels
in recall for extracting slot values but lacks preci-
sion and cannot extract abstractive slots (e.g., Call
Reason or Claim Issue). However, GLINER can
identify whether the conversation pertains to these
labels. Slot values extracted by the lightweight
model (GLiNER) are used to narrow down the list
of slots requested from the LLM.

A prompt is constructed containing the input
text, context, and the pre-determined, reduced set
of slot labels by GLiNER. This prompt is sent to
the fine-tuned LLM, and the LLM’s response is
processed to eliminate any empty or NA responses.
Subsequently, ITN is applied to the results to fil-
ter out false positives and improve precision using
constraints. A constraint is a predefined rule or
user-defined parameter that is designed to mini-
mize erroneous value extractions by zero-shot mod-
els. Predefined constraints are set for each entity
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Method Gain %
Only GLiNER 2%
GLIiNER + Constraints 16%
GLiNER + ft-1lm + Constraints 34%

Table 8: Comparison of different pipelines of our system
over the legacy product baseline on unseen data.

type, while user-defined constraints apply to indi-
vidual slots. Predefined constraints include match-
ing entity types like date, duration, cardinal, money,
email and standard named entities, whereas user-
defined constraints, like lengths of values, can be
applied to the numerical and alphanumeric entities
(e.g., Dosage slot should have “partial cardinal” as
a constraint).

Table 8 compares the percentage gains in F1
scores compared to current product’s baseline,
which is a legacy extractive model. This table
shows the incremental improvements achieved at
each stage of system enhancement. Initially, off-
the-shelf GLINER model delivers a modest 2 %
increase in the F1 score. However, with the intro-
duction of a constraints stage, this improvement
becomes more pronounced, boosting the score by
16 %. Notably, integrating GLiNER as a prepro-
cessing step before the fine-tuned large language
model (ft-LLM) and applying constraints results in
a substantial 34% improvement in the F1 score.

More details on the system performance are pro-
vided in section 8.9. This staged approach demon-
strates how integrating the extractive model as a
preprocessing module before using the fine-tuned
LLM, and applying constraints as postprocessing
can lead to substantial improvements in both accu-
racy and reliability for complex industrial applica-
tions.

6 Limitations and Future Work

6.1 Expansion to other languages

There are ongoing experiments to expand our ap-
proach to multiple languages including Spanish,
Hindi, French, German and Arabic. Spanish and
Hindi experiments indicate that the performances
of vanilla Llama3 8b model trained with each lan-
guage separately are comparable to those of a sin-
gle fine-tuned model trained with all languages.
Thus, we illustrate the possibility of a single multi-
lingual model capable of slot filling in multiple
languages.

6.2 Exploration of smaller models

Initial experiments involving much smaller models
like Phi3-mini have demonstrated that there is room
for improvement by training smaller and compute-
efficient models that exhibit enhanced capabilities.
These advancements not only hold the promise to
support a wider array of languages but also enable
faster inference and reduced computational cost.

6.3 More robust evaluation metrics

We discussed how the current evaluation metrics do
not fully capture semantics and are not correlated
with our small-scale human evaluations, underes-
timating model performance. Future work could
benefit from adopting more form and content aware
evaluation metrics. Ongoing work considers 1)
weighted average of lenient F1 scores, ROUGE and
BERTScores (Zhang et al., 2020), and 2) slot-type
specific evaluation using relevant metrics, such as
ROUGE for form-insensitive slots and BERTScore
for semantic slots.

7 Conclusion

In this paper, we have proposed a comprehen-
sive, practical, and scalable approach for high-
performance zero-shot slot filling using black-
box knowledge distillation for conversational
data. Through comprehensive experimentation, we
demonstrated the effectiveness of using a larger
LLM (teacher model) for creating data and trans-
ferring knowledge (through fine-tuning) to smaller
LLMs (student models). In addition, we showed
that fine-tuning significantly improved domain-
specific performance, with the Llama 3 8B model
outperforming the other foundation models we ex-
plored, achieving a 26% absolute improvement
in F1 over its vanilla version. We also demon-
strated a flexible and scalable deployment archi-
tecture supporting multiple use cases, including
agent assistance, automated self-service, and post-
call analytics. We used preprocessing with off-
the-shelf GlINER model and postprocessing with
slot constraints to improve the baseline system per-
formance by 34% relative F1. We highlighted fu-
ture work for language expansion, the use of more
efficient smaller models and developing human-
correlated metrics to better assess real-world per-
formance. This work contributes to the growing
body of research on practical applications of LLMs
in customer service domains and provides a practi-
cal foundation for future developments in this field.
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8 Appendix

8.1 Annotation Prompt

Following is the prompt template with variables
“labels” and “text”, which are filled with a seed list
of slot names (that reflects our knowledge/experi-
ence of slot labels across several domains) and the
call transcripts, respectively:

You are an expert in Natural
Language Processing.

Your task is to identify all
named slot values in the
given dialogue text, in
which agent turn starts

‘“Agent says:’’ and
customer turn starts
Customer says:’’

with

with *¢

Return the output in a json
format for every line in the
dialogue where key is text
and value is dict of slot
types and values. If there
are no slot types in the
line , return NA.

To get started , here is the list
of slot types available to
you: {labels }.

Do not be restricted by this
list. You should also
extract slot types that are
not in this list but present
in the text.

Dialogue Text: {text}

8.2 Data Annotation Examples

Following are some examples of labeled utterances
derived from our dataset. These examples illustrate
typical interactions in a call center setting, along
with the corresponding labeled information (slots)
extracted from the dialogue.

Example 1:

Text: "Thank you for calling Net Company.
How can I assist you today?”

Slots: {"Company Name"”: "Net Company"}

Example 2:

Text: "Yes, uh I'm John Doe, and the
account number is 123456.
My wifi doesn't work.”

Slots: {"Customer Name": "John Doe",
"Account Number”: "123456",
"Reason for call”: "wifi
doesn't work"}

8.3 Fine-tuning Prompt

Following is the template for creating training sam-
ples for the instruction fine-tuning task:

<s>[INST]<<SYS>>

You are an honest and helpful
information extractor.

<</SYS>>

Your task is to extract values
for the following slot
labels in the Main Text
delimited by triple
backticks: {target slot
labels }, {distractor slot
labels }. Format your
response as a JSON object
with slot labels as the keys
and slot values in a list.
Only return the slots found
the Main text. Use the
following dialogue only as
context support to extract
slots from the Main text
delimited by triple
backticks:

{context text}

I3

Main text:

I

[/INST] {completion text}

{text}

The variables in this template are:
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domain

target slot labels
distractor slot labels
context text

domain of the call transcript
labels in the text of interest
labels that don’t exist in text
the textual information that
precedes the text

text the textual information to be
processed for slot filling of
target slot labels

the response part of the
prompt that the model will
be trained to generate given
all the information between
the tags [INST] and [/INST]

completion text

8.4 Fine-tuning and Inference Setups

The table presents a summary of the hyper-
parameters and configuration settings used in our
fine-tuning steps, including hardware specifica-
tions, LORA settings, optimization parameters, and
training details. Prior to our main experiments, we

Parameter Value
GPUs 4
GPU Memory 24GB per GPU
LORA Rank 16
LORA Alpha 32
Dropout Rate 0.05
Batch Size per GPU 1
Gradient Accumulation Steps 4
Effective Batch Size 16
Maximum Learning Rate 2e-4
Number of Epochs 5
Warm-up 10% of iterations
AdamW betal 0.9
AdamW beta2 0.999
AdamW epsilon le-8
Weight Decay Not applied
Gradient Clipping Threshold 1.0
Adaptation Layers All linear layers

Table 9: Fine-tuning Hyperparameters and Configura-
tion

performed a series of preliminary experiments for
optimizing a select set of critical hyperparameters.
Specifically, we examined the effects of varying the
number of training epochs, the size of the training
dataset, the rank of the LORA (Low-Rank Adapta-
tion) matrices, and the neural network layers sub-
jected to fine-tuning. After the fine-tuning process,
we implemented an efficient inference pipeline to
evaluate our fine-tuned models using compute ef-
ficient vLLM inference engine. We have used
greedy search with temperature 0. The maximum

number of new tokens was set to 512. This tem-
perature setting without sampling is particularly
useful when we want consistent, high-confidence
responses from the model. The choice of 512 to-
kens allows for reasonably lengthy responses while
preventing excessively long generations.

8.5 Lenient Metric Examples

In this section, we present some examples of le-
nient metrics for slot matching in dialogue systems.
While traditional extractive systems select spans
from user utterances, modern generative systems
may rephrase or reformulate the extracted informa-
tion, making lenient matching particularly crucial.
The following examples demonstrate how genera-
tive systems could produce variations of the same
semantic content, requiring more flexible evalua-
tion metrics compared to exact span matching used
in extractive approaches. Lenient matching allows
for partial matches and semantic equivalence, pro-
viding a more realistic evaluation of slot filling
systems compared to strict matching. Consider the
following reference slot values:

Reference: {
"time": "7:00 PM",
"people”: "2 people”,
"restaurant”: "Joe's Pizza & Italian
Restaurant”

b

In the following, we analyze two different predic-
tions under both strict and lenient matching criteria:

Prediction 1: {

"time": "7 PM",
Ilpeoplell: ”two”,
"restaurant”: "joes pizza"

3
Prediction 2: {

"time": "19:00",

"people”: "couple”,

"restaurant”: "Joe's Italian Restaurant”

3

Under strict matching criteria:

* Prediction 1: 0/3 correct (no exact matches)
¢ Prediction 2: 0/3 correct (no exact matches)
Under lenient matching criteria:

e Prediction 1: 3/3 correct

— “7 PM” matches “7:00 PM” (time format
variation)
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— “two” matches “2 people” (numerical
equivalence)

— “Joes pizza” matches “Joe’s Pizza &
Italian Restaurant” (partial name match,
missing punctuation)

¢ Prediction 2: 3/3 correct

— “19:00” matches “7:00 PM” (time format

equivalence)

— “couple” matches “2 people” (semantic
equivalence)

— “Joe’s Italian Restaurant” partially

matches “Joe’s Pizza & Italian Restau-
rant” (partial name match)

The lenient matching implementation involves:

1. Time normalization: Converting different
time formats to a standard representation

2. Numerical equivalence: Matching different
representations of numbers (words, digits)

3. Name normalization:

» Handling missing punctuation (Joe’s vs
Joes)

» Handling partial matches (subset of full
name)

» Handling special characters (& vs and)

* Case-insensitive matching

4. Semantic match: Using word embeddings or
knowledge bases for semantic equivalence

It should be noted that in all our metrics pre-
sented in this paper we have not employed semantic
similarity. However, in our limited internal experi-
mentation, we have seen that the scores are further
elevated with semantic similarity reflecting anec-
dotal human judgments better.

8.6 GLINER

GLiNER is a compact NER model designed to ef-
ficiently extract various types of entities from text.
Unlike larger autoregressive models, GLiNER uses
a bidirectional language model to process text and
extract entities. It uses bidirectional transformer
encoder to perform parallel entity extraction, mak-
ing it more efficient than sequential models. The
general approach is to place both span and entity
embedding in the same latent space and then assess
their compatibility, enabling accurate identification

of entities. It outperforms in zero-shot NER sce-
narios on multiple NER benchmarks. It is more
efficient, scalable and versatile approach to NER.

8.7 System Framework

In our architecture, we have designed two key ser-
vices to efficiently handle the zero-shot slot-filling
system using an LLM for call center tasks. These
services operate as:

1. LLM-Inference Service: This service is re-
sponsible for data preprocessing and postpro-
cessing. It ensures that input data is prop-
erly formatted and contextualized before be-
ing passed to the LLM. Additionally, it man-
ages GLiNER model integration for extractive
tasks. GLiNER is utilized here to extract rel-
evant slot values from the conversation, nar-
rowing down the slots for the LLM to process.

2. LLM-Serving Service: This service focuses
on serving the LLM model itself. It directly
handles the inference requests and provides
outputs based on the preprocessed data from
the LLM-Inference service.

8.8 System Deployment

Both services (LLM-inference and LLM-serving)
are deployed as Docker containers on AWS, tak-
ing full advantage of cloud-based infrastructure for
scalability, reliability, and flexibility. The model
serving is built using a combination of Transform-
ers and Seldon Core libraries, ensuring robust per-
formance and flexibility for various LLM use cases.

8.9 System Performance

To optimize the system for both latency and
throughput, we benchmarked it across different
configurations, including FP16 precision, GPTQ-
4bit, and GPTQ-8bit. Among these, the FP16
model with prefix caching demonstrated the best
trade-off between performance and resource uti-
lization. The use of prefix caching significantly
improved both concurrency and throughput. By
caching common portions of input sequences, re-
dundant computations during inference can be re-
duced, leading to a notable reduction in processing
times. With the FP16 + prefix caching setup, we
achieved a concurrency level of 100 requests while
maintaining an average latency of 3.8 seconds on
an NVIDIA L40 GPU. This level of performance
ensures that the system can handle near real-time,
high-volume call center conversations with mini-
mal delay, improving the overall user experience.
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