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Abstract

Large language models (LLMs) have achieved
impressive results in reasoning, particularly in
multi-step reasoning tasks. However, when
faced with more complex mathematical prob-
lems, the performance of LLMs drops sig-
nificantly. To address this issue, in this pa-
per, we propose a backward reasoning dataset,
BackMATH-Data. The dataset comprises ap-
proximately 14K backward reasoning prob-
lems and 100K reasoning steps. It follows a
result-oriented approach, to construct backward
reasoning problems by swapping the reason-
ing results with specific solving conditions in
the original problems. Additionally, we intro-
duce Backward-reasoning Process-supervision
Reward Model (BackPRM) and BackMATH-
LLM. BackPRM supervises the quality of the
generated backward reasoning problems, while
BackMATH-LLM is designed for mathemati-
cal reasoning. BackMATH-LLM is fine-tuned
and enhanced through reinforcement learning
by supervising the quality of backward reason-
ing problems and by providing feedback on
reasoning steps, thereby improving the mathe-
matical reasoning capabilities of LLMs. Exten-
sive experiments demonstrate that our model
achieves an accuracy of 68.1% on the GSM8K
dataset and 21.9% on the MATH dataset, ex-
ceeding the SOTA by 1.6% and 2.1% respec-
tively.

1 Introduction

Large language models exemplified by ChatGPT
and GPT-4 (OpenAI, 2022, 2023), are capable
of solving tasks that require complex reasoning.
Despite LLMs’ outstanding performance in vari-
ous domains, these models face significant chal-
lenges when solving complex mathematical prob-
lems (Saxton et al., 2019; Zhou et al., 2022). Even
the most advanced models show clear deficiencies
when tackling mathematical problems that require
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Original problem and output of an example from GSM8K:
      Natalia sold clips to 48 of her friends in April, and then she sold half as many 
clips in May. How many clips did Natalia sell altogether in April and May?
      Answer: Natalia sold 48/2 = 24 clips in May. Natalia sold 48+24 = 72 clips 
altogether in April and May. 72
      Backward problem and output of the example from GSM8K:
      Natalia sold clips to x of her friends in April, and then she sold half as many 
clips in May. How many clips did Natalia sell altogether in April and May? If we 
know the answer is 72, what is the value of x?
      Answer: 48

(a) Backward reasoning on GSM8K

Original  problem  and  output of an example from 
MATH:

Find the matrix M such that

M 1 −2
1 4 = 6 0

0 6

Output: The inverse of 1 −2
1 4 is

1
1 4 − (−2)(1)

4 2
−1 1 =

1
6

4 2
−1 1 .

So, multiplying by this inverse on the right, we get

M = 6 0
0 6  �

1
6

4 2
−1 1 = 4 2

−1 1

Backward problem  and  output of the example from 
MATH:

Find the matrix A such that

4 2
−1 1 A = 6 0

0 6

Output: The inverse of 4 2
−1 1 is

1
1 4 − (2)(−1)

1 −2
1 4 =

1
6

1 −2
1 4 .

So, multiplying by this inverse on the right, we get

A =
1
6

4 2
−1 1 � 6 0

0 6 = 1 −2
1 4

(b) Backward reasoning on MATH

Figure 1: Examples of backward reasoning on both
GSM8K and MATH.

complex understanding and reasoning, often pro-
ducing hallucination (Maynez et al., 2020) or ex-
hibiting a tendency to invent facts when they are
uncertain about the math problems (Bubeck et al.,
2023). This limitation not only restricts the rea-
soning abilities of LLMs on complex mathematical
problems but also highlights the urgent need for
more effective strategies (Shen et al., 2023) and
data augmentation techniques (Zha et al., 2023) to
enhance problem-solving capabilities of LLMs.

High-quality data is instrumental in enhancing
model performance (Lee et al., 2023; Shi et al.,
2024; Guo et al., 2023; Huang and Xiong, 2023;
Liu et al., 2024). Backward reasoning (Jiang et al.,
2023), as a data augmentation technique, traces
candidate answers back to the original problem
to verify the presence of supporting data, thereby
determining whether the model has produced hal-
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lucinations during the reasoning process. Figure 1
shows two examples of backward reasoning. Un-
fortunately, LLMs exhibit significant deficiencies
in backward reasoning. Even provided with full-
filed prompts and demonstrations, LLMs often fail
to accurately determine the backward reasoning
direction when faced with complex mathematical
problems. Thus, enhancing backward reasoning
in LLMs is crucial for improving their ability to
tackle complex tasks.

Chain-of-Thought (CoT) (Nye et al., 2021; Wei
et al., 2022; Kojima et al., 2022) has been widely
used to solve problems step by step. In complex
reasoning tasks, CoT significantly enhances the rea-
soning capabilities of LLMs. In solving complex
mathematical problems, compared to the Outcome
Reward Model (ORM) (Christiano et al., 2017),
Process-supervision Reward Model (PRM) (Uesato
et al., 2022; Ziegler et al., 2019), providing feed-
back on reasoning steps, achieves greater accuracy
and reliability on reasoning.

Inspired by backward reasoning and process su-
pervision, in this paper, we propose BackMATH-
Data, a backward reasoning dataset. This dataset is
derived from mathematical problems in the train-
ing datasets of GSM8K and MATH, collected and
filtered manually. ChatGPT is used to automati-
cally generate the data instances, which are then
reviewed and proofread by humans. After further
reviewing and proofreading, we obtain a total of
14K backward reasoning problems with 100K rea-
soning steps.

Additionally, we introduce Backward-reasoning
Process-supervision Reward Model (BackPRM)
and BackMATH-LLM. BackPRM scores the back-
ward reasoning steps to assess the quality of the
reformulated backward reasoning problems. For
BackMATH-LLM, we first perform Supervised
Fine-Tuning (SFT) on the model using pairs of orig-
inal and backward reasoning problems, enabling
the model to construct backward reasoning prob-
lems. Subsequently, we use BackPRM and PRM
to provide feedback during the reinforcement learn-
ing, where the former evaluates the quality of the
backward reasoning problems while the latter pro-
vides feedback scores for each reasoning step in
the solution.

In a nutshell, our contributions are listed as fol-
lows:

• We release a backward reasoning dataset that
enhances model performance on complex

mathematical problems. The dataset contains
14K problems and 100K reasoning steps.

• We introduce BackMATH-LLM, which effec-
tively enhances the mathematical reasoning
capabilities of LLMs and BackPRM, which
provides feedback from backward reasoning
on reinforcement learning to efficiently train
BackMATH-LLM.

• Experiments on the GSM8k and MATH
benchmarks demonstrate that our approach
outperforms existing methods.

2 Related Work

2.1 Process Supervision Data
In training LLMs, high-quality data greatly op-
timizes the process, whereas merely expanding
model size is insufficient to achieve high perfor-
mance on challenging tasks like arithmetic and
symbolic reasoning (Rae et al., 2021). Several
studies have explored data related to process su-
pervision. OpenAI releases the first process super-
vision dataset PRM800k (Lightman et al., 2023).
FELM (chen et al., 2024) conducts a factual eval-
uation on text generated by LLMs using a custom
dataset comprising 847 questions across five do-
mains. This dataset, generated by ChatGPT, is
split into individual sentences, and each reasoning
step is annotated as true or false. Li et al. (2024)
primarily focus on identifying erroneous steps in
the reasoning process. To evaluate the honesty of
LLMs, Yang et al. (2023b) annotate each reason-
ing step as either known or unknown. Yu et al.
(2023) construct MetaMathQA, a dataset includ-
ing content from the GSM8K dataset that has been
rewritten using backward reasoning.

In this study, we curate the BackMATH-Data,
which focuses on data in mathematics. It applies
backward reasoning rules to reconstructing prob-
lems from existing datasets, particularly the MATH
dataset, and generating new problems for data aug-
mentation. Additionally, the reasoning processes
of the new dataset are scored in detail.

2.2 Process Supervision
In Reinforcement Learning from Human Feedback
(RLHF) (Christiano et al., 2017), most studies use
ORM to supervise training process (Ouyang et al.,
2022). However, ORM focuses solely on final
results, leading to sparse rewards in end-to-end
learning, which hinders reasoning supervision for
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complex tasks. OpenAI studies PRM and demon-
strates that PRM yields better results than ORM.
Luo et al. (2023) use both PRM and Instruction
Reward Model (IRM) to supervise the training pro-
cess.

Since there has been no PRM specifically de-
signed for backward reasoning, our BackPRM is
the first attempt in building a reward model aimed
at supervising the backward reasoning process.

2.3 Fine-Tuning for Math Problem Reasoning

Fine-tuning has proven effective in enhancing
LLMs’ reasoning capabilities (Uesato et al., 2022;
Lightman et al., 2023; Tian et al., 2023; Wu et al.,
2024), particularly when it is equipped with data
augmentation methods such as evol-instruct (Luo
et al., 2023) and problem bootstraping (Yu et al.,
2023). Among various fine-tuning approaches, cur-
rent research indicates that process supervision has
an advantage over outcome supervision (Lightman
et al., 2023).

Inspired by process supervision and fine-tuning
methods, we propose BackMATH-LLM in this pa-
per. This model enhances the mathematical rea-
soning capabilities of LLMs through reinforcement
learning based on feedback from backward reason-
ing and supervision of the reasoning steps. Our pro-
posed model achieves higher accuracy compared
to SOTA models.

3 Dataset Creation

Our key interest is to create high-quality backward
reasoning problems and reasoning steps. We de-
tail the data collection process, with a focus on
the creation of data from the MATH dataset. Un-
like the well-structured GSM8K dataset, which
allows LLMs to directly generate backward reason-
ing problems based on predefined rules, the MATH
dataset encompasses seven categories within mathe-
matics (e.g., algebra, geometry), featuring complex
content and lacking a standardized format (except
for LaTeX). To reconstruct the MATH dataset, we
initially filter the original data, followed by the
automatic generation of new data using an LLM.
Finally, the data undergo thorough manual review
and proofreading.

3.1 Rules for Dataset Creation

In this section, we detail the rewriting rules
for backward reasoning. For an input problem,
we first split it into a set of conditions X =

Backward 
Reasoning

Backward 
Reasoning Rules

Prompts

Data

Filtering

Check and 
Rewrite

Reasoning Data

Generating

Regenerating

Scoring

Figure 2: Backward data collection process.

{x1, x2, ..., xn} and y denotes the answer. When
reformulating a problem, we swap y with one of
the conditions in the set X , denoted as xk. Assum-
ing xk is the condition swapped, the constructed
backward reasoning problem condition set can be
represented as X

′
= {x1, x2, ..., y, ..., xn}, and its

answer is xk. Therefore, the backward reasoning
problem and its result can be represented by X

′

and xk respectively.

3.2 Data Collection

Filtering. During the filtering phase, we con-
duct an initial automatical screening, eliminat-
ing cases where the question length is too
short. For example, questions like “Calculate√
2−

√
2−

√
2−

√
2− · · ·” which contain only

one condition, cannot yield a corresponding back-
ward reasoning problem and are therefore filtered
out. Additionally, for algebra and similar questions,
we conduct a meticulous manual review to ensure
compliance with the rules outlined in Section 3.1.
Generating. As shown in Figure 2, the concept of
backward reasoning is derived from FOBAR (Jiang
et al., 2023) and has been modified and refined to
develop prompts for generating backward reason-
ing data. We input prompts (shown in Appendix A),
backward reasoning rules and data into ChatGPT to
generate backward reasoning instances, which are
categorized based on the types provided by MATH
(Hendrycks et al., 2021), with different examples
given to generate MATH backward reasoning prob-
lems in LaTeX format.

3.3 Data Review

Next, we check and rewrite the MATH problems
that are able to generate backward reasoning prob-
lems but are initially generated incorrectly. We use
a script to filter out cases where the answer to the
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Step 1:
Supervised Fine-tuning

Step 2:
Training Process-supervision Reward Model (PRM) 
and Backward-reasoning Process-supervision Reward 
Model (BackPRM)

Process Supervision













SFT

Step 3:
Data Augmentation and PPO Training

Backward Process 
Supervision













Backward Reasoning 
Rules

Process Supervision 
Data

Backward Reasoning  
Data

PRM BackPRM

SFT model

Data Augmentation

PPO Training

PRM BackPRM

PRMscore Backscore

Rewardscore

Backward Reasoning 
Prompt pairs

Capability of 
performing Backward 

Reasoning

Correctness of 
reasoning steps

Quality of backward 
reasoning problems

Figure 3: Diagram illustrating the three steps of our model.

backward reasoning problem is the same as that
to the original problem. Most of these errors are
merely semantic rephrasings of the original prob-
lem and do not adhere to the backward reasoning
rule of swapping elements in y and X , described
in Section 3.1. For example, the original problem
“Solve the equation : 2x+3 = 7, answer : x =
2” is incorrectly transformed into a backward rea-
soning problem “Find the value of t that satisfies
2 × t + 3 = 7, answer : 2”. Due to ChatGPT’s
limited understanding of backward reasoning rules,
these types of errors are the most common. There-
fore, manual review and additional prompts are
necessary to ensure successful problem reformulat-
ing by ChatGPT. It is particularly noteworthy that
when ChatGPT is prompted so that its backward
reasoning result is the same as the original prob-
lem’s result (indicating an incorrect backward rea-
soning reformulation), it tends to directly modify
the backward reasoning result to evade verification.

Finally, we input the filtered questions and rea-
soning steps into ChatGPT for multiple rounds of
scoring the reasoning steps. Based on the scoring
results, we determine the correctness of each rea-
soning step and average the scores from all rounds

Category #Problems #Steps
algebra 1,713 6,202
counting & probability 770 2,334
geometry 870 2,946
intermediate algebra 1,300 4,238
number theory 860 2,228
prealgebra 1,210 3,426
precalculus 750 1,904
GSM8K 7,473 77,954
Total 14,946 101,232

Table 1: Statistics of BackMATH-Data.

to obtain the final score for each step.

3.4 Dataset Statistics

We finally collect 7.4K problems and 23K reason-
ing steps from MATH, and 7.4K problems and 77K
reasoning steps from GSM8K. The detailed statis-
tics of the collected dataset is shown in Table 1.
Table 1 shows the number of problems and their
corresponding total reasoning steps in various cat-
egories within our BackMATH-Data. In GSM8K,
ChatGPT primarily uses short sentences for reason-
ing steps, but we divide the reasoning steps based
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on complete sentences, which results in a higher
number of steps for GSM8K.

4 BackMATH-LLM

Inspired by InsturctGPT (Ouyang et al., 2022)
and PRM (Uesato et al., 2022), we introduce the
BackMATH-LLM training scheme in detail, which
contains three stages (Supervised Fine-tuning, Re-
ward Model training, Reinforcement Learning), as
shown in Figure 3.

4.1 Supervised Fine-tuning (SFT)
Following InstructGPT (Ouyang et al., 2022), we
fine-tune the model with 5K instruction-response
pairs in BackMATH-Data. To enable the model
to perform backward reasoning, we select pairs of
original problems and their corresponding back-
ward reasoning problems to fine-tune the model.

4.2 PRM and BackPRM
In this step, we train two reward models to super-
vise the quality of instructions and the correctness
of each reasoning step.
PRM. This reward model is designed to assess
whether each reasoning step contributes to the so-
lution to the mathematical problem. We use 10K
data from PRM800K to train the PRM for forward
reasoning and rely on this PRM to evaluate the cor-
rectness of each step in the solutions generated by
our model. The PRMscore is calculated as follows:

PRMscore =

N−1∏
i=0

Step_Scorei, (1)

where the Step_Scorei denotes the score of each
reasoning step.
BackPRM. The model is designed to assess the
quality of the model’s backward reasoning. We
propose the BackPRM to supervise the quality of
the model’s backward reasoning, considering the
critical role of backward reasoning in mathematical
reasoning and the limited understanding of LLMs
regarding backward reasoning problems. To train
the BackPRM, we use 5K data from PRM800K
and 5K data from our dataset, totaling 10K data in-
stanses for training. The final reward score consists
of two parts: one is the PRM score obtained by
multiplying the scores of each step through process
supervision, while the other is the quality score of
the backward reasoning problem along with its rea-
soning score. The final Rewardscore is calculated
as follows:

Rewardscore =
PRMscore +Backscore

2
, (2)

where the calculation method for Backscore is the
same as that for the PRMscore. Since forward and
backward reasoning are equally important, we as-
sign them equal weights.

4.3 Reinforcement Learning

We use the remaining 5K data from our dataset,
along with GSM8K and MATH data, for Proximal
policy optimization (PPO) (Schulman et al., 2017)
training.

5 Experiments

This section provides an overview of our experi-
mental setup, baseline models, and other relevant
details. Subsequently, we focus on the performance
metrics of our model on two popular mathemati-
cal benchmarks: GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021). Our validation
includes 500 samples from both the GSM8K and
MATH datasets.

5.1 Experiment Settings

We fine-tuned Llama-2-7B (Touvron et al., 2023)
with the data and reward models.1 The BFLOAT16
formats and deepspeed framework were leveraged
to save GPU memory and speed up training. For
the SFT stages of training, we set the batch size to
4, training epoch to 3 and learning rate to 2e-5 with
cosine decay. For PRM training, we used LORA
technique (Hu et al., 2021) to fine-tune the lm head
layer of Llama-2-7B. For PPO training, we set the
learning rate to 1e-5 and the batch size to 4. All
experiments were implemented in PyTorch and run
on a single server with 2 NVIDIA A40 GPUs.

5.2 Baselines

We compared the performance of our model with
other SOTA models, specifically WizardMath (Luo
et al., 2023) and MetaMath (Yu et al., 2023), as
they also enhance reasoning capabilities through
data augmentation. All references of compared
models are listed at Appendix G.

5.3 Main Results

As shown in Table 2, our main results indicate that
BackMATH-LLM significantly outperforms other

1https://huggingface.co/meta-llama/Llama-2-7b-hf
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Models GSM8K MATH
WizardMath-13B 54.9 10.7

MetaMath 66.5 19.8
GPT-3 34.0 5.2

Llama-2-7B 14.6 2.5
Llama-2-70B 56.8 13.5

Baichuan-2-7B 24.5 5.6
Baichuan-2-13B 52.8 10.1
Distilling-LM 52.3 10.0
Falcon-40B 19.6 2.9
PaLM-62B 33.0 4.4
PaLM-540B 56.5 8.8

BackMATH-LLM 68.1 21.9

Table 2: Comparison on the GSM8K and MATH
datasets.

algebra counting
& probability

geometry intermediate
algebra

number
theory

prealgebra precalculus0
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20

30

40
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cu
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32.2

18.6 16.1

6.6

16.7

40.2

8.8

Accuracy for each category

Figure 4: Detailed results on the MATH dataset.

models in mathematical problem-solving tasks.
Specifically, BackMATH-LLM achieves an accu-
racy of 68.1% on the GSM8K dataset and 21.9% on
the MATH dataset, surpassing MetaMath by 1.6%
and 2.1% respectively. Compared to larger models
like Llama-2-70B, BackMATH-LLM also demon-
strates strong performance on both datasets. These
findings highlight the substantial performance im-
provements of BackMATH-LLM achieved by ex-
ploring backward reasoning data.

5.4 Analysis

In this section, we provide a detailed analysis of
the results on the MATH dataset, presenting the
accuracy for each category, as shown in Figure
4. The model performs well on prealgebra due
to their overall simplicity, making them easier to
rewrite for backward reasoning. By contrast, the
model struggles with intermediate algebra, as these
involve more complex mathematical concepts and
are more prone to errors in the reasoning steps.
Appendices C, D, E and F provide more details of
the case study on both datasets.

Method Accuarcy (%)
Llama-2-7B 2.5
ORM+RL 7.5
PRM+RL 12.1

SFT 6.2
SFT+ORM+RL 6.9
SFT+PRM+RL 15.1

SFT+PRM+BackPRM+RL 21.9

Table 3: Results of ablation study on the MATH dataset.

5.5 Ablation Study

In this section, we present the results of the abla-
tion study on MATH dataset, as shown in Table
3. Specifically, our experiments are divided into
two parts: one examines the effect of removing
backward reasoning, and the other evaluates that
of removing different modules. As the baseline
model, Llama-2-7B has an accuracy of 2.5%. This
result provides a benchmark for evaluating the ef-
fectiveness of other methods on MATH.
Without backward reasoning. During the SFT
process, we fine-tuned the model to enable it to
perform backward reasoning. Therefore, without
SFT, backward reasoning is ablated, and the model
only has forward reasoning capability. In the ab-
sence of backward reasoning capability, ORM+RL
achieves an accuracy of 7.5%. RL with PRM feed-
back achieves an accuracy of 12.1%. This com-
parison indicates that PRM supervision is more
effective than ORM supervision for the model.
Ablating modules. When the model has back-
ward reasoning capability, i.e., after performing
SFT, the accuracy of the model with only SFT is
6.2%, higher than the baseline Llama-2-7B, indi-
cating that backward reasoning positively impacts
the model’s reasoning ability. SFT+ORM+RL and
SFT+PRM+RL on the model achieves accuracies
of 6.9% and 15.1% respectively. Among them, the
result of SFT+ORM+RL is lower than ORM+RL,
but SFT+PRM+RL is higher than PRM+RL. This
indicates that when the model has backward reason-
ing capability, PRM leads to better performance.
Supervised by both the PRM and the BackPRM
during the reinforcement learning process, the
model’s accuracy reaches 21.9%. This result is
significantly higher than other methods, indicating
that leveraging both forward and backward reason-
ing data can greatly enhance the model’s perfor-
mance in complex reasoning tasks.
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6 Conclusion

We have presented BackMATH-Data, a dataset
constructed based on backward reasoning. To
validate the effectiveness of BackMATH-Data in
improving mathematical reasoning, we propose
Backward Reasoning Process Supervision Reward
Model (BackPRM) to evaluate the quality of back-
ward reasoning problem, and BackMATH-LLM,
a framework designed to enhance the backward
reasoning capabilities of LLMs for solving mathe-
matical problems. Through comprehensive experi-
ments on the GSM8K and MATH benchmarks, we
demonstrate that BackMATH-LLM significantly
outperforms existing methods, achieving an accu-
racy of 68.1% on GSM8K and 21.9% on MATH.
These findings highlight the substantial potential
of backward reasoning in improving the problem-
solving capabilities of LLMs.
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A Prompts of Reformulating Problems

Here, we present an example of prompts used for ChatGPT to create backward reasoning problems.
Specifically, we first provide ChatGPT with the premise for reformulating, then outline the reformulating
approach, followed by reformulated examples, the questions to be reformulated, and finally the rules to be
observed during the reformulation process. Table 4 shows an example of prompt in latex format.

I will give you a mathematical rule for reverse reasoning.
You need to understand it and rewrite various mathematical problems into reverse reasoning problems
based on it.
I need you to rewrite the original problem into the reverse reasoning format.
You should follow: original problem: Given condition A, get result B; reverse reasoning problem: Given
B, find A.
Use LaTeX’s box to mark the key parts of the reverse_solution to highlight the key answer
Example: Original problem:
{Original Problem Example}
The Backward reasoning problem is:
{Backward reasoning Problem Example}
{instruction}
Note, when rewriting, pay attention to the following issues:
1. Ensure that the answer to the reverse reasoning problem is different from the answer to the original
problem.
2. Avoid simple rewrites or expansions of the original problem.
3. Prevent situations where only the result of operations is given; ensure sufficient information.
4. Avoid simple verification of whether a known result meets the original problem.
5. Ensure the reverse reasoning problem and the original problem are independent.
6. New variables introduced in the original problem should not appear in the reverse reasoning problem.
7. The problem statement should not contain the required result.
8. The reverse reasoning problem should be reasoned from a different angle.
Here are my input, please output jsonl format, ensure that the answer to the reverse reasoning problem is
different from the answer to the original problem:
Please use the following jsonl format to generate:
{
"reverse_problem": xxx,
"reverse_solution_process":xxx ,
"reverse_solution": xxx
}
Response:

Table 4: An example of reformualting prompts.
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B Promt of Training

Table 5 shows the prompt of training our BackMATH-LLM.

"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request."
"### Instruction:
{instruction}
let’s verify step by step
### Response:"

Table 5: Prompt of training.

C Case Study of GSM8K

In this section, we provide a case study on GSM8K. Table 6 shows a correct case.

Instruction: Mr. Callen bought 10 paintings at $40 each and 8 wooden toys at $20 each from the crafts
store to resell at a profit. However, when he sold the items, the selling price of a painting was 10% less
and the selling price of a hat 15% less. Calculate the total loss Mr. Callen made from the sale of the items.

Ground Truth Answer: 64

Step1: Cost of 10 paintings at $40 each: 10× 40 = 400

Step2: Cost of 8 wooden toys at $20 each: 8× 20 = 160

Step3: Total cost: 400 + 160 = 560

Step4: Selling price of each painting (10% less): 40− (0.10× 40) = 40− 4 = 36

Step5: Total selling price for paintings: 10× 36 = 360

Step6: Selling price of each wooden toy (15% less): 20− (0.15× 20) = 20− 3 = 17

Step7: Total selling price for wooden toys: 8× 17 = 136

Step8: Total selling price: 360 + 136 = 496

Step9: Total loss: Total Cost − Total Selling Price 560− 496 = 64

Table 6: Case study on GSM8K.
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Then, we show a case study of solving backward reasoning problem step by step in Table 7.

Instruction: Mr. Callen bought x paintings at $40 each and 8 wooden toys at $20 each from the crafts
store to resell at a profit. However, when he sold the items, the selling price of a painting was 10% less
and the selling price of a hat 15% less. Calculate the total loss Mr. Callen made from the sale of the items.
If we know the answer is 64, what is the value of x?

Ground Truth Answer: 10

Step1: Cost of x paintings at $40 each: 40x

Step2: Cost of 8 wooden toys at $20 each: 8× 20 = 160

Step3: Total cost: 40x+ 160

Step4: Selling price of each painting (10% less): 40− (0.10× 40) = 40− 4 = 36

Step5: Total selling price for paintings: 36x

Step6: Selling price of each wooden toy (15% less): 20− (0.15× 20) = 20− 3 = 17

Step7: Total selling price for wooden toys: 8× 17 = 136

Step8: Total selling price: 36x+ 136

Step9: Total loss: Total Cost - Total Selling Price

Step10: 40x+ 160− (36x+ 136) = 4x+ 24

Step11: 40x+ 160− 36x− 136 = 4x+ 24

Step12: 4x+ 24 = 64

Step13: 4x = 64− 24

Step14: 4x = 40

Step15: x =
40

4
Step16: x = 10

Table 7: Case study on GSM8K.
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D Error Study of GSM8K

Then, we show an example of erroneous reasoning from GSM8K step by step in Table 8.

Instruction: A professional company is hiring for a new position. They have two qualified applicants.
The first applicant will accept a salary of $42000 and make the company $93000 in the first year, but
needs 3 months of additional training that costs $1200 a month. The second applicant does not need
training and will make the company $92000 in the first year, but is requesting a salary of $45000 and a
hiring bonus of 1% of his salary. Less the amount it will cost to pay for each candidate, how many more
dollars will one candidate make the company than the other in the first year?

Ground Truth Answer: 850

Step1: Calculate the cost for the first applicant:

Step2: Salary: $42000

Step3: Total cost: $42000

Step4: Calculate the net profit for the first applicant

Step5: Revenue: $93000

Step6: Total cost: $42000

Step7: Net profit: 93000 - 42000 = $51000

Step8: Calculate the cost for the second applicant

Step9: Salary: $45000

Step10: Total cost: $45000

Step11: Calculate the net profit for the second applicant

Step12: Revenue: $92000

Step13: Total cost: $45000

Step14: Net profit: 92000 - 45000 = $47000

Step15: Calculate the difference in net profit between the two applicants

Step16: Net profit for the first applicant: $51000

Step17: Net profit for the second applicant: $47000

Step18: Difference in net profit: 51000 - 47000 = $4000

Table 8: An example with erroneous reasoning from GSM8K.
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E Case Study of MATH

Instruction: Given that α and β are the roots of x2 − 2x− 1 = 0, find 5α4 + 12β3.

Ground Truth Answer: 169

Step1: The given quadratic equation is:

x2 − 2x− 1 = 0

using the quadratic formula x = −b±
√
b2−4ac
2a , where a = 1, b = −2, and c = −1, we get:

x =
2±

√
(−2)2 − 4 · 1 · (−1)

2 · 1
=

2±
√
4 + 4

2
=

2±
√
8

2
=

2± 2
√
2

2
= 1±

√
2

thus, the roots are:
α = 1 +

√
2 and β = 1−

√
2

Step2: Calculate α4 and β3, first, we find α2:

α2 = (1 +
√
2)2 = 1 + 2

√
2 + 2 = 3 + 2

√
2

next, we find α4:
α4 = (α2)2 = (3 + 2

√
2)2 = 9 + 12

√
2 + 8 = 17 + 12

√
2

.
Step3: Calculate β3 First, we find β2:

β2 = (1−
√
2)2 = 1− 2

√
2 + 2 = 3− 2

√
2

next, we find β3:

β3 = β · β2 = (1−
√
2)(3− 2

√
2) = 3− 2

√
2− 3

√
2 + 4 = 7− 5

√
2

Step4: Calculate 5α4 + 12β3 Now, we substitute the values of α4 and β3 into the expression:

5α4 + 12β3 = 5(17 + 12
√
2) + 12(7− 5

√
2)

Distribute the constants:
= 85 + 60

√
2 + 84− 60

√
2

Combine like terms:
= 85 + 84 = 169

Thus, the value of 5α4 + 12β3 is:
169

Table 9: Case study on MATH.
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Instruction: Given malpha4 + 12beta3 = 169 where alpha, beta are roots of x2 − 2x− 1 = 0, find m.

Ground Truth Answer: 5
Step 1: Solve the Quadratic Equation
The quadratic equation is:

x2 − 2x− 1 = 0

Solving for the roots, we get:
α = 1 +

√
2, β = 1−

√
2

Step 2: Calculate α4 and β3

First, we find:
α2 = (1 +

√
2)2 = 3 + 2

√
2

α4 = (3 + 2
√
2)2 = 17 + 12

√
2

Similarly,
β2 = (1−

√
2)2 = 3− 2

√
2

β3 = (1−
√
2)(3− 2

√
2) = 7− 5

√
2

Step 3: Substitute α4 and β3 into the Given Expression We have:

m(17 + 12
√
2) + 12(7− 5

√
2) = 169

Combine terms:
17m+ 84 + 12m

√
2− 60

√
2 = 169

Separate the rational and irrational parts:

17m+ 84 = 169 and 12m
√
2− 60

√
2 = 0

Step 4: Solve for m From the rational part:

17m+ 84 = 169 ⇒ 17m = 85 ⇒ m = 5

Thus, the value of m is:
5

Table 10: Case Study on MATH.
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F Error Study of MATH

Instruction: The graph of x2 − 2xy + 3y2 = 5 is an ellipse, although its axes are not parallel to
the coordinate axes. Two horizontal lines and two vertical lines lie tangent to the ellipse, forming a
rectangle, as shown: [asy] (7cm); (rotate(20)*xscale(2.4)*unitcircle); ((-3.5,0)–(3.5,0),EndArrow); ((0,-
2.5)–(0,2.5),EndArrow); r1=2.29; draw((r1,-2.2)–(r1,2.2),dotted); ((-r1,-2.2)–(-r1,2.2),dotted); r2=1.26;
draw((-3,r2)–(3,r2),dotted); ((-3,-r2)–(3,-r2),dotted); (x,(3.5,0),E); label(y,(0,2.5),N);[/asy]What is the
area of the rectangle?"

Ground Truth Answer: 10
√
3

Step1: Solve the quadratic equation:
x2 − 2x− 1 = 0

Using the quadratic formula, we find the roots:

α = 1 +
√
2, β = 1−

√
2

Step2: Determine the rotation angle: Using the formula for the angle of rotation to eliminate the xy term:

tan 2θ =
B

A− C

where A = 1, B = −2, and C = 3:

tan 2θ =
−2

1− 3
=

−2

−2
= 1 ⇒ 2θ =

π

4
⇒ θ =

π

8

Step3: Rotate the coordinate system: Using θ = π
8 , the rotation matrix elements are:

x = x′ cos
π

8
− y′ sin

π

8
, y = x′ sin

π

8
+ y′ cos

π

8

Substitute these into the original equation x2 − 2xy + 3y2 = 5.
Step4: Simplify to the standard ellipse equation: After substituting and simplifying, we get:

A′x′
2
+ C ′y′

2
= 5

This represents the ellipse in the rotated coordinates.
Step5: Identify the lengths of the semi-major and semi-minor axes: In the simplified equation, the coeffi-
cients A′ and C ′ correspond to:

a′ =

√
5

A′ , b′ =

√
5

C ′

Step6: Calculate the area of the rectangle: The rectangle formed by the tangents to the ellipse has sides
equal to 2a′ and 2b′:

A = 2a′ × 2b′ = 4× a′ × b′

Given the ellipse x2 − 2xy + 3y2 = 5, we verify the simplified form and dimensions.
Thus, the area of the rectangle is:

20

Table 11: An example with erroneous reasoning from MATH.
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G References of Compared Models

We list the compared models and their corresponding references in Table 12.

Model Reference
WizardMath-13B Luo et al. (2023)
MetaMath Yu et al. (2023)
GPT-3 OpenAI (2020)
Llama-2-7B

Touvron et al. (2023)
Llama-2-70B
Baichuan-2-7B

Yang et al. (2023a)
Baichuan-2-13B
Distilling-LM Shridhar et al. (2022)
Falcon-40B Penedo et al. (2023)
PaLM-62B

Chowdhery et al. (2023)
PaLM-540B

Table 12: References of Compared Models.
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