AutoProteinEngine: A Large Language Model Driven Agent Framework
for Multimodal AutoML in Protein Engineering

Yungeng Liu'*', Zan Chen", Yu Guang Wang'?, Yiging Shen*",

"Toursun Synbio, Shanghai, China City University of Hong Kong, Hong Kong SAR
3Shanghai Jiao Tong University, Shanghai, China *Johns Hopkins University, Baltimore, USA

TEqual Contribution. *Corresponding Author: Yiging Shen (yigingshen1@ gmail.com).

Abstract

Protein engineering is important for biomedi-
cal applications, but conventional approaches
are often inefficient and resource-intensive.
While deep learning (DL) models have shown
promise, their training or implementation into
protein engineering remains challenging for
biologists without specialized computational
expertise. To address this gap, we propose
AutoProteinEngine (AutoPE), an agent frame-
work that leverages large language models
(LLMs) for multimodal automated machine
learning (AutoML) for protein engineering. Au-
toPE innovatively allows biologists without DL
backgrounds to interact with DL models us-
ing natural language, lowering the entry bar-
rier for protein engineering tasks. Our Au-
toPE uniquely integrates LLMs with AutoML
to handle model selection for both protein se-
quence and graph modalities, automatic hyper-
parameter optimization, and automated data
retrieval from protein databases. We evaluated
AutoPE through two real-world protein engi-
neering tasks, demonstrating substantial perfor-
mance improvements compared to traditional
zero-shot and manual fine-tuning approaches.
By bridging the gap between DL and biolo-
gists’ domain expertise, AutoPE empowers re-
searchers to leverage DL without extensive pro-
gramming knowledge. Our code is available at
https://github.com/tsynbio/AutoPE.

1 Introduction

Protein engineering, focused on designing and op-
timizing proteins with enhanced and tailored func-
tions, plays a crucial role in a wide range of biomed-
ical applications including drug discovery, enzyme
optimization, and biomaterial design (Brannigan
and Wilkinson, 2002; Carter, 2011). Traditional
approaches to protein engineering, such as directed
evolution and rational design, are often constrained
by inefficiency, low success rates, and high re-
source demands (Goldsmith and Tawfik, 2012).

Deep learning (DL) models, such as the ESM se-
ries (Lin et al., 2023; Verkuil et al., 2022; Rives
et al., 2021) and AlphaFold series (Jumper et al.,
2021; Evans et al., 2021) models, have enhanced
efficiency and accuracy of protein structure pre-
diction, understanding protein-protein interactions,
and other tasks within protein engineering. How-
ever, training or fine-tuning those deep learning
models for specific protein engineering tasks poses
significant challenges for biologists lacking special-
ized coding and machine learning expertise (Yang
etal., 2019). Specifically, the intricate architectures
of deep learning models require a deep understand-
ing of DL principles for effective interpretation
and modification. Optimizing model performance
further necessitates adjusting hyperparameters, a
process that relies heavily on machine learning ex-
perience and intuition. Moreover, preparing protein
data for input into these models often involves spe-
cialized pre-processing techniques. Finally, the
complexity is amplified by the multimodal nature
of protein data, which can be represented in both
sequence and protein graph formats, adding an ad-
ditional layer of difficulty of model training and
optimization.

Although automated machine learning (Au-
toML) (Waring et al., 2020) has been introduced to
reduce the manual effort involved in training DL
models (Xiao et al., 2022; Chen et al., 2021), exist-
ing AutoML frameworks still demand considerable
expertise in DL and programming. This limits their
accessibility to biologists who lack computational
backgrounds (Luo et al., 2024). Moreover, these
frameworks are typically designed for general tasks
and therefore lack domain-specific knowledge of
protein engineering, limiting their capability to han-
dle protein sequences and protein graphs. To ad-
dress these challenges, we propose an agent frame-
work that leverages large language models (LLMs)
for multimodal AutoML specifically tailored to
protein engineering. LLMs offer the advantage of

422

Proceedings of the 31st International Conference on Computational Linguistics: Industry Track, pages 422-430
January 19-24, 2025. ©2025 Association for Computational Linguistics

yiqing.shen1@gmail.com
https://github.com/tsynbio/AutoPE

interacting with the model in a conversational man-
ner, which can reduce the learning curve for users
(Zhang et al., 2024; Shen et al., 2024). Our ap-
proach aims to bridge the gap between DL models
and biologists’ domain expertise, enabling more
efficient and accessible protein engineering work-
flows while incorporating the necessary domain-
specific knowledge for handling protein data across
various modalities.

The major contributions of this work are three-
fold. Firstly, we propose an innovative LLM-based
agent framework for multimodal AutoML specif-
ically for protein engineering tasks, namely Au-
toProteinEngine (AutoPE). To the best of our
knowledge, this is the first attempt at a multi-
modal AutoML framework for protein engineer-
ing, that can tackle both the protein sequence and
protein graph. Notably, AutoPE allows users to
perform AutoML tasks through conversational in-
teractions with the framework. Secondly, to fur-
ther boost the performance, we propose an auto-
mated hyper-parameter optimization module that
conducts hyper-parameter search via LLM. Finally,
we propose an automated data retrieval method that
can facilitate seamless data retrieval from protein
databases such as PDB, and UniProt, using natural
language descriptions.

2 Methods

2.1 LLM-driven AutoML

At the core of AutoPE is its AutoML module,
which features a core AutoML module that auto-
mates task validation, data preprocessing, model
selection and configuration, and model training for
protein engineering tasks (Erickson et al., 2020).
This module is driven by an LLM, enabling a
user-friendly interface where users (e.g., biologists)
without extensive computational expertise can spec-
ify their tasks using natural language.

Users describe their protein engineering task in
natural language, such as “I need to train a model
to predict the mutation of given protein sequence’.
The LLM then evaluates this input to determine if
it aligns with AutoPE’s capabilities. This task vali-
dation stage is achieved through a prompt that in-
cludes context about protein engineering tasks and
AutoPE’s functionalities. Specifically, the LLM is
instructed to determine if the task falls within valid
categories depending on the available model zoo
for the model selection stage, such as protein sta-
bility prediction, protein-protein interaction predic-

tion, enzyme activity prediction, or protein muta-
tion. If the task is not immediately clear or outside
AutoPE’s scope, it engages in a dialogue to clarify
or refine the request.

Once a task is validated, the LLM analyzes the
input to formulate a plan before action. This plan
encompasses data preprocessing strategies, model
selection, and configuration stage that selects mod-
els from predefined model zoos (e.g., ESM series,
AlphaFold). The LLM generates this using retrieve
augmented generation (RAG) on related literature,
incorporating domain-specific protein engineering
knowledge to ensure all aspects of the task are ad-
dressed.

In the data preprocessing stage, if the input
data is incomplete, AutoPE’s data retrieval module
comes into play. It supplements the data by access-
ing online sources including PDB (Protein Data
Bank) and UniProt databases. This process is also
guided by the LLM, which formulates appropriate
database queries based on the task requirements.

With a complete dataset and a formulated plan,
AutoPE proceeds to the model selection and con-
figuration stage. The AutoPE executes the plan by
selecting and configuring appropriate models from
the predefined model zoos. For tasks involving
multimodal data, which include both sequence and
graph representations of proteins, AutoPE imple-
ments a late fusion scheme. Specifically, it com-
bines embeddings from different modalities, allow-
ing AutoPE to leverage complementary informa-
tion from both sequence and structural data.

In the training stage, the LLM is prompted to
refine a pre-defined general training framework by
incorporating model-specific optimizations. This
includes selecting appropriate loss functions, deter-
mining optimal batch sizes and learning rates based
on the selected model and dataset size, and imple-
menting early stopping and model check-pointing
to prevent overfitting. The LLM also applies task-
specific data augmentation techniques, such as ran-
dom mutations for sequence data or graph pertur-
bations for structural data. For Transformer-based
models like ESM, it fine-tunes attention mecha-
nisms or the prediction head depending on the task
types. The overall framework of AutoPE is de-
picted in Fig. 1.

2.2 Auto Hyperparameter Optimization

To further enhance the performance and usabil-
ity of AutoPE, we introduce an auto hyperparame-
ter optimization (HPO) module that enables HPO

423

AutoML Module

Auto Data Retrieval

Please predict the sweetness of
{protein_names} based on the
information in the xxx.csv file

‘ b ! Evaluates !

i (Optimal) PDB Files, FASTA | @ : Input :
i i
i

Files, CSV Files 1

API Required]
p

PDB ['moleculefinsulin} AND organism:{Homo sapiens}
pdb_id_1', ‘pdb_id_2] !
UniProt": [‘organism:{Homo sapiens} AND name:{insulin}
uniprot_id_1", ‘uniprot_id_2’, -]
}

Protein DB API l i

Model Selection & Configuration Data Preprocessing l

-

Fusion Embedding

Model Selection

("Multimodal input data Y (Parsing User Input
" ,‘jff : ,/ ‘Protein_sequence’: [ADNOENSJAN
i M‘\ [ADNOENSJAN-++7 i 1 ‘Protein_to_query": [xxx fasta’, ‘xxx.pdb’
[~ j«d ‘ i ! ‘protein_name_1', ‘prote 2]
: ‘—;é/ SAY ' l ‘Hyperparameter’:

| L_Structure information Sequence information ! [e=— *

f—_
VFind Missing Data
1 & |

| Generate Query *

1

1

Model Training

n
[ESM-2 q]:] Trans.

> Initial Hyperparameter

-

! Trail 1| Lr:--, Dropout: -, W_decay H
J | » Trail 2 | Lr: -, Dropout: -, W_decay || !
I ! - Trail o -
N : 1 rail 3 | Lr: Dropout: W_decay 3
i I
N Optimize H Trail 4 | Lr: -, Dropout: - W_decay

» Trailn

E ASHA %{
\ vy

Get HPO Result } [:

!Loss Function' * | ! Hyperparameter |
Chatbot Output : ‘Batch size' : T
e N baten ! :
Output File : ; H
[-
AutoPE analyzed the input files and
user parameters, utilizing the ESM-
2 model to predict mutations in the
protein sequence 1
g I

Best Trail Lr: -, Dropout: -, W_decay H

Figure 1: The overview of AutoProteinEngine (AutoPE) framework. It illustrates the end-to-end workflow of
AutoPE, integrating LLM-driven AutoML for protein engineering tasks. The framework consists of three main
components: (1) A user-friendly chat interface for the natural language task specification and data input; (2)
An AutoML module that handles task validation, data preprocessing, model selection, and an auto HPO module
that automizes the HPO searching; and (3) An auto data retrieval module for acquiring protein-related data from
databases like UniProt and PDB. It supports multimodal protein data (protein sequences and structures) and provides

interactive feedback throughout the workflow.

searching via natural language guidance from the
user and provides better interpretations of results.
The core of the Auto HPO module comprises two
stages, namely the Tree-structured Parzen Estima-
tor (TPE) and the Asynchronous Successive Halv-
ing Algorithm (ASHA) (Watanabe, 2023; Li et al.,
2018). The TPE algorithm optimizes hyperparame-
ter configurations by modeling the probability of a
configuration yielding good performance, defined
%, where x* represents the
optimal hyperparameter configuration, (z) and
g(x) are the likelihood functions for high and low-
performing configurations respectively. The TPE
approach allows AutoPE to efficiently explore the
hyperparameter space, focusing on regions that are
more likely to yield improved performance. Com-
plementing TPE, the ASHA scheduler optimizes re-
source allocation through a multi-fidelity approach,
described by:

by x* = arg max,

_ 7
Ti = Tmin * 1

-5
U (1)

[log,, (n)]

E ng-Ti,
=0

where, r; denotes the resource allocation at the i-th
iteration, n; represents the number of configura-
tions evaluated, and 7T is the total computational
budget. ASHA allows for early termination of un-
derperforming experiments, dynamically reallocat-
ing resources to more promising configurations.

AutoPE utilizes Ray . Tune (Liaw et al., 2018) to
manage the HPO process, where the LLM sum-
marizes and verifies user inputs before initiating
the optimization. Before HPO, AutoPE interacts
with the user to confirm hyperparameter settings
or suggest additional configurations, which allows
researchers to leverage their domain knowledge
while benefiting from the LLM’s ability to navi-
gate complex hyperparameter spaces. During the
HPO process, AutoPE provides feedback through-
out the optimization process, which communicates
progress and results, converting numerical metrics
(such as MSE or F1-score) into user-friendly nat-
ural language summaries, as shown in Fig. 2. It
enhances the interpretability of the optimization
process, allowing users to gain insights into the
performance trends of different hyperparameter
configurations. Resource management during hy-
perparameter optimization is similarly facilitated

424

via LLM interaction. Users can specify computa-
tional preferences, such as the number of GPUs
to allocate to each trial, through natural language
commands.

2.3 Auto Data Retrieval

AutoPE’s auto data retrieval module streamlines
the acquisition of essential protein-related data for
pretraining and fine-tuning models in protein en-
gineering tasks. It provides a user-friendly design
for specifying data requirements through natural
language queries. Users can request data in var-
ious formats, including protein sequences, PDB
structures, UniProt IDs, or general protein descrip-
tions, where LLM interprets these requests. For
example, if a user inputs “I need the sequence
and structure data for human insulin”, the LLM
processes this natural language query and trans-
lates it into specific data retrieval tasks. Specifi-
cally, it identifies key elements such as the protein
name (insulin), the organism (human), and the re-
quired data types (sequence and structure). Upon
parsing the user’s request, the auto data retrieval
module leverages the LLM to construct appropri-
ate database queries. For UniProt (Consortium,
2019), the LLM generates a query like “organ-
ism:{Homo sapiens} AND name:{insulin}”. Sim-
ilarly, for PDB (Burley et al., 2017), it constructs
a query such as “molecule:{insulin} AND organ-
ism:{Homo sapiens}”. The LLM’s ability to gener-
ate these structured queries from natural language
input enables efficient and accurate data retrieval
across multiple databases. In cases where data
is unavailable or incomplete, AutoPE engages in
an interactive dialogue guided by the LLM. If the
initial search yields no results, the LLM further
prompts the user with alternative options, such as
searching for closely related insulin structures from
other mammals or focusing on sequence data only.

This module also enhances data retrieval flexi-
bility by allowing users to manually input or verify
the retrieved data through an editable table inter-
face, which is particularly useful for incorporating
proprietary or unpublished private data that may
not be available in public databases. The LLM
assists in this process by providing guidance on
data formatting and validating user inputs to en-
sure consistency with the required data structure
for downstream analyses. After compiling the nec-
essary data, AutoPE presents users with a detailed
summary of the collected information and the over-
all task scope. This summary, generated by the

LLM, includes a list of retrieved protein sequences
and their sources, PDB IDs of relevant structures
and their resolution, key UniProt annotations for
the proteins of interest, and any gaps or potential
issues in the collected data.

3 Experiments

3.1 Datasets

To evaluate our AutoPE framework, we selected
two distinct proteins for classification and regres-
sion tasks, respectively. For the classification
task, we focused on Brazzein, a high-intensity
sweetener protein originally isolated from the West
African plant Pentadiplandra brazzeana (Ming and
Hellekant, 1994; Assadi-Porter et al., 2005). The
dataset consists of 435 mutation entries, compris-
ing single and multi-point mutations of Brazzein
protein, along with their corresponding relative
sweetness measurements. We categorized the muta-
tions as “sweet” or “non-sweet” based on a thresh-
old relative sweetness of 100 (equivalent to su-
crose). The regression task utilized data from
the STM1221 wild-type protein, an enzyme that
specifically removes acetyl groups from target pro-
teins. Our dataset consisted of 234 enzyme activ-
ity scores for various mutation scenarios, as deter-
mined through wet lab experiments. This continu-
ous data enables the prediction of enzyme activity
levels based on specific mutations. We randomly
partitioned each dataset into training (80%) and
testing (20%) sets with a five-fold validation.

3.2 Experiment Design and Implementation

We designed our experiments to compare the per-
formance of AutoPE with two distinct approaches,
namely zero-shot inference and manual fine-tuning.

Zero-Shot Inference The zero-shot inference
leverages pre-trained protein language models i.e.,
ESM to extract features without task-specific fine-
tuning. This approach provides a baseline for as-
sessing the generalization capabilities of AutoPE.
After extracting feature representations, we lever-
age traditional machine learning algorithms such as
logistic regression and k-nearest neighbors (KNN)
for functional score prediction. Grid search is em-
ployed to identify the optimal algorithm and hyper-
parameters, with the final performance evaluated
on the test set.

Manual Fine-Tuning To enhance model perfor-
mance on specific tasks, we manually fine-tune

425

(a)

Enter your information below, separated by commas and ended by a period.

Dragand drop file here

a thefilel
n sequence in the file. | hope to find the ine-tuning model

uploaded and t
with the highest

1))

(c)

Pre-defined task flow code

(b)

~— AutoPE

ned. Joad_mode]_and_alphabet_local (esm._path)

AutoML Result

Trial name Ir dropout - batch_size loss f1 accuracy

train 00000 ©0.02 ©0.160
train_00001 0.01 0.057
train_00002 0.01 0.172
Q train_00003 0.02 0.014
train 0004 0.02 0.083
train_00005 0.1 0.032
train_00006 0.1 0.127
train 00007 0.1 0.025

0.3062 0.7222 0.6338
0.3081 0.7308 0.8851
0.307 0.8043 0.8161 [
0.3071 0.7353 0.8981
0.3051 0.75 0.7931
0.3046 0.7243 0.72
0.3047 0.8077 0.8966
0.3047 0.8103 0.7701

INENFSF IS B

(e)

Figure 2: Case study between the AutoPE in a conversational interface with conventional code-based DL workflow
for brazzein protein sweetness classification task. This figure demonstrates the end-to-end process and improved
usability of AutoPE: (a) A biologist without DL background uploads protein mutation data and specifies the
sweetness classification task using natural language; (b) LLM-driven analysis of inputs and automated result
interpretation, showing AutoPE’s ability to handle domain-specific requests. In the conventional code-based
DL workflow multiple experts are involved: (c) Pre-defined modules process the Brazzein protein sequences
require both data scientist and biologist; (d) AutoML pipeline, including HPO, optimizes the classification model
requires programming experts; (€) Results visualization requires data analyst. This case study highlights AutoPE’s
effectiveness in enabling non-expert users to perform complex protein engineering tasks, achieving superior

performance while requiring minimal technical expertise.

the pre-trained protein language models. Our cus-
tomization includes adding a self-attention layer to
capture medium and long-range dependencies in
protein sequences, improving the model’s ability
to identify complex mutations. This setting aims
to enhance feature capture and non-linear trans-
formation capabilities, potentially leading to im-
proved task-specific performance. We also man-
ually searched HPO by a well-experienced ML
engineer, who has three years of experience in both
DL and protein engineering.

Evaluation Metrics For classification, we uti-
lize three metrics, namely (1) the Fl-score that
balances precision and recall and is important for
imbalanced datasets; (2) ROC-AUC (Receiver Op-
erating Characteristic - Area Under Curve), which
evaluates the model’s overall discriminative ability
across various thresholds, with higher values indi-
cating superior performance; (3) Spearman Rank
Correlation Coefficient (SRCC) that assesses rank
preservation. For regression, we employ another
three metrics, namely (1) Mean Squared Error

(MSE) which quantifies the average squared devia-
tion between predicted and true values; (2) Mean
Absolute Error (MAE), which complements MSE
by calculating the average absolute deviation with
reduced sensitivity to outliers; (3) R? score that
evaluates the model’s explanatory power by mea-
suring the proportion of variance in the dependent
variable accounted for by the model. A higher R?
score, approaching 1, indicates better alignment
between predictions and ground truth.

Implementation Details For the zero-shot
method, we explored multiple machine learning
algorithms, including Support Vector Machines
(SVM), Random Forest (RF), and Logistic Regres-
sion. For SVM, we tested linear, radial basis func-
tion (RBF), and polynomial kernels. The Random
Forest classifier was evaluated with various hyper-
parameters: number of estimators (50, 100, 200),
maximum depth (None, 10, 20, 30), and minimum
samples split (2, 5, 10). For manual fine-tuning,
we employed a consistent set of hyperparameters
for initialization: dropout rate of 0.30, learning rate

426

of le-3, batch size of 8, and 50 training epochs.
Weight decay was set to le-5 to prevent overfitting.
We also implemented a learning rate scheduler with
a step size of 10 and a vy of 0.1 to gradually reduce
the learning rate during training. For the LLM used
in AutoPE, we utilize the TourSynbio-7B (Shen
et al., 2024) due to its outstanding performance
on protein understanding. All implementations are
conducted on 8 NVIDIA 4090 GPU cards.

3.3 Results

Table 1: Performance comparison to zero-shot inference
and manual fine-tuning on Brazzein protein sweetness
classification task.

Methods

Zero-Shot

Manual Fine-Tuning
AutoPE (w/o HPO)
AutoPE (w/ HPO)

F1-score 1

0.4764 +0.11
0.5709 +0.05
0.6396 +0.06
0.7306 + 0.04

SRCC 1

0.3769 +0.05
0.3098 +0.06
0.4405 +0.04
0.4621 +0.03

Accuracy T

0.6917 +0.04
0.9137 +0.01
0.7988 +0.05
0.8908 +0.01

In the classification task (Fig. 3, Tab. 1), Au-
toPE demonstrated superior performance across
all metrics, with its ROC curve closest to the top-
left corner. The ablation study further underscored
AutoPE’s efficacy, particularly with the auto HPO
module. AutoPE with auto HPO module achieved
the highest F1 Score (0.7306) and SRCC (0.4621),
outperforming both its without auto HPO module
variant (F1 score: 0.6396, SRCC: 0.4405) and base-
lines. While manual fine-tuning achieved the high-
est accuracy, its lower F1 score suggests potential
overfitting. In contrast, AutoPE with auto HPO
module achieves an optimal balance, combining
high accuracy (0.8908) with the best F1 score and
SRCC, indicating enhanced robustness and gener-
alizability. In the regression task (Tab. 2), AutoPE
also demonstrated superior performance across all
metrics. AutoPE with auto HPO module achieved
the lowest RMSE (0.3488) and MAE (0.1999), sur-
passing both its non-HPO variant (RMSE: 0.4029,
MAE: 0.2164) and baseline methods. Notably,
AutoPE with auto HPO module attained the high-

Table 2: Performance comparison to zero-shot inference
and manual fine-tuning on STM 1221 enzyme activity
regression task.

Methods

Zero-Shot

Manual Fine-Tuning
AutoPE (w/o HPO)
AutoPE (w/ HPO)

RMSE |

0.4862 +0.14
0.3579 +0.15
0.4029 +0.19
0.3488 +0.19

MAE |

0.2766 +0.15
0.2236 +0.16
0.2164 +0.14
0.1999 +0.13

R2_score T

0.5663 +0.04
0.5965 +0.07
0.6153 +0.09
0.6805 +0.09

ROC Curve

1.0 4

0.8 q

e
o
L

True Positive Rate
o
=
L

0.2 4 ,,"’ —— Zero-shot ROC curve (area = 0.61)

g Manual Fine-tuning ROC curve (area = 0.61)
] = AutoPE(w\o HPO) ROC curve (area = 0.67)
0o0d ¥ —— AULOPE(W\ HPO) ROC curve (area = 0.77)

T T T T T T
0.0 0.2 0.4 0.6 0.8 10
False Positive Rate

Figure 3: ROC curves for zero-shot, manual fine-tuning,
and AutoPE on Brazzein protein sweetness classifica-
tion task.

est R2 score (0.6805), indicating superior explana-
tory power for the variance in the target variable.
While manual fine-tuning showed competitive per-
formance in RMSE (0.3579), AutoPE with auto
HPO module consistently outperformed across all
metrics. Finally, we perform a case study to show
the improved usability of AutoPE in Fig. 2.

4 Conclusion

The AutoProteinEngine (AutoPE) effectively
bridges the gap between DL models and biologists’
domain expertise. By leveraging LLM for multi-
modal AutoML, AutoPE demonstrates substantial
advantages in accessibility, efficiency, and perfor-
mance. It simplifies AutoML task customization
and data processing, enabling biologists without
extensive computational backgrounds to leverage
advanced DL models in protein engineering tasks.
The auto data retrieval further enhances research
efficiency by automating the acquisition of pro-
tein information from databases such as PDB and
UniProt. Experiments on two real-world protein
engineering tasks show that AutoPE can outper-
form zero-shot inference and manual fine-tuning
(with HPO searching). The future work can con-
sider the integration of more specialized protein
language models, the incorporation of additional
protein databases for enhanced data retrieval, and
the extension of AutoPE to handle more complex
protein engineering tasks such as de novo protein
design or protein-protein interaction prediction.

427

References

Fariba M Assadi-Porter, Frits Abildgaard, Heike Blad,
Claudia C Cornilescu, and John L. Markley. 2005.
Brazzein, a small, sweet protein: effects of mutations
on its structure, dynamics and functional properties.
Chemical senses, 30(suppl_1):190—-91.

James A Brannigan and Anthony J Wilkinson. 2002.
Protein engineering 20 years on. Nature Reviews
Molecular Cell Biology, 3(12):964-970.

Stephen K Burley, Helen M Berman, Gerard J Kleywegt,
John L Markley, Haruki Nakamura, and Sameer Ve-
lankar. 2017. Protein data bank (pdb): the single
global macromolecular structure archive. Protein
crystallography: methods and protocols, pages 627—
641.

Paul J Carter. 2011. Introduction to current and future
protein therapeutics: a protein engineering perspec-
tive. Experimental cell research, 317(9):1261-1269.

Zhen Chen, Pei Zhao, Chen Li, Fuyi Li, Dongxu Xiang,
Yong-Zi Chen, Tatsuya Akutsu, Roger J Daly, Geof-
frey I Webb, Quanzhi Zhao, et al. 2021. ilearnplus: a
comprehensive and automated machine-learning plat-
form for nucleic acid and protein sequence analysis,
prediction and visualization. Nucleic acids research,
49(10):e60—60.

UniProt Consortium. 2019. Uniprot: a worldwide
hub of protein knowledge. Nucleic acids research,
47(D1):D506-D515.

Nick Erickson, Jonas Mueller, Alexander Shirkov,
Hang Zhang, Pedro Larroy, Mu Li, and Alexander
Smola. 2020. Autogluon-tabular: Robust and ac-
curate automl for structured data. arXiv preprint
arXiv:2003.06505.

Richard Evans, Michael O’Neill, Alexander Pritzel,
Natasha Antropova, Andrew Senior, Tim Green, Au-
gustin 7idek, Russ Bates, Sam Blackwell, Jason
Yim, et al. 2021. Protein complex prediction with
alphafold-multimer. biorxiv, pages 2021-10.

Moshe Goldsmith and Dan S Tawfik. 2012. Directed en-
zyme evolution: beyond the low-hanging fruit. Cur-
rent opinion in structural biology, 22(4):406-412.

John Jumper, Richard Evans, Alexander Pritzel, Tim
Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Zl’dek, Anna
Potapenko, et al. 2021. Highly accurate pro-
tein structure prediction with alphafold. nature,
596(7873):583-589.

Lisha Li, Kevin Jamieson, Afshin Rostamizadeh, Katya
Gonina, Moritz Hardt, Benjamin Recht, and Ameet
Talwalkar. 2018. Massively parallel hyperparameter
tuning.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp
Moritz, Joseph E Gonzalez, and Ion Stoica.
2018. Tune: A research platform for distributed

model selection and training.
arXiv:1807.05118.

arXiv preprint

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie,
Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert
Verkuil, Ori Kabeli, Yaniv Shmueli, et al. 2023.
Evolutionary-scale prediction of atomic-level pro-

tein structure with a language model. Science,
379(6637):1123-1130.

Dagqin Luo, Chengjian Feng, Yuxuan Nong, and Yiqging
Shen. 2024. AutoM3L: An Automated Multimodal
Machine Learning Framework with Large Language
Models. ArXiv:2408.00665 [cs].

Ding Ming and Goran Hellekant. 1994. Brazzein, a new
high-potency thermostable sweet protein from pen-
tadiplandra brazzeana b. FEBS letters, 355(1):106—
108.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth
Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott,
C Lawrence Zitnick, Jerry Ma, et al. 2021. Biologi-
cal structure and function emerge from scaling unsu-
pervised learning to 250 million protein sequences.
Proceedings of the National Academy of Sciences,

118(15):2016239118.

Yiqing Shen, Zan Chen, Michail Mamalakis, Yungeng
Liu, Tianbin Li, Yanzhou Su, Junjun He, Pietro Lio,
and Yu Guang Wang. 2024. Toursynbio: A multi-
modal large model and agent framework to bridge
text and protein sequences for protein engineering.
arXiv preprint arXiv:2408.15299.

Robert Verkuil, Ori Kabeli, Yilun Du, Basile IM Wicky,
Lukas F Milles, Justas Dauparas, David Baker,
Sergey Ovchinnikov, Tom Sercu, and Alexander
Rives. 2022. Language models generalize beyond
natural proteins. BioRxiv, pages 2022—12.

Jonathan Waring, Charlotta Lindvall, and Renato Ume-
ton. 2020. Automated machine learning: Review of
the state-of-the-art and opportunities for healthcare.
Artificial intelligence in medicine, 104:101822.

Shuhei Watanabe. 2023. Tree-structured parzen esti-
mator: Understanding its algorithm components and
their roles for better empirical performance. arXiv
preprint arXiv:2304.11127.

Sian Xiao, Hao Tian, and Peng Tao. 2022. Passer2. 0:
accurate prediction of protein allosteric sites through
automated machine learning. Frontiers in Molecular
Biosciences, 9:879251.

Kevin K Yang, Zachary Wu, and Frances H Arnold.
2019. Machine-learning-guided directed evolution
for protein engineering. Nature methods, 16(8):687—
694.

Luyao Zhang, Jianhua Shu, Jili Hu, Fangfang Li, Junjun
He, Peng Wang, and Yiqing Shen. 2024. Exploring
the potential of large language models in radiological
imaging systems: Improving user interface design
and functional capabilities. Electronics, 13(11):2002.

428

A Appendix

Prompt for large language model to parse
user input:

You are an Al assistant specialized in pars-
ing natural language inputs for bioinformatics
AutoML tasks. Your task is to extract key in-
formation from user inputs, including but not
limited to PDB IDs, amino acid sequences,
UniProt IDs, and uploaded file information.
Please analyze the input carefully and extract
information according to the following steps:
1. Identify the task type;

2. Look for PDB ID (if any);

3. Identify amino acid sequence (if any);

4. Look for UniProt ID (if any);

5. Confirm if there’s any file upload informa-
tion;

6. Extract other relevant task settings or con-
straints.

Please refer to the following examples:

Input 1: I want to classify the protein structure
with PDB ID 1ABC. I've uploaded a CSV file
containing relevant data.

Step 1: Task type is protein structure classifi-
cation;

Step 2: PDB ID is 1ABC;

Step 3: No amino acid sequence provided;
Step 4: No UniProt ID provided;

Step 5: User mentioned uploading a CSV file;
Step 6: No other specific task settings or con-
straints.

Extracted information:

- Task type: Protein structure classification;

- PDB ID: 1ABC;

- Uploaded file: CSV file.

Now, please analyze the following user input
in the same manner:

User input:

Prompt for large language model to ana-
lyze file structure:

You are an Al assistant specialized in analyz-
ing data file structures, your task is to iden-
tify the data columns and label columns in
CSYV, Excel, or TXT files. Please carefully
analyze the given file description and follow
these steps to make your judgment:

1. Confirm the file type (CSV, Excel, or TXT)
2. Analyze the number and names of columns
3. Check the data type and content of each
column

4. Determine which columns are likely to be
data columns based on their characteristics

5. Determine which columns are likely to be
label columns based on their characteristics
6. Provide your final judgment with a brief
explanation

Please refer to the following examples:
Example 1:

Input CSV (first 3 rows):
ID,Sequence,Structure,Function
I,MKVLW...,.CCHHH....Enzyme
2,QAKVE....HHHHH...,Structural protein
3,RQQTE...L,CCCCH...,Signaling molecule
Analysis:

1. Columns: 4 (ID, Sequence, Structure, Func-
tion)

2. Data types:

- ID: Numeric

- Sequence: Text (amino acid sequence)

- Structure: Text (protein secondary structure)
- Function: Text (protein function category)
3. Potential data columns: Sequence and
Structure, as they contain detailed protein in-
formation

4. Potential label column: Function, as it
appears to be a categorical outcome

5. Judgment:

- Data columns: Sequence and Structure

- Label column: Function

Reason: Sequence and Structure provide in-
put features about the protein, while Function
seems to be the category we might want to
predict.

Now, please analyze the following user input:
User input:

429

Prompt for large language model to sum-
mary AutoPE results:

As an Al assistant specializing in machine
learning analysis, your task is to summarize
and interpret the results of an AutoML run.
You will be provided with a table of results
from multiple training trials. Please analyze
the data and provide insights following these
steps:

1. Identify the key performance metrics in the
results.

2. Analyze the range and distribution of these
metrics across trials.

3. Identify the best-performing trial(s) based
on the most relevant metric(s).

4. Observe any patterns or relationships be-
tween hyperparameters and performance.

5. Provide a concise summary of the AutoML
results, including key findings and recommen-
dations.

Here’s an example of how to approach this
task:

Input:

[Table of AutoML results, including columns
for Trial name, Ir, dropout, batch_size, loss,
f1, accuracy]

Analysis: 1. Key metrics: loss, f1 score, and
accuracy.

2. Metric ranges: ...

3. Best-performing trial:...

4. Hyperparameter patterns:...

5. Summary: The AutoML run shows promis-
ing results with F1 scores ranging from ... and
accuracies from The best F1 score was
achieved with However, the highest accu-
racy was obtained with similar

Now, please analyze the following AutoML
results and provide a similar summary:
[Insert the actual AutoML results table here]

Prompt for large language model to deter-
mine suitable models and supplement data:
You are an advanced Al assistant specializing
in AutoML and protein engineering. Your
role is to assist researchers and scientists in
selecting appropriate models, retrieving rel-
evant external information, and guiding the
AutoML process for protein engineering tasks.
Please follow these guidelines:

1. Model Selection:

- When presented with a protein engineering
task, analyze the requirements and suggest
suitable models (e.g., ESM-2, ESM-3).

- If more information is needed to make an
informed decision, ask clarifying questions.
2. External Information Retrieval: - When
protein sequences or PDB/Uniprot IDs are
mentioned, parse IDs from natural language
automatically and provide relevant informa-
tion from trusted databases (e.g., UniProt,
PDB). - If additional data sources are required
for a task, suggest appropriate databases or
repositories. - Summarize key findings from
retrieved information that are relevant to the
task at hand.

user_input:

430

	Introduction
	Methods
	LLM-driven AutoML
	Auto Hyperparameter Optimization
	Auto Data Retrieval

	Experiments
	Datasets
	Experiment Design and Implementation
	Results

	Conclusion
	Appendix

