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Abstract
In the open-domain multi-document summa-
rization (ODMDS) task, retrieving relevant doc-
uments from large repositories and generating
coherent summaries are crucial. However, ex-
isting methods often treat retrieval and sum-
marization as separate tasks, neglecting the
relationships among documents. To address
these limitations, we propose an integrated
retrieval-summarization framework that cap-
tures global document relationships through
graph-based clustering, guiding the re-ranking
of retrieved documents. This cluster-level the-
matic information is then used to guide large
language models (LLMs) in refining the re-
trieved documents and generating more accu-
rate, coherent summaries. Experimental re-
sults on the ODSUM benchmark demonstrate
that our method significantly improves retrieval
accuracy and produces summaries that sur-
pass those derived from the oracle documents.
These findings highlight the potential of our
framework to improve both retrieval and sum-
marization tasks in ODMDS.

1 Introduction
Traditional multi-document summarization (MDS)
tasks typically involve a small, fixed set of docu-
ments, and the summarizer does not need to verify
the relevance of them to the query. However, in
ODMDS (Ji et al., 2013), the scale of the docu-
ment repository is immense, such as the entirety of
Wikipedia. This vastness makes it impractical to
use the entire Wikipedia as the input set or to di-
rectly locate all documents relevant to a given query.
To address this, a "retrieve-then-summarize" archi-
tecture has been proposed (Xu and Lapata, 2020;
Giorgi et al., 2023) as illustrated in Figure 1.

During the retrieval phase, identifying a truly
relevant set of documents from an extensive reposi-
tory based on a brief query is challenging. Tradi-
tional retrieval methods, such as BM25 (Robertson

*Corresponding author.

Figure 1: Retrieve-then-summarize pipeline.

and Zaragoza, 2009) and text embeddings, calcu-
late similarity scores between the query and each
document for retrieval. These methods treat doc-
uments as discrete, independent entities, ignoring
the interconnections between them and failing to
adopt a global perspective of the entire repository.
Additionally, during the summarization phase, the
most popular tools are LLMs, which possess strong
semantic understanding and text generation capabil-
ities, making them well-suited for summarization
tasks (Ouyang et al., 2022). However, due to the
input length limitations of LLMs, even if a highly
relevant set of documents is retrieved, it is challeng-
ing to input all of them (Yang et al., 2023a).

Previous research has largely focused on enhanc-
ing the accuracy of retrieval systems (Karpukhin
et al., 2020; Izacard et al., 2022) and improving
the ability of summarization systems to distill re-
fined summaries from verbose texts (Pasunuru
et al., 2021; Yasunaga et al., 2017). However,
these efforts were not specifically designed for the
ODMDS task and did not integrate retrieval and
summarization into a unified framework.

To address these gaps, we propose a retrieval-
summarization framework based on a key assump-
tion: "In ODMDS tasks, documents with the same
topic or contextual relationships should be consid-
ered in parallel." This assumption is grounded in
the observation that documents relevant to a query
are typically clustered around a few specific topics
rather than dispersed across unrelated topics.



319

Contribution The main contributions of this
work are as follows:

• We proposed a retriever that builds graphs
to capture connections between documents,
clusters documents based on context and topic,
and uses this clustering and topic information
to guide re-ranking and subsequent reflection
and refinement modules of the summarizer.

• We proposed a summarizer that can accept
a large number of candidate documents and
refine them to varying degrees based on the
cluster information output by the retriever, al-
lowing the final summary generation to focus
on texts that are more relevant to the issue.

• We conducted comprehensive experiments
and ablation studies, exploring the perfor-
mance improvements in the retriever and sum-
marizer, demonstrating its superior perfor-
mance compared to the baseline model.

2 Related Work
2.1 Open-Domain MDS
Several attempts have addressed the challenges of
ODMDS. Giorgi et al. (2023) proposed a two-stage
process: document retrieval followed by summa-
rization. They built their index from four datasets
and used pseudo-queries (summaries as queries).
However, this led to less targeted summaries and
retrieval of only 2.7 relevant documents out of ten
on average. Liu* et al. (2018) introduced the Wik-
iSum dataset, generating Wikipedia sections from
titles and reference documents using a mix of ex-
tractive and abstractive techniques, though it was
constrained by a small index compared to open
domain. Zhang et al. (2023b) used a pretrained
dense passage retriever and T5 summarizer, test-
ing on a proprietary dataset. Lastly, Zhou et al.
(2023) created the ODSUM benchmark, convert-
ing summarization datasets into ODMDS formats,
emphasizing evaluation improvements to enhance
retrieval performance and robustness.

2.2 LLMs in Retrieval and Summarization
LLMs have excelled in zero and few-shot learning,
outperforming traditional retrieval methods like
BM25 and self-supervised models like Contriever
(Brown et al., 2020; Chowdhery et al., 2022; Izac-
ard et al., 2021). Their strength in low-supervision
scenarios is well-documented (Schick and Schütze,
2020; Winata et al., 2021; Bonifacio et al., 2022).
In summarization, LLMs, when guided by task
descriptions, produce more accurate summaries,

addressing common issues like factual inaccura-
cies (Goyal et al., 2023; Zhang et al., 2023a; Yang
et al., 2023b; Zhao et al., 2023). These models also
excel in automatic evaluation (Shen et al., 2023;
Mao et al., 2023; Liu et al., 2023b). Given their
effectiveness, LLMs are key to the entire ODMDS
pipeline, as demonstrated in our method.

3 Methods
3.1 Retriever

Our retriever is designed to perform retrieval from
a graph-based perspective, considering the inter-
relationships between chunks. This involves con-
structing a graph structure, conducting GAE train-
ing, and partitioning chunk clusters. This process
guides an adaptive rerank of the retrieved chunks,
resulting in a chunk list that provides more accurate
contextual information for the summarizer.

3.1.1 Graph Construction
Given a series of documents, we first split them
into chunks that comply with the input length
limitations of the text embedding model. A
long document might be divided into several text
chunks, with edges established between neighbor-
ing chunks to indicate contextual relationships. Ad-
ditionally, edges can be based on citation relation-
ships between documents if such properties exist,
like in Wikipedia or academic paper repositories.

Figure 3: Illustration of edge construction.

In this graph, each node represents a text chunk,
and edges indicate contextual or citation connec-
tions. Node features are constructed as follows:
Firstly, we perform TF-IDF mapping for each text
chunk to obtain the embedding vector vTF-IDF. Sec-
ondly, use a text embedding model1 to obtain the
embedding vector vgpt. Then apply Principal Com-
ponent Analysis (PCA) (Hotelling, 1933) to reduce
both vectors to the same dimension d:

vd
TF−IDF = PCA(vTF−IDF, d) (1)
vd
GPT = PCA(vGPT, d) (2)

1https://platform.openai.com/docs/guides/
embeddings

https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
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Figure 2: Illustration of proposed method.

Finally, perform a weighted sum of the two vec-
tors to obtain the final feature vector:

vfinal = α · vd
TF−IDF + β · vd

GPT (3)

Through these steps, feature vectors for each text
chunk are constructed, forming a graph model for
the entire document collection.

3.1.2 Graph Embedding and Clustering
In the graph constructed through preprocessing,
each node represents a text chunk, and edges repre-
sent their contextual relationships or citation links.
To extract deep connections of structure and con-
tent from these text chunks, we used an unsuper-
vised learning approach with a Graph Autoencoder
(GAE) (Kipf and Welling, 2016) for effective node
embedding. Then we cluster these embedding vec-
tors to get the cluster division of the chunks set.

GAE Architecture and Training We employed
a Graph Convolutional Network (GCN) (Kipf and
Welling, 2017) as the core encoder in our GAE. The
GAE operates in two primary phases: encoding and
decoding, working together to learn meaningful
node embeddings in an unsupervised manner by
reconstructing the graph structure.

In the encoding phase, the transformation from
X to Z is performed. X ∈ RN×F denotes the
initial feature matrix, where N is the number of
nodes, and F is the dimensionality of the input
features. Along with the adjacency matrix A ∈
RN×N , the input X is passed through multiple
GCN layers sequentially.

Z = GCNL(...GCN1(X,A)) (4)

Each GCN layer aggregates information from the

local neighborhood of each node via the adjacency
matrix A and updates the node features. The oper-
ation of a single GCN layer is defined as:

H(l+1) = σ
(
AH(l)W(l)

)
(5)

Here, H(l) represents the node feature matrix
at layer l, with H(0) = X. W(l) is the learnable
weight matrix at layer l, and σ denotes the ReLU.

The encoding process outputs Z, a matrix where
each row corresponds to a node’s latent embed-
ding. These embeddings integrate both the intrinsic
features of nodes and the structural relationships
captured by the graph. This rich representation
is subsequently used for clustering to reveal the
underlying structure of the text chunks.

In the decoding phase, the reconstructed adja-
cency matrix Â is predicted by computing the inner
product of the learned node embeddings:

Â = σ(ZZ⊤) (6)

where σ denotes the sigmoid activation function.
This prediction strategy is standard for edge pre-
diction tasks, where the inner product captures the
similarity between node embeddings in the latent
space, reflecting the likelihood of edges.

The graph autoencoder is trained by minimizing
the reconstruction loss of the adjacency matrix Â.
This involves optimizing the model parameters to
reduce the difference between the predicted adja-
cency matrix Â and the actual adjacency matrix A,
using the following loss function:

L = ∥A− Â∥2F (7)

where ∥ · ∥F denotes the Frobenius norm. Dur-
ing training, the node embeddings Z are computed
through forward propagation in the encoder, and
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the adjacency matrix is reconstructed in the de-
coder. The reconstruction loss is calculated, and
the parameters are updated via backpropagation.
This process results in node representations Z that
effectively capture both structural and attribute in-
formation of the nodes and their neighborhoods.
Clustering Analysis After training, we use the
trained encoder of GAE to obtain the embed-
ding representation for each node. Then, we
apply traditional clustering algorithms, such as
K-Means(MacQueen, 1967) and DBSCAN(Ester
et al., 1996), to cluster the nodes. Through cluster-
ing, we obtain the division of chunk clusters, where
each cluster contains document chunks with high
semantic and thematic similarity.

3.1.3 Re-ranking Based on Clusters
Firstly, we use a hybrid retrieval method to deter-
mine an initial set of candidate chunks. Specifi-
cally, we calculate the BM25 score and the GPT-
Embedding cosine similarity score between the
question and each chunk, then take a weighted sum
of the two to obtain the final similarity score. As-
suming the number of chunks we ultimately input
to the summarizer is K, we select the top 10K
chunks with the highest scores as the candidate set.

Next, we use the cluster information obtained
earlier to re-rank these candidate chunks. Assum-
ing the score of chunk i under hybrid retrieval is
Si, the re-ranking score Ri for each chunk can be
calculated using the following formula:

Ri = Si +
∑
j∈Wi

(Sj × Pj × Fj) (8)

where Wi represents the set of chunks in the
cluster containing document i, and Sj , Pj , and Fj

represent the original score, position factor, and
weight factor of chunk j, respectively. If Wi is
empty, the reranking score Ri equals Si. The po-
sition factor Pj considers the order of documents
in the initial retrieval results, giving higher-ranked
documents more influence:

Pj =
1

log (1 + rankj)
(9)

where rankj is the rank of chunk j in the initial
retrieval results. The weight factor Fj adjusts the
contribution of each chunk to the reranking score:

Fj =
Sj∑

k∈Wi
Sk

(10)

In this method, cluster guides the re-ranking of
the initial set of retrieved chunks provided by the re-
trieval system. Figure 4 illustrates this process. The
re-ranking is based on the principle of "like attracts

like, unlike repels", which causes documents within
the same cluster to gather together and elevates the
ranking of more important documents within each
cluster. Consequently, the re-ranked document list
becomes cluster-dominated, reflecting group rela-
tionships, which is distinctly different from the
independent and discrete relationships before re-
ranking. By considering both the initial relevance
scores and the relationships within clusters, this
approach enhances the chunk set’s alignment with
the query’s intent, providing higher quality input
to the summarizer.

Figure 4: Adaptive Rerank Guided by Cluster.

3.2 Summarizer
After obtaining the output chunks from the retriever,
it may not be reasonable to directly concatenate
these chunks and pass them into the LLM to gener-
ate a summary, as these chunks contain a lot of irrel-
evant information. Therefore, we designed a sum-
marizer where the LLM reflects on both the topic
of the cluster and the content of the chunk them-
selves, assessing the relevance of chunk. Then, it
performs a refinement by selectively extracting and
condensing the chunk based on relevance. Through
this preprocessing step, we ensure that the LLM re-
ceives more precise and concise context, enabling
the generation of higher-quality summaries.

3.2.1 Topic and Relevance of Cluster
After obtaining the clusters of the retrieved chunks,
we carefully designed a prompt, shown in Figure
9 in Appendix B, to guide the LLM to generate a
topic for each cluster and a relevance score between
the cluster and the query, to guide the subsequent
reflection and refinement module. The purpose of
this step is to capture the topic information at the
cluster level and obtain the overall relevance of the
cluster to the query from a more macro perspective.

3.2.2 Document Reflection and Refinement
After obtaining the topic and relevance scores of
the clusters, we further utilize LLM to reflect and
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refine each chunk. The reflection process first gen-
erates a relevance score for each candidate chunk.
Next, we weight and sum the chunk relevance score
with the cluster’s topic relevance score to obtain
the final score. We rewrite the chunks to varying
degrees based on this score to achieve length refine-
ment. The prompt is shown in Figure 10. The text
generated by the reflection and refinement module
not only meets the input length requirements but is
also highly relevant and information-dense. These
refined chunks are then embedded into carefully
designed prompts to generate the final summary, re-
sponding to the posed questions with high accuracy
and clarity. For more detail in Appendix B.

4 Experiments
This section conducts experimental studies on the
effectiveness of our framework’s retriever and sum-
marizer. We tested its performance on the ODSUM.
See Appendix C for specific experimental setup.

4.1 Dataset
The ODSUM(Zhou et al., 2023) dataset is a bench-
mark dataset designed specifically for the ODMDS
task. It consists of two sub-datasets: ODSum-Story
and ODSum-Meeting. The statistics of this dataset
are shown in Table 1.

Dataset ODSum-Story ODSum-Meeting
Document Number 1,190 232
Avg Doc Length 808.54 7176.21
Queries 635 436
Avg Query Length 10.79 32.89
Avg Related Docs 9.37 2.97
Reference Summary 4 1
Avg Summary Length 273.80 185.17

Table 1: Dataset statistics.
ODSum-Story is adapted from the SQuAL-

ITY(Wang et al., 2022) dataset, comprising 127
stories split into 1190 chapters (documents), with
an average of 808 tokens per document. It includes
635 summary questions, each requiring about 9.37
documents for context. ODSum-Meeting, based on
the QMSum(Zhong et al., 2021) dataset, includes
232 meeting transcripts, averaging 7176 tokens per
document. It contains 436 questions, each needing
about 2.97 documents for context.

4.2 Baselines and Metrics
Retriever In our experiments, we explored dif-
ferent numbers of retrieval chunks, denoted as K
(for more details see Appendix 5.4). Our base-
line retrieval algorithms include BM25 and GPT-
Embedding. Additionally, we tested a hybrid re-
trieval method that combines BM25 scores with

embedding similarity scores in a weighted manner.
This method leverages the advantages of BM25
in word frequency analysis and the strengths of
text embeddings in semantic understanding. To
evaluate the performance of our retrieval methods,
we used three key metrics: Precision at K (P@K),
Recall at K (R@K) and F1 score at K (F1@K).

Method ODSum-Story ODSum-Meeting

P@3 R@3 F1@3 P@1 R@1 F1@1

BM25 71.17 28.16 40.35 30.61 16.52 21.46
GPT Embedding 65.62 26.75 38.00 22.25 7.81 11.56
Hybrid Retrieval 72.18 28.63 41.00 28.12 15.30 19.82
Our Retriever 74.04 29.98 42.68 31.24 16.78 21.83

P@8 R@8 F1@8 P@3 R@3 F1@3

BM25 50.62 48.48 49.53 22.32 33.12 26.76
GPT Embedding 42.62 42.24 42.43 17.03 17.26 17.14
Hybrid Retrieval 52.64 50.30 51.44 20.52 31.09 24.72
Our Retriever 55.95 52.66 54.25 24.73 35.29 29.08

P@10 R@10 F1@10 P@6 R@6 F1@6

BM25 44.85 52.53 48.39 17.22 46.28 25.10
GPT Embedding 36.93 44.74 40.46 13.59 26.27 17.91
Hybrid Retrieval 45.23 53.13 48.86 16.94 45.84 24.74
Our Retriever 48.92 56.74 52.54 18.45 50.84 27.07

Table 2: Retrieval performance comparison. The best
results are bolded, and the second-best are underlined.

Summarizer In the experiment, we used several
LLMs as baseline summarizers. The output chunks
from each baseline retriever were incorporated into
carefully designed prompts and fed into LLMs to
generate summaries. Additionally, we conducted
experiments with oracle documents, where the truly
relevant documents for each question were pro-
vided as inputs to the LLM to show the upper limit
of summarizer performance in a perfect retrieval
scenario. We adopted three different evaluation
metrics: ROUGE(Lin, 2004) measures word over-
lap between candidate and reference summaries,
while BERTScore(Zhang* et al., 2020) uses contex-
tual word embeddings to assess similarity between
them and G-Eval(Liu et al., 2023a), a framework
that uses LLMs to assess summary quality. For
more details on metrics, see Appendix D.

5 Results and Analysis
5.1 Retriever Evaluation
In our experiments, we evaluated the performance
of our proposed retriever against several baseline
methods on the ODSUM benchmark. The result are
shown in Table 2. It indicate that for all top-k selec-
tions in both datasets, our proposed retriever consis-
tently outperforms baseline retrieval methods. By
leveraging the contextual relationships and topic
clustering of documents, our retriever achieves the
highest precision, recall, and F1 scores.
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Additionally, we found that on Story, the per-
formance of hybrid retrieval is the best among
the baselines, but on the Meeting, it is surpassed
by BM25. This is because the average document
length in the Meeting is much longer than in the
Story. Text embedding struggles with capturing
information from long documents, while BM25
does not have this issue. Therefore, this further
illustrates that our retriever is robust and applicable
for retrieving both long and short documents.

5.2 Summarizer Evaluation
Table 3 shows the summarization results from dif-
ferent retrievers, revealing the following insights:
Oracle documents do not guarantee the best.
Even if the retrieved documents are perfect, some
content has to be discarded due to the input length
constraints of the summarizer. As a result, the
summarizer cannot access the complete reference
text, leading to a decline in output.
G-Eval better reflects summarization quality.
Summaries generated by gpt-4.0 scored lower on
R-2 and BERTScore compared to llama-3-70b and
gpt-3.5, contrary to expectations. Because these
metrics evaluate summary quality based on lexical
overlap and textual similarity between the gener-
ated and reference summaries. In contrast, G-Eval
directly assesses the consistency and relevance of
the generated summary to the input context, with-
out relying on a reference summary. This makes
it more suitable for the ODMDS task, where the
key concern is whether the generated summary ac-
curately captures the content of the input context
rather than its similarity to a reference summary.
Our method outperforms baselines methods.
Although our retriever is not as accurate as Ora-
cle documents, it achieved the best results across
all LLMs. This is because our framework captures
relationships between documents by constructing
graphs and improves the retriever’s recall by lever-
aging cluster information. Additionally, our sum-
marizer rewrites each text chunk, retaining essen-
tial information and eliminating unnecessary de-
tails, which significantly reduces the input length.
This allows us to provide more reference chunks to
the LLM within the input length constraints, com-
pensating for the lack of Oracle documents.

5.3 Ablation Study
To validate the role of various modules in our pro-
posed retrieval-summarization framework, we con-
ducted ablation experiments on several key com-

ponents. These included the (1) graph construc-
tion and clustering module (Section 3.1.1, 3.1.2)
and (2) Cluster-based adaptive re-ranking module
(Section 3.1.3) in the retriever, as well as the (3)
Cluster-guided reflection and refinement module
(Section 3.2.1, 3.2.2) in the summarizer. Each of
them was individually removed for the experiment.
We used gpt-3.5-turbo and gpt-4o for generation,
with G-Eval as the evaluation metric. The experi-
mental results for the ODSum-Story and Meeting
datasets are shown in Figure 5 and 13.

The results show that removing any module re-
duced performance compared to the full frame-
work, though still outperforming the baseline. No-
tably, removing the cluster-guided reflection and
refinement module from the summarizer caused
the largest drop, indicating its critical role. This
suggests the retriever’s impact on generation is less
significant than the summarizer’s. The retriever
primarily improves recall by including all rele-
vant chunks, while incorrect chunks matter less,
as the summarizer’s refinement module filters them
out. This ensures that even with some incorrect
retrievals, the summary quality remains high.
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Figure 5: Ablation experiment on ODSum-Story.

5.4 Impact of Document Retrieval Quantity

In our retrieval experiments, we found that increas-
ing the number of retrieved documents K results
in higher recall but lower precision. Therefore, this
section aims to explore how the quality of the final
summary changes with the increase in the number
of retrieved chunks K in our method. We con-
ducted experiments on the ODSum dataset, and the
results are shown in the Figure 6.

From the Table 1, we can see that the average
number of relevant documents for the ODSum-
Story and Meeting datasets are 9.37 and 2.97, re-
spectively. The Figure 6 shows that the optimal
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ODSUM-Story LLAMA3-70B GPT-3.5-Turbo GPT-4.0-Turbo GPT-4o

R-2 BS G-Eval R-2 BS G-Eval R-2 BS G-Eval R-2 BS G-Eval

Oracle 9.77 84.78 37.91 10.58 84.85 39.23 9.66 84.37 40.73 10.12 85.02 41.21

BM-25 9.43 84.71 32.37 9.33 84.49 36.05 8.42 84.21 37.19 8.26 84.91 36.79

GPT-Embedding 9.27 85.01 34.46 8.58 84.62 36.33 7.31 84.47 38.91 7.99 84.25 37.62

Hybrid-Retrieval 9.69 85.16 35.81 9.42 84.73 37.26 9.33 84.59 39.07 9.07 85.32 38.77

Ours 9.63 84.77 37.96 9.40 84.78 39.89 8.96 84.19 40.66 8.74 84.22 41.82

ODSUM-Meeting LLAMA3-70B GPT-3.5-Turbo GPT-4.0-Turbo GPT-4o

R-2 BS G-Eval R-2 BS G-Eval R-2 BS G-Eval R-2 BS G-Eval

Oracle 8.34 85.15 33.76 12.13 86.16 35.32 10.73 85.52 36.38 10.65 85.11 36.44

BM-25 7.98 84.16 29.35 9.42 85.91 35.05 10.64 84.19 35.67 9.32 84.10 35.57

GPT-Embedding 8.14 84.83 31.92 10.23 85.23 35.23 9.48 84.53 35.22 9.43 84.62 35.42

Hybird-Retrieval 8.26 84.75 32.34 10.17 86.35 34.91 10.33 84.71 35.86 10.16 85.37 35.79

Ours 8.09 85.12 34.23 11.96 85.69 36.57 10.27 85.55 36.98 9.33 84.97 37.02

Table 3: Summarization performance on ODSum-Story and Meeting. R-2 and BS means ROUGE-2 and BERTScore.
The best results under the three indicators are bolded, and the second best result under the G-Eval is underlined.

K values are 20 and 6, respectively, which are
exactly twice the actual number of relevant docu-
ments. This indicates that our framework has fault
tolerance and can accept more input documents to
capture the truly relevant ones while ignoring the
irrelevant ones.
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Figure 6: Experiments on the effect of the number of
retrieved documents on summary generation.

This finding is also reflected in the two figures.
The four curves rise rapidly and steeply before
reaching the optimal effect, but the decline after
the optimal effect is very gentle. This also confirms
that our model tends to find truly relevant docu-
ments from a larger set of candidate documents. If
the set of candidate documents is too small, it may
lead to hallucination phenomena in the LLMs due
to the lack of background text.

5.5 Human Evaluation
We randomly selected 50 summary questions from
both the ODSUM-Stoty and Meeting datasets for
human evaluation by three human volunteers. Our
method was compared against baseline approaches,
which consisted of a hybrid retrieval method paired
with a native LLM summarizer. Both methods

employed the same underlying LLM to ensure a
fair comparison. Figure 7 shows that our method
achieves an win rate of 71% on average. For a
detailed evaluation criteria, refer to Appendix F.
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Figure 7: Human pairwise evaluation with GPT-4o,
GPT-3.5, and Llama3-70B.

6 Conclution
This paper tackles the challenge of retrieving
relevant documents from large repositories and
generating summaries from lengthy inputs in
the ODMDS task. We propose an integrated
retrieval-summarization framework, recognizing
that ODMDS questions typically relate to topic-
specific documents rather than isolated ones. Us-
ing a graph-based approach, we capture relation-
ships between documents, enabling effective clus-
tering. Our framework connects retrieval and sum-
marization through these clusters, enhancing the
retriever’s re-ranking and the summarizer’s reflec-
tion and refinement. Experiments on the ODSUM
benchmark demonstrate that our method outper-
forms baseline strategies, improving retrieval ac-
curacy and summary quality, even surpassing sum-
maries from perfectly retrieved documents.
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A Limitations

Despite the promising performance of our retrieval-
summarization framework in the ODMDS task, sev-
eral limitations remain that present opportunities
for future improvement.

Scalability Issues Our method may encounter
computational and storage bottlenecks when han-
dling larger-scale document collections. Although
graph embeddings and clustering techniques ef-
fectively capture inter-document relationships, the
computational cost and memory requirements in-
crease significantly with the scale of the document
corpus. Moreover, generating high-quality graph
embeddings and clustering results becomes more
challenging as the number of documents grows.
Enhancing the scalability of our method is thus a
crucial issue that needs to be addressed.

Consumes Substantial LLM Inference Re-
sources Our framework relies on powerful LLMs
such as GPT-3.5 and GPT-4.0, which excel in pro-
cessing long texts and generating high-quality sum-
maries. Additionally, the framework involves mul-
tiple calls to LLMs, such as generating topics and
topic relevance scores for each cluster and perform-
ing reflection and refinement for each document.
Consequently, each query consumes a significant
amount of LLM inference resources, leading to
high resource consumption and slower summary
generation speeds. This reliance necessitates sub-
stantial computational resources and GPU support,
increasing deployment and operational costs. The
applicability of our method is limited for users who
do not have access to advanced LLMs.

Cluster Structure Stability Our retriever de-
pends on the document cluster structure, which
can exhibit instability across different document
collections and topics. Despite the use of graph em-
beddings and clustering algorithms, the quality and
consistency of document clusters may be affected
by noise and data distribution, impacting the final
retrieval and summarization performance. There-
fore, improving the stability and robustness of the
cluster structure remains a significant research chal-
lenge.

Evaluation Metric Limitations Although the G-
Eval metric partially reflects summary generation
quality, it still relies on existing reference docu-
ments for evaluation and cannot fully measure the
creativity and diversity of summaries. Moreover,

traditional metrics such as R-2 and BERTScore
may not accurately reflect the actual quality of the
summaries in certain cases, indicating the need for
further improvement in evaluation methods.

B Reflection and Refinetion Module

The most central module of our summarizer is the
Reflection and Refinement module, whose com-
plete framework is shown in Figure 8. The cluster
topics and relevance scores are generated by gpt-
3.5-turbo using prompt shown in Figure 9. This
is the key cluster information that guides the adap-
tive rearrangement module and the reflection and
refinement module.

Figure 8: Framework of Refilection and Refine Module.
In the refinement phase, we classify documents

into 3 categories based on the weighted sum of each
document’s cluster relevance score and document
relevance score, executing three different rewriting
strategies, the prompt is shown in Figure 10:

High Relevance Documents (scores 7-10) Per-
form minor edits to improve the accuracy and clar-
ity of the document.
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Figure 9: Cluster Topic and Relevance Generation
Prompt.

Medium Relevance Documents (scores 4-6) Re-
structure the document to focus on information di-
rectly related to the issue.

Low Relevance Documents (scores 1-3) Sim-
plify significantly, retaining only the core informa-
tion, or completely rewrite to meet query needs.

Figure 10: Refinement According to Relevance.

C Experimental Setup

C.1 Data Preparation
To address the challenges of the ODMDS, we
first performed meticulous preprocessing on the
dataset. Using the word_tokenize method from
the nltk library, we segmented each document into
sub-documents no longer than 8912 tokens, and
recorded these segmentation actions as undirected
edges to maintain the natural connections between

documents. Additionally, using OpenAI’s text em-
bedding model text-embedding-ada-002, we con-
verted the text embeddings into high-dimensional
vectors of 3912 dimensions. Next, we reduced
the dimensionality of vectors generated by TF-IDF
and GPT-embedding to 500 dimensions using PCA,
and performed weighted summation to obtain the
feature representation of each sub-document.

C.2 Graph Construction and Embedding

The next step in constructing the document graph
is to implement a GAE. The first two GCN layers
are followed by batch normalization and dropout
with a 50% drop rate to prevent overfitting. The last
convolutional layer does not include dropout to sta-
bilize the learned embeddings. The model receives
the input feature matrix and edge list, processes
them through successive GCN layers, and uses the
ReLU activation function for normalization after
each layer. The output node embeddings are used
to reconstruct the graph’s adjacency matrix, and the
reconstruction loss is calculated to evaluate model
performance. The entire model is trained using the
Adam optimizer with a learning rate of 0.01 and L2
regularization weight decay of 0.0005 to enhance
generalization capability. The training process lasts
for 300 epochs.

C.3 Clustering and Document Retrieval

For the clustering stage, we used the K-Means and
DBSCAN algorithms, achieving the best results
with DBSCAN configured with eps equal to 0.5
and min_samples equal to 2. We employed a hybrid
retrieval method to determine the initial candidate
document set, with the BM25 and GPT-Embedding
scores weighted at 0.6 and 0.4, respectively. We
selected 3, 8, and 10 documents as the final input
for the summarizer in the Story dataset, and 1, 3,
and 6 documents in the Meeting dataset.

C.4 LLM in the Summarizer Pipeline

We used LLM not only in the final output summary
step but also multiple times throughout the sum-
marizer framework. For example, in generating
cluster topics and topic relevance scores, and in the
document reflection and refinement modules. The
LLM used in these modules is gpt-3.5-turbo. In
the final summary generation process, we tested
llama-3-70b, gpt-3.5-turbo, gpt-4.0-turbo, and gpt-
4o. Their input length limits are 8k, 16k, 128k, and
128k respectively.
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D Summarizer Metrics

For evaluating the quality of generated summaries,
we adopt three different evaluation metrics:

ROUGE ROUGE assesses summaries by calcu-
lating the overlap of words between the candidate
and reference summaries. Specifically, we report
the F1 score of ROUGE-2, which considers the
overlap of bigrams. This metric evaluates the qual-
ity of summaries by comparing the precision and
recall between the generated and reference sum-
maries.

BERTScore BERTScore calculates the similar-
ity between the reference and generated summaries
using contextual word embeddings. It employs the
BERT model for word embeddings and uses the F1
score as the evaluation metric, which balances pre-
cision and recall by considering the semantic sim-
ilarity between the generated and reference sum-
maries.

G-EVAL G-Eval is a framework that uses LLMs
combined with the Chain of Thought approach and
form-filling paradigms to assess the quality of nat-
ural language generation outputs. Using gpt-3.5-
turbo as the backbone, G-EVAL scores summaries
based on dimensions such as consistency, coher-
ence, relevance, and fluency. Due to input token
limitations, it only compares predicted and refer-
ence summaries, with scoring criteria including
consistency and relevance. After scoring, the av-
erage score of each example is calculated as the
metric for the quality of the model-generated sum-
maries. The prompt for consistency and relevance
scores are shown in the Figure 11 and 12, and their
scores range from 0-5.

Figure 11: Relevance Score Prompt of G-Eval.

Figure 12: Consistency Score Prompt of G-Eval.

E Ablation Experiment on
ODSum-Meeting

Figure 13 shows the experimental results under the
ODSum-Meeting dataset after removing the three
modules, and its results also support the analyses
among the Section 5.3, consistent with the charac-
teristics of the ODSum-Story dataset.

F Criteria for Human Evaluation

The quality of the generated summaries was as-
sessed based on the following criteria:

Accuracy and Coverage The summary should
accurately capture the core information from the
original document, faithfully reflecting the main
ideas without introducing errors or irrelevant infor-
mation. It must correctly represent the key points,
ensuring that no significant content is overlooked
or misrepresented.

Conciseness and Coherence The summary
should be concise and easy to understand, present-
ing information in a smooth, logical, and readable
manner. It should avoid unnecessary length and
redundancy, with sentences that are logically con-
nected and flow naturally.

Relevance to the Questions The summary
should directly answer the posed questions, includ-
ing all relevant information while excluding unnec-
essary or irrelevant details. It should effectively
address all the questions without digression.

Substantial and Meaningful Content The sum-
mary should provide substantial and useful infor-
mation, avoiding empty or repetitive statements. It
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Figure 13: Ablation Experiment on Meeting Dataset.
The baseline is Hybrid Retrieval, No Graph denotes the
removal of the document graph construction and clus-
tering module, No Reranking denotes the removal of
the cluster-based adaptive re-ranking module, No Re-
flection denotes the removal of cluster-guided reflection
and refinement module.

must not contain redundant, hollow, or meaningless
content, ensuring that all included information is
valuable.
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