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Abstract

Geocoding customer addresses and determin-
ing precise locations is a crucial component for
any e-commerce company. Shipment delivery
costs make up a significant portion of overall
expenses, and having exact customer locations
not only improves operational efficiency but
also reduces costs and enhances the customer
experience. While state-of-the-art geocoding
systems are well-suited for developed countries
with structured city layouts and high-quality
reference corpora, they are less effective in de-
veloping countries like India, where addresses
are highly unstructured and reliable reference
data is scarce. Recent research has focused on
creating geocoding systems tailored for devel-
oping nations such as India. In this work, we
propose a method to geocode addresses in such
environments. We explored various approaches
to incorporate geo-spatial relationships using
an LLLM backbone, which provided insights
into how the model learns these relationships
both explicitly and implicitly. Our proposed
approach outperforms the current state-of-the-
art system by 20% in drift accuracy within 100
meters, and the state-of-the-art commercial sys-
tem by 54%. This has a potential to reduce
the incorrect delivery hub assignments by 8%
which leads to significant customer experience
improvements and business savings.

1 Introduction

Accurate customer location is a critical component
for an e-commerce company for efficient delivery
of the shipments. It plays a key role in deliver-
ing the shipments on time while optimizing for
the shipping cost. Some of the key applications
in a e-commerce company are the delivery hub
assignment and fake attempt prevention. Deliv-
ery Hub (DH) is the last mile hub in a shipment’s
journey from where the shipment is delivered to
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Figure 1: Illustration of the Modified Triplet Loss ef-
fect on the latent space: Before training (left), samples
are dispersed without structure. After training (right),
negative samples are separated from the anchor point
proportionally to their distance, scaled by aD;.

the customer by a Delivery partner (DP). Every
DH has a geo-serviceable boundary, and the cus-
tomer geo-location is used to determine the DH
that the shipment must be assigned to. An incorrect
geo-location will lead to the assignment of the ship-
ment to the wrong DH resulting in a shipment mis-
route. Misrouted shipments will require re-routing
leading to promise time breaches, poor customer
experience and additional shipping cost. Having
accurate geo-coordinates is hence very critical for
this application.

Another major application is DP fake delivery
attempt prevention. DPs can mark a shipment as
undelivered if the customer is unavailable at the
time of delivery. However, at times, DPs abuse
this feature and mark the shipments as undelivered
without making a genuine delivery attempt. Having
an accurate customer geo-location can help us de-
tect and prevent such fake attempts that often lead
to a poor customer experience. These are a few
examples that highlights the importance of having
precise customer geo-coordinates.

In developing countries such as India, customer
location information is typically provided as an ad-
dress text, which poses challenges for direct use
in supply chain operations. To overcome this, geo-
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coordinates (latitude & longitude) are extracted
from the address text, a process known as Geocod-
ing. While various geocoding systems have been
developed, most assume structured addresses and
are tailored for developed countries. These systems
are less effective in developing countries like India,
where addresses are often unstructured, unordered,
prone to missing or incorrect tokens, along with nu-
merous spelling errors. Some of these challenges
are discussed in detail in (Kothari and Sohoney,
2022) and (Srivastava et al., 2020).

Recent work has focused on building geocod-
ing systems specifically for developing countries.
SAGEL (Chatterjee et al., 2016) and GeoCloud
(Srivastava et al., 2020) are few such systems which
are discussed in detail in Section 2. A recent work
by (Kothari and Sohoney, 2022) introduced a triplet
loss-based approach using RoBERTa for geocoding
in a similar geographical context as ours, which is
currently considered state-of-the-art for developing
countries. We replicated this method but found that
it under performed compared to our existing pro-
duction system—a simple text classification model
using fastText. The (Kothari and Sohoney, 2022)
approach relies on coordinates recorded by delivery
partners and uses a weakly supervised framework
based on triplet loss. This raises the question: why
approach geocoding as a weakly supervised task
when a fully supervised framework might be more
effective? To address this, we explored fully super-
vised techniques for geocoding.

In addition, while most classification problems
assume independent target labels, geocoding in-
herently involves geo-spatial relationships between
the labels (H3, 2020). We leveraged these relation-
ships to enhance both weakly supervised and fully
supervised approaches.

In summary, our main contributions are: 1)
the exploration of fully supervised techniques for
geocoding, and 2) the incorporation of geo-spatial
relationships between target labels. The remainder
of the paper is organized as follows: Section 2 re-
views relevant literature, Section 3 discusses the
data and Section 4 details the existing production
system. In Section 5, we present our approaches
while in Section 6 we discuss the experiments and
the results and we conclude in Section 7.

2 Related Work

Berkhin et al. (2015) present an approach called
Bing GC for geocoding. They frame the geocoding

task as an information retrieval problem. They split
the entire Earth’s surface into overlapping rectan-
gular tiles and leverage traditional web search tech-
nologies to retrieve matching tiles with the geocod-
ing query. They use geo-entities associated with
each tile to match with the query. Our approach is
similar in dividing the region into tiles, but we do
not presume access to tile’s actual geo-entities.

Chatterjee et al. (2016) present a geocoding en-
gine called SAGEL for geocoding Indian addresses.
They use high quality structured address corpus
(from a commercial map data provider) as their ad-
dress database. They pre-process the address query
and retrieve matching address documents from the
address corpus. The candidates are ranked using
graph techniques and the geo-coordinates of the
top ranked document is returned. However, struc-
tured high quality address corpus is limited and
expensive as well. We use SAGEL as one of our
baselines.

Srivastava et al. (2020) propose a method called
GeoCloud for geocoding unstructured addresses.
They parse the entire address corpus and create a
geo-polygon for each address chunk using the his-
torical delivered data. However, they use heavy do-
main knowledge in designing heuristics for parsing
the address into chunks and creating a geo polygon,
which is not a scalable approach and limits model
re-training capabilities.

Kothari and Sohoney (2022) propose a frame-
work to resolve the addresses to a shallower gran-
ularity. They propose a weakly supervised deep
metric learning model to encode the geospatial se-
mantics in address embeddings and then search
for top-k nearest neighbours and retrieves the geo-
coordinates from them. This is currently the state-
of-the-art system and we modify this approach to
further improve the performance.

3 Data Description

Available Data: During order placement, cus-
tomers provide a shipment delivery address which
contains the following fields: (i) Customer Address
(a free-text field entered by the customer primar-
ily consisting of granular information like building
name, sub-locality, locality), (ii) Pincode, (iii) City,
(iv) State. As mentioned in Section 1, there are
various challenges associated with this address text.
In addition, for every historical shipment, we have
the DP (Delivery Partner) captured geo-coordinates
at the time of delivery. However, there could be
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noise in the DP captured location due to manual
errors, GPS errors, network issues, etc. In spite of
the noise in this data, it serves as a critical piece of
information for our modeling.

Dataset Generation: We have millions of data
from our historical deliveries. Since there is noise
in the delivered data, we cannot straight away use
them. For every address, we chose the mediod of
its deliveries as a single geo-coordinate for that
address. We split the dataset into train, validation
and test as below. To have high confidence on the
test set, we chose the addresses that have at least
20 historical deliveries. The intuition is that, if we
have high number of deliveries, then most of them
would be around the actual location and thus the
mediod will be very close to the actual location. We
split our dataset into training, validation, and test
sets based on delivery frequency: the training set
includes addresses with fewer than 15 deliveries,
the validation set includes addresses with 15 to 20
deliveries, and the test set includes addresses with
more than 20 deliveries.

4 Existing Production System

The existing production system uses the customer
address text and its corresponding delivered coordi-
nates to build a geocoding model. A geographical
region is divided into hexagonal grids of resolution
10 having an edge length of 75m using the H3 li-
brary. H3 (2020) is a open source library built by
Uber that divides the entire earth into hexagonal
grids at various resolutions. For an address, we re-
trieve a grid ID using its delivered geo-coordinates.
Thus we generate the <address text, grid ID> map-
ping data using the historical delivered data. A
supervised fastText model is trained with address
text as input and grid ID as target. At the inference
time, the model predicts a grid ID for the given
address and return its centroid coordinates as the
predicted coordinates.

For the production system model, fastText
(Joulin et al., 2017) is chosen because of the fol-
lowing advantages. The training duration to be
orders of magnitude faster than the other methods.
It learns embeddings at sub-word level which helps
with spell errors. Also, since in our production
system, one model is trained per pincode and as
there are large number of pincodes, it needed a
model which not only trains fast but also requires
less memory. FastText has a compression module
(Joulin et al., 2016) that allows us to reduce model

sizes with minimal impact on performance.
However, fastText generates static embeddings
and does not account for context unlike the recent
state-of-the-art approaches such as BERT. Hence
one focus area of our work is to explore more so-
phisticated embedding architectures. Also, in a
typical classification approach, the target classes
are fairly independent. However, in our task, the
target labels have a geo-spatial relation. Some of
the grids are nearby and some are far-away. In the
current system, the only geo-spatial information
that is used is in the design choice of model by
limiting it to a pincode. We wanted to embed this
geo-spatial relation as part of the model training
as well. The work in (Kothari and Sohoney, 2022)
does something similar through contrastive learn-
ing approach. We begin by expanding this work
further, which we discuss in detail in next section.

S Methodology

In this work, we initially attempted to improve
the existing state-of-the-art (SOTA) method from
(Kothari and Sohoney, 2022), which uses a triplet
loss-based approach for geocoding. Our initial
focus was on enhancing the model’s ability to
incorporate geo-spatial relationships more effec-
tively, starting with improvements to the loss func-
tion. Following that, we explored alternative meth-
ods, moving beyond weakly supervised contrastive
learning, by experimenting with fully supervised
frameworks. These methods not only demonstrated
better performance but also provided insights into
how large language models (LLMs) capture geospa-
tial relationships when explicitly guided, compared
to relying on implicit learning.

5.1 RoBERTa Address

We began by pre-training the RoBERTa model
(Sanh et al., 2019) on an address-specific corpus us-
ing the masked language model (MLM) objective
similar to (Kothari and Sohoney, 2022) approach.
Given that address structures differ significantly
from general English, we also retrained the tok-
enizer to better capture the nuances of the address
data. This pre-trained model serves as the common
base for all subsequent approaches discussed in
further sections.

5.2 Weakly Supervised Contrastive Learning

The original triplet loss-based approach from
(Kothari and Sohoney, 2022) samples 1" negative
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addresses from the ring of 1-skip neighboring grids
at the parent level (L — 1). Triplets are generated
by varying the grid resolution (L € {11, 10, 9}) for
both positive and negative samples. However, we
hypothesized that this approach does not fully cap-
ture the geo-spatial relationships between samples
for two key reasons:

1. Anchor-positive pairs in one resolution (e.g.,
resolution 9) may be treated as anchor-
negative pairs in another resolution (e.g., reso-
lution 11), potentially confusing the model.

2. The original approach treats all negative sam-
ples equally within a given resolution, without
considering their varying distances from the
anchor. This limits the model’s ability to effec-
tively differentiate between geospatially close
and distant negatives.

To address these issues, we modified the sam-
pling strategy by selecting Dy, negative samples
from grids up to Parent’s K-skip neighboring grids
away from the anchor, rather than relying solely
on the immediate parent level’s neighboring grids.
This adjustment ensures that multiple negative sam-
ples are drawn from varying spatial distances as
shown in Figure 2b.

We then modified the triplet loss function to in-
corporate spatial information by scaling the margin
« based on the relative distance of each negative
sample from the anchor. This ensures that nega-
tive samples farther from the anchor are pushed
away more aggressively in the latent space, while
allowing relatively closer negative samples (like
N7) to remain closer in comparison to No and N3
as shown in Figure 1. The relationship is formal-
ized in the modified loss function, as shown in
Equation 1:

L(A,P,N,D)=>"

i=1

17 (A:) = f(P)II3

— 1/ (A:) = F(N)) 13
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Where:
» A;: The anchor sample for the i-th triplet.

* P;: The positive sample (within the same grid
cell as the anchor) for the i-th triplet.

* N;: The negative sample (outside the grid cell
of the anchor) for the i-th triplet.

* D;: The ring level distance of the negative
sample /N; from the anchor A;, calculated
based on the ¢-skip parent neighbors in the
H3 grid hierarchy.

* a: A scaling factor that adjusts the margin.

* f(x): The embedding function that maps a
sample x into a latent embedding space.

This modified loss function helps the model in-
corporate spatial hierarchy, improving its ability to
distinguish between geo-spatially close and distant
locations. The model is trained with this modified
loss function as shown in Figure 3.

As demonstrated in Table 1, the original
RoBERTa-Triplet approach (Kothari and Sohoney,
2022) shows significant performance improve-
ments over the ROBERTa-Address model. Further-
more, our modified triplet loss function led to addi-
tional performance gains. The modified RoBERTa-
Triplet model showed a clear improvement across
all metrics, further validating the benefits of incor-
porating spatial hierarchy in the triplet loss. De-
spite these enhancements, the triplet loss-based
method still underperformed when compared to the
fully supervised framework, which we detail in the
following sections.

2

(a) Positive Sample Genera- (b) Negative Sample Gener-
tion ation

Figure 2: Left: Positive sampling (blue anchor, green
positives). Right: Negative sampling (red negatives).
Red, purple, and blue rings denote 1, 2, and 3-skip
parent’s neighbors, respectively.

( Anchor W ( RoBERTa-Add:
e

Shared
Weights

RoBERTa-Add:

Shared
Weights

RoBERTa-Address

Figure 3: Contrastive Learning Model Architecture
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5.3 Supervised Classification

In our initial exploration of the triplet loss-based ap-
proach, we found that while it forces the model to
capture geo-spatial relationships as shown in fig 5,
it did not perform satisfactorily in the downstream
task of geocoding (refer to Table 1). This led us to
question whether contrastive learning is the only
way to embed geo-spatial relationships, or if alter-
native supervised approaches could capture also
this spatial structure. In this section, we explore
different supervised learning techniques.

5.3.1 Plain Classification Task

In this approach, we fine-tuned the pre-trained
RoBERTa-Address model on a dataset of address-
text and grid-ID pairs. The model was tasked with
classifying an address to its corresponding grid ID,
which are treated as independent and do not inher-
ently share any geo-spatial relationships. As a re-
sult, the model learns geo-spatial relationships im-
plicitly from the structured labels unlike the triplet
loss approach, which explicitly embeds spatial re-
lationships.

5.3.2 Multi-Head Classification

We trained a multi-head classification model with
a shared RoBERTa base and separate classification
heads for each of the selected N resolutions. In
the H3 grid structure, each grid at resolution R is
subdivided into 7 child grids at resolution R + 1.
This hierarchical structure enables the shared layers
to capture common address features, while each
classification head learns geo-spatial relationships
specific to its resolution. The model architecture is
as shown in Figure 4. This approach offers several
advantages:

 Separate classification heads allow the model
to address both detailed and broader geo-
spatial distinctions, making it suitable for
tasks that require high precision for close dis-
tances and more generalized predictions for
larger areas.

* A shared RoBERTa base across all resolutions
facilitates learning of geo-spatial correspon-
dences between different resolutions, enhanc-
ing the model’s ability to generalize across
varying levels of detail.

6 Experiments & Results

We evaluated both the contrastive and supervised
approaches across several Indian states, using a

Classification
Head 1
(R=8)

Classification
Head 2
(R=9)

<Address input> —| RoBERTa-Address

Classification
Head 3
(R=10)

Figure 4: Multi-Head Model Architecture

single model per state rather than training separate
models for each pincode, as is done in the produc-
tion system. This approach reduces the mainte-
nance overhead and is particularly advantageous
in addressing issues related to incorrect pincodes,
discussed further in Section 6.4.

6.1 Model Training

As described in Section 5, we initialized the model
with the pre-trained ROBERTa-Address and trained
it using triplet pairs generated per state. ROBERTa-
Triplet (Original) model was trained following
the approach of (Kothari and Sohoney, 2022), us-
ing triplet pairs across multiple resolutions R =
8,9, 10. RoBERTa-Triplet (Modified) however fo-
cused specifically on resolution R = 10. For each
state, millions of triplet pairs were created, select-
ing Dy, negative samples from grids up to the par-
ent’s K -skip neighboring grids, where K ranges
from 1 to 3. The triplet loss function was adjusted
by scaling the margin o = 5 based on the rela-
tive distance Dy, of each negative sample. During
inference for both models, approximate nearest
neighbor (ANN) search was used to find the top-8
similar addresses, with the medoid of these neigh-
bors serving as the predicted coordinates.

For the supervised classification tasks, including
both the plain and multi-head models, each state
provided millions of training data points. In the
single-head setup, the model was trained with tar-
get labels at resolution R = 10. For the multi-head
approach, the model utilized three classification
heads, corresponding to resolutions R = 8, R = 9,
and R = 10. These levels were chosen to bal-
ance computational efficiency and model perfor-
mance. Using finer resolutions, such as R = 11,
would seem like a natural extension. We also ex-
perimented at such finer resolutions; however, the
performance has degraded. There could be two
potential reasons for this, one is the GPS noise and
the second one is the large number of target classes.
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The hexagonal grid size at resolution 11 is around
28 meters, which is highly sensitive to GPS noise.
There is inherent noise in the GPS signal, which is
usually in a few 10’s of meters. Hence even if the
FE rightly captured the customer location, due to
the GPS noise, it might get tagged as wrong grid-id.
Added to this noise, the number of label classes
also increases significantly (5x to 7x). Because of
this large number of classes and noise in the grid-id
labels, the model performance has degraded

6.2 Performance Comparison

The metric that we use for the comparisons is the
"drift accuracy". Drift represents the great circle
distance between the predicted and the actual co-
ordinates. Drift accuracy at 100 meters represents,
out of 100 given addresses, how many addresses
have drift less than 100 meters. Table 1 summa-
rizes the performance of various models, includ-
ing baseline comparisons with SAGEL (Chatterjee
et al., 2016), the Google Maps API (Google, 2020),
and pre-trained models like ROBERTa-English and
RoBERTa-Address. The RoBERTa-Address model,
pre-trained on address-specific data, showed im-
provements over the generic ROBERTa-English due
to its domain-specific pre-training.

For contrastive learning models, the RoBERTa-
Triplet (Modified) model, which focused specifi-
cally on resolution R = 10 and incorporated a re-
fined sampling strategy with distance-based margin
adjustment, outperformed the RoBERTa-Triplet
(Original) model that used triplet pairs across mul-
tiple resolutions (R = 8,9, 10). The improvement
in the modified version demonstrates the effective-
ness of incorporating spatial information through
adjusted negative sampling. However, despite
these enhancements, the triplet-based methods still
lagged behind the fully supervised approaches.

Among the supervised methods, the Plain Clas-
sification model trained at resolution R = 10 out-
performed both the triplet-based models and the
existing production system. The Multi-Head model
provided further gains in accuracy, showcasing the
benefits of capturing geo-spatial relationships at
different levels of detail.

The best performing model improved the drift
accuracy by 12.9% within 100m and 2.8% within
500m. This leads to 8% reduction in incorrect
DH assignment and 7% reduction in fake delivery
attempts.

Method <100m <500m <1000m <2000m
Production 643% 884% 924%  94.8%

SAGEL 17.7%  389% 499%  68.8%

Google 238% 59.1%  73.1% 83.0%
RoBERTa-English 21.5% 45.0%  53.4% 61.0%
RoBERTa-Address 241% 51.1%  60.4% 67.0%
RoBERTa-Triplet (Original)  56.7%  73.4%  75.6% 76.9%
RoBERTa-Triplet (Modified) 65.7% 83.1% 85.1%  86.1%
Classification 72.4%  90.6%  93.1% 94.4%
Multi-Head 772% 91.2% 93.3%  94.6%

Table 1: Drift Accuracy Comparison of different mod-
els.

6.3 Qualitative Analysis

Figure 5 shows t-SNE visualizations of embed-
dings from various models. In these plots, clus-
ters of the same color represent addresses that fall
within the same grid, with each point indicating
an individual address. RoBERTa-Address forms
more distinct clusters than RoBERTa-English, re-
flecting the advantages of pre-training on address
data. The RoBERTa-Triplet model, trained with
its contrastive approach, produces tighter clusters,
effectively capturing geospatial relations. Interest-
ingly, the Classification model, despite treating grid
IDs as independent labels, achieves nearly compa-
rable clustering, suggesting that it can infer spatial
relationships even without explicit guidance.

RoBERTa-Address "

.| RoBERTa-English @

| RoBERTa-Triplet «| Classification

(R8,9,10) = oy "

i
£

Figure 5: t-SNE visualization of embeddings from vari-
ous models.

6.4 Handling Incorrect Pincodes

In real-world applications, particularly in India,
users frequently provide incorrect pincodes, which
can negatively impact geocoding accuracy and in-
crease delivery delays. To evaluate this, we created
a synthetic dataset by randomly altering pincodes
to simulate real-world errors. Table 2 shows the
performance comparison. The production system,
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where each model is tied to a specific pincode, suf-
fers from a significant drop in accuracy when in-
correct pincodes are provided. In contrast, our
approach, which does not rely on pincodes as input,
remains robust in such scenarios.

<100m <500m <1000m <2000m
Actual Pincode Production  64.3% 88.4%  92.4% 94.8%
Our Method 78.9%  92.1%  94.0% 95.2%
Incorrect Pincode  Production  46.7%  709%  76.4% 80.1%
Our Method 789%  92.1%  94.0% 95.2%

Table 2: Performance comparison of models with incor-
rect pincodes.

7 Conclusion & Next Steps

To conclude, we began our experiments with a
triplet loss-based approach and subsequently move
towards a fully supervised framework, exploring
different architectures to better incorporate geo-
spatial relationships.

As part of our next steps, we plan to pre-train
the RoOBERTa model specific to each state before
using it for subsequent experiments, anticipating
that this localized pre-training will enhance model
performance. Although the multi-head setup shows
promise for capturing hierarchical geo-spatial struc-
tures and performs best for our use case, we plan
to explore its effectiveness further in future exper-
iments. We also intend to integrate contrastive
learning into the multi-head learning framework
for potentially greater improvements.
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