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Abstract

Mental health is not a fixed trait but a dy-
namic process shaped by the interplay be-
tween individual dispositions and situational
contexts. Building on interactionist and con-
structionist psychological theories, we develop
interpretable models to predict well-being and
identify adaptive and maladaptive self-states
in longitudinal social media data. Our ap-
proach integrates person-level psychological
traits (e.g., resilience, cognitive distortions, im-
plicit motives) with language-inferred situa-
tional features derived from the Situational 8
DIAMONDS framework. We compare these
theory-grounded features to embeddings from
a psychometrically-informed language model
that captures temporal and individual-specific
patterns. Results show that our principled,
theory-driven features provide competitive per-
formance while offering greater interpretabil-
ity. Qualitative analyses further highlight the
psychological coherence of features most pre-
dictive of well-being. These findings under-
score the value of integrating computational
modeling with psychological theory to assess
dynamic mental states in contextually sensitive
and human-understandable ways.

1 Introduction

Understanding mental health through language has
long been a foundational goal in clinical psychol-
ogy and computational social science. Human ex-
pression — especially as manifested through digital
communication — provides a unique window into
internal states, social interactions, and psycholog-
ical well-being. The CLPsych 2025 shared task
builds on prior work in computational linguistics
and clinical psychology, extending the analysis of
mental health from static assessments to a dynamic,
temporally anchored perspective. Seq2Psych, our
interdisciplinary team, approaches this challenge
by integrating psychological theory with computa-
tional methods, ensuring that our models are both

empirically grounded and practically applicable.
Our work emphasizes not only predictive accuracy
but also a principled, theory-grounded approach to
interpretability, facilitating a nuanced explanation
of how self-states fluctuate over time.

Primary Contributions made in this work in-
clude: (1) proposal of a theory-driven baseline
that combines language-inferred person-level traits
(e.g., well-being, cognitive distortions, resilience)
with situational context features derived from the
Situational 8 DIAMONDS framework (Rauthmann
et al., 2014); (2) use of a human-centered language
model (Soni et al., 2022, 2024c¢) trained on tempo-
ral user histories, to generate person-contextualized
embeddings aligned with psychometric theory; (3)
evaluation of these representations — individually
and in hybrid configurations — for predicting well-
being and identifying adaptive/maladaptive self-
states in longitudinal text data; (4) an analysis of
the most predictive psychological features to high-
light interpretable connections between language,
context, and mental health outcomes.

2 Background

Traditional models of psychological assessment
often rely on static categories — diagnostic la-
bels that imply stable traits or enduring conditions.
However, integrative psychological theories em-
phasize that mental states are inherently dynamic,
shaped by a complex interplay between individual
dispositions and situational contexts (Buss, 1987;
Ekehammar, 1974; Boyd and Markowitz, 2024).
The constructionist view of emotions, for example,
posits that emotional experiences emerge from in-
teractions between an individual’s traits, cognitive
processes, and environmental affordances (Barrett,
2017). Likewise, interactionist approaches in per-
sonality psychology highlight that adaptiveness or
maladaptiveness of a given behavior is highly con-
tingent upon situational fit (Mischel and Shoda,
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1995; Fleeson, 2004).

The notion of situational fit is central to under-
standing mental health dynamics. Psychological
well-being is not merely an individual trait but a
function of how well a person’s responses align
with their context. A behavior that is adaptive in
one situation may be maladaptive in another. For in-
stance, hypervigilant behaviors may be adaptive in
some contexts (e.g., military personnel in combat
situations), but highly maladaptive in another (e.g.,
a classroom or casual social gathering; Vyas et al.
2023). This perspective aligns with the broader
movement in psychology that views well-being as
a dynamic process rather than a fixed state (see,
e.g., Hollenstein, 2015)

2.1 A Principled Baseline: Integration of
Person-Level Traits and Situational
Context

To model mental health dynamics in a principled
manner, our approach combines person-level traits
with psychological dimensions of the situation.
Specifically, we leverage:

Psychological Characteristics of the Situation
Using a large language model, we annotated each
post for the psychological characteristics of its con-
text, based on the Situational 8 DIAMONDS (S8D)
framework (Rauthmann et al., 2014). This frame-
work captures eight psychosocial aspects of a given
situation — Duty, Intellect, Adversity, Mating,
pOsitivity, Negativity, Deception, and Sociality
— that shape the meaning and context of person-
environment transactions.

Person-Level Traits (PLT) We employed exist-
ing models and methods to assess and estimate
individual differences in implicit motives (Nilsson
et al., 2024), depression and anxiety (Gu et al.), har-
mony in life and satisfaction with life (Kjell et al.,
2022a) valence (Eijsbroek, 2023), cognitive dis-
tortions (Varadarajan et al., 2025), and resilience
(Mahwish et al.). These traits serve as stable psy-
chological anchors that interact dynamically with
situational contexts in well-established fashions
(Mejia and Hooker, 2015; Ungar, 2013; Joiner Jr.
and Timmons, 2009).

By combining these features, we constructed
a baseline model that aligns with psychological
theory, providing an interpretable reference point
against which more data-driven approaches can
be evaluated. Our method represents a true in-
terdisciplinary effort in computational social sci-

ence, bridging insights from personality psychol-
ogy, emotion theory, and NLP to advance the study
of mental health dynamics in digital contexts.

2.2 Human Language Modeling: HaRT for
Person-Contextual Embeddings

Our principled baseline approach offers a clear ex-
planatory mechanism for predicting well-being and
distinguishing between adaptive and maladaptive
self-states. However, we anticipate that more ad-
vanced language models will enhance predictive
accuracy and provide a richer representation of
language and individuals. HaRT, trained on the Hu-
man Language Modeling (HuLM) task — which
predicts the next word based on prior words, in-
corporating a latent user representation derived
from their temporal historical language — enables
a person-contextualized understanding of language
(Soni et al., 2022). Grounded in psychometric the-
ory on the stability of psychological traits (Wat-
son, 2004) HuLLM processes an author’s language
collectively, recognizing that linguistic patterns are
best understood within the context of the individual
themselves, over time (Soni et al., 2024b; Ganesan
et al., 2024). This approach is particularly well-
suited for our tasks, given the dataset’s longitudinal
structure, where language is nested within indi-
viduals, and has proven to be effective in mental
health assessments (Ganesan et al., 2022; Varadara-
jan et al., 2024b), psychological assessments (Soni
et al., 2025), and user attributes assessments (Soni
et al., 2024a).

3 Data & Tasks

Dataset. The CLPsych 2025 shared task (Tse-
riotou et al., 2025) provided annotated evidence
for adaptive and maladaptive self-states (Slonim,
2024) as spans of texts from posts written by in-
dividuals historically in addition to a score repre-
senting the overall well-being in a post. The data
consists of 30 users (timelines) with a total of 343
posts of which 199 posts were annotated.

Shared Tasks. The shared tasks focus on the lon-
gitudinal modeling of changes in individual’s mood
and states (Shing et al., 2018; Zirikly et al., 2019;
Tsakalidis et al., 2022). We participate in 2 sub-
tasks targeted at post-level judgments: a) predicting
the overall well-being, and b) identifying evidence
for adaptive and maladaptive self-states.
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4 Methods

We extracted two categories of features: a theory-
informed baseline — comprising Situational 8 DI-
AMONDS (S8D) and Person-Level Traits (PLT;
see Section 2.1) — and person-contextualized em-
beddings. While PLT features were computed at
both sentence and post levels, S8D were limited
to post-level annotations due to their reliance on
broader context.

Situational 8 DIAMONDS (S8D). We used
Deepseek-R1 (DeepSeek-Al et al., 2025) with few-
shot prompting to infer scores for each of the eight
situational dimensions at the post level. Each di-
mension was prompted separately using two man-
ually annotated exemplars tailored to its psycho-
logical construct (see § A.2). Scores ranged from
1 (not present) to 9 (highly present), reflecting the
inferred prominence of each situational character-
istic.

Person-Level Traits (PLT).
tures across four subdomains:
Implicit Motives. Following Nilsson et al. (b),
we applied fine-tuned RoBERTa-Large models to
estimate three subconscious motives — achieve-
ment, affiliation, and power — at the sentence level.
These predictions were averaged and adjusted for
word count to yield post-level scores (details in
Appendix A.3).

Mental Health. Using the Language-Based As-
sessment Model Library (Nilsson et al., a), we in-
ferred six psychological dimensions: valence (Ei-
jsbroek, 2023), harmony in life, satisfaction with
life (Kjell et al., 2022b), anxiety, and two depres-
sion indices (Gu et al., 2024). Features were ex-
tracted at the sentence level and averaged to gener-
ate post-level estimates.

Resilience. We implemented the Resilience through
Language Modeling (ReLM) framework (Mahwish
et al.) to compute scores for nine resilience-related
facets (e.g., optimism, coping toolkit) at both sen-
tence and post levels. See Appendix A.4 for details.
Cognitive Distortions. Drawing on prior
work (Varadarajan et al., 2025), we used pre-
trained models to estimate levels of cognitive distor-
tion, a known correlate of maladaptive emotional
states (Mann et al., 2002; Bathina et al., 2021), at
both sentence and post levels.

We extracted 19 fea-

Person-Contextual Embeddings: HaRT. We
fine-tuned HaRT (Human-aware Recurrent Trans-
former) (Soni et al., 2022) to predict continuous

5-fold Ridge CV

rt  MSE|
S8D 0528  2.556
Dist 0365  3.059
ReLM 0533 2.538
PLT 0.629  2.149
SSD + ReLM + Dist  0.623  2.178
SSD + PLT 0622  2.174

Table 1: Pearson correlation (r) and Mean Squared Er-
ror (MSE) when training a ridge regression model us-
ing different “principled” baseline features to predict
continuous Well-being scores using nested 5-fold cross-
validation.

well-being scores at the post level and binary adap-
tive/maladaptive labels at the sentence level. To do
so, we split the CLPsych training data into inter-
nal training and validation sets. HaRT processes
users’ historical posts in sequence, enabling the
generation of temporally informed, person-specific
embeddings at both the sentence and post levels.

We evaluated these embeddings across three
tasks using 5-fold nested cross-validation: (a) con-
tinuous well-being prediction via ridge regression,
(b) adaptive label prediction using logistic regres-
sion, and (c) maladaptive label prediction using
logistic regression. We chose 5-fold CV to miti-
gate overfitting given the small sample size. For
all classifiers, we used a penalty range of [10, O,
-1, -0.10, 0.10]. For span identification, we pre-
dicted label probabilities and applied thresholds
of 0.45 (adaptive) and 0.4 (maladaptive) to extract
evidence-level annotations.

5 Results & Discussion

Well-being Scores. Situational characteristics
(S8D) inferred from posts were predictive of an-
notated well-being scores (see Table 1). When
combined with PLT features, our “principled” base-
line — grounded in interactionist theory — yielded
improved performance. The psychometric theory-
inspired HaRT model outperformed baselines on
the internal validation set, although we observed
signs of overfitting in 5-fold CV (see Table 2).
Nonetheless, official results showed similar trends
(Table A2), with the theory-driven S8D +PLT base-
line outperforming the theory-agnostic HaRTws-rr +
Ridge Variant.

Adaptive and Maladaptive States. HaRT mod-
els performed well in the binary classification of
adaptive and maladaptive self-states (Table A4),
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Internal 5-fold
Val Set Ridge CV
rt MSEl| rt MSE|
HaRTws-Fr 0.684 1.828 0.876 0.828
HaRTws-rr + S8D
+ReLM + Dist - - 0.883  0.787
HaRTws-FT +
SSD + PLT - - 0.884 0.783

Table 2: Pearson correlation (r) and Mean Squared Error
(MSE) when fine-tuning HaRT using internal train and
validation splits and further training a ridge regression
model using resulting embeddings and principled base-
line features. Note: Pearson r values for the 5-fold ridge
CV numbers are likely inflated due to partial data con-
tamination across the fine-tuning and cross-validation
datasets. The internal validation set was used while
finetuning the HaRT model, after which the weights
were separately used as inputs for well-being task. The
internal validation numbers have been omitted for the
post-finetuned model.

5-fold Log.reg. CV

Flyacro AUC
Dist adaptive 0.54 0.75
HaRTws-Fr 0.50 0.74
HaRTws-Fr + ReLLM + Dist adaptive 0.53 0.76
PLT adaptive 0.48 0.66
HaRTwg-FT + PLTadaptive 0.52 0.76
Dist maladaptive 0.56 0.73
HaRTws-Fr 0.56 0.73
HaRTws-Fr + ReLM + Dist maladaptive 0.57 0.76
PLT maladaptive 0.49 0.70
HaRTwa-Fr + PLTmaladaptive 0.58 0.77

Table 3: Macro F1 and AUC results when training a
logistic regression model to predict binary adaptive and
maladaptive labels separately over sentences split from
posts.

with additional gains observed when combined
with PLT features (Table 3). While Dist and PLT
features alone showed reasonable performance,
they produced minimal variation in predicted prob-
abilities across examples (Figure 1). In contrast,
HaRT-based models exhibited greater sensitivity to
language variation and were more effective at iden-
tifying adaptive and maladaptive evidence spans.
Additional supporting results and probability distri-
butions can be found in Appendix § A.6.

5.1 Discussion.

Our interactionist, theory-based “principled” base-
line approach effectively predicts annotated well-
being scores. However, it struggled to capture ev-
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Figure 1: Distribution of probabilities to predict adap-
tive state for a given sentence. On the top is using
HaRTws-rr + PLT features, and the bottom is using PLT
features in Logistic Regression models.

idence of adaptive and maladaptive states within
posts, highlighting the challenge of disentangling
self-states from their situational context — an issue
that even human observers can find difficult to as-
sess accurately (Uleman et al., 1996; Nisbett et al.,
1973; Ross, 1977).

To further explore the predictive power of our
principled baseline features, we conduct a qualita-
tive analysis of well-being correlations. As shown
in Figure 2, the top three features positively as-
sociated with well-being scores are: ‘satisfaction
with life’ (from mental health in PLT), ‘positivity’
in the situation (from S8D), and ‘harmony in life’
(from mental health in PLT). Conversely, the top
three features negatively correlated with well-being
scores include: ‘higher power belief’ (resilience
from PLT), ‘depression scale’ (mental health from
PLT), and overall ‘resilience score’ (from PLT).

Additionally, Figure 2 shows that the ridge re-
gression model, leveraging our principled baseline
features, assigns positive importance to ‘sociality’,
‘positivity’, and ‘intellect’ (all from S8D), while at-
tributing negative importance to ‘daily lived experi-
ence’ (from resilience in PLT), ‘need for affiliation’
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Pearson correlation between Well-being and S8D + PLT features
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Figure 2: Qualitative analysis of features in our princi-
pled baseline consisting of psychological characteristics
of the situation and person-level traits. Left: Pearson
correlation coefficients; Right: Ridge regression beta
coefficients for predicting well-being with the S8D and
PLT features.

(from implicit motives in PLT)!, and ‘belief in a
higher power’ (from resilience in PLT).

These findings align with prior research indicat-
ing that well-being is closely tied to life satisfaction
and positive social interactions (Diener et al., 1999;
Cacioppo and Cacioppo, 2014). Similarly, negative
associations with depression, present-focus, and
certain aspects of religiosity are consistent with
existing psychological literature on mental health
dynamics (Beck, 1967; Himmelstein et al., 2018;
McCullough and Larson, 1999; Braam and Koenig,
2019). A more detailed discussion of these results

"High expression of affiliation-related language may indi-
cate a frustrated, rather than fulfilled, need for social connec-
tion. Classic motivation theories (McClelland, 1987) suggest
that individuals who frequently verbalize their affiliation mo-
tive may be experiencing social deprivation or unmet inter-
personal needs. This aligns with research on compensatory
behaviors, where socially disconnected individuals often am-
plify affiliative overtures to seek connection (Baumeister and
Leary, 1995; Richman and Leary, 2009).

can be found in the Appendix § A.S.

6 Conclusion

Mental health is not a static trait but a dynamic out-
come shaped by ongoing interactions between per-
son and context. In this work, we operationalized
this psychological insight by combining person-
level traits and situational characteristics — core
tenets of interactionist and constructionist theory
— to model well-being and adaptive self-states in
language.

Our theory-driven baseline, built from the Sit-
vational 8§ DIAMONDS and language-inferred
psychological traits, demonstrated strong perfor-
mance while offering interpretable, psychologi-
cally grounded predictions. Features like posi-
tivity, satisfaction with life, and harmony in life
emerged as key indicators of well-being, while
markers of cognitive distortion and unmet affili-
ation needs were linked to maladaptive patterns.
HaRT’s person-contextualized embeddings added
value in modeling temporal variation, particularly
for adaptive and maladaptive evidence detection.

These findings highlight the value of bridging
computational models with psychological theory
— not only to improve prediction, but to ensure
outputs are meaningful and human-understandable.
Future work should explore how different contexts
modulate trait adaptiveness, and how language-
based systems might support more flexible, re-
silient self-states over time.

By integrating theory and computation, we move
toward systems that understand individuals not as
fixed entities, but as contextually situated and dy-
namically evolving.

Limitations

While this work offers a psychologically grounded
and interpretable approach to modeling mental
health from language, several limitations must be
acknowledged — both technical and conceptual.

First, our analyses are constrained by the scale
and structure of the CLPsych 2025 dataset. With
only 30 users and fewer than 200 annotated posts,
the generalizability of our findings is limited. Al-
though we used robust cross-validation and avoided
tuning on the test set, future work should evaluate
these models on larger, more diverse, and demo-
graphically representative datasets.

Second, the ground truth labels themselves are
inherently interpretive, reflecting human judgments
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of well-being and self-states based on textual evi-
dence. This raises a broader epistemological ques-
tion: to what extent can self-states be reliably in-
ferred from language alone? Our work assumes
that linguistic expressions are sufficient proxies for
psychological states — a premise that, while use-
ful for modeling, must be critically examined in
clinical and applied settings.

Third, our feature extraction relies on pretrained
models and heuristics that may carry latent biases
or be insensitive to cultural or contextual nuance.
For example, expressions of distress or resilience
may vary across communities, and models trained
on general corpora may fail to capture such varia-
tion meaningfully.

Finally, although we draw from psychological
theory, our models remain correlational. They can
identify linguistic markers of mental health but in
no way are able to definitively speak to underlying
mechanisms, causal relationships, or interventions.
Future work should incorporate longitudinal clini-
cal assessments to validate language-based features
against real-world outcomes.

These limitations do not undermine the value of
this work, but rather highlight the need for computa-
tional psychology to remain grounded in balancing
predictive power with interpretive care, and data-
driven modeling with theoretical accountability.

Ethical Considerations

Modeling mental health from language data
presents profound ethical challenges. While the
tools developed in this work aim to advance under-
standing of mental states in contextually sensitive
and interpretable ways, their misuse — or even
well-intentioned use without adequate safeguards
— poses real risks to privacy, autonomy, and well-
being.

First and foremost is the issue of consent. Al-
though the data used in this study were shared with
participant permission as part of a structured re-
search challenge, this controlled environment does
not reflect broader real-world settings in which
language-based models might be applied. Any fu-
ture deployment must ensure that individuals are
aware of — and have control over — how their
language data are interpreted, stored, and acted
upon.

Second, language-based inferences about men-
tal health are probabilistic and inherently contain
some degree of uncertainty. Over-reliance on

model outputs — particularly in clinical, legal,
or surveillance contexts — could lead to misdiag-
noses, stigmatization, or unwarranted interventions.
The interpretability of our features helps mitigate
this risk, but human oversight and psychological
expertise remain essential in any applied use.

Third, there are critical concerns around rep-
resentation and bias. Our models are trained on
English-language data from social media forums,
which may reflect particular cultural, demographic,
and socioeconomic perspectives. As a result, model
outputs may not generalize across populations and
could even reinforce existing inequities if deployed
indiscriminately. Expanding the diversity of train-
ing data and engaging with cultural psychology are
necessary steps forward.

Finally, as researchers in computational social
science, we must remain vigilant about the insti-
tutional and commercial pressures that can shape
how mental health technologies are built and used.
The potential to infer mental states from language
at scale invites both promise and peril. Ethical
research in this space demands more than com-
pliance — it requires an ongoing commitment to
transparency, self-reflection, and the prioritization
of human dignity.
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A Appendix

A.1 Official Submissions and results

Table A1 shows the official shared task results
for Task A.1 (evidence extraction), and Table A2
shows the official results for Task A.2 (wellbeing
prediction).

A.2 Situational 8 DIAMONDS Prompts

We used the items associated with each psychoso-
cial situation from Rauthmann et al. (2014) to de-
fine each of the S8D to Deepseek-R1. We individu-
ally prompted for each of the S8D and provided two
personalized exemplars and annotations for each of
the exemplars (2-shot). Some few-shot examples
were manually created and some were picked from
the CLPsych data. The prompts template would
read as follows:

Instruction: You are an expert in sit-
uational perception and psychological
analysis. Your task is to evaluate a
given block of text for the (insert situ-
ation) dimension from the Situational
8 DIAMONDS taxonomy. Individuals
who score higher in the (insert situation)
dimension relate to the following situa-
tions:

{{S8ED items corresponding to relevant
dimension were inserted here} )

Your task is to provide the following in a
structured JSON format: Rating: Assign
a numerical rating for the mating dimen-
sion on a scale of 1 to 9 (where 1 = Not
at all present and 9 = Highly present).

Reasoning: Provide a justification for the
rating based on the text. Span Extraction:
Identify specific phrases in the text that
support your rating.

Below are two examples with respective
input texts and corresponding outputs to
illustrate the task:

{{ Example texts with corresponding an-
notations were inserted here}}

Now, evaluate the following input text:
{{Text requiring annotation was inserted

here}}

We then curated two examples catered towards
each situation and hand-annotated the example to

provide as a guideline for output. We provided
two messages from the CLPsych 2025 dataset for
the situations Duty and Intellect, although for the
remaining six S8D, we curated our own examples.
An example annotation for the situation Adversity
(including manually creates few-shot examples)
goes as follows:

"Example 1: "I can’t believe how unfair
my manager is being. I worked overtime
all last week, skipped my breaks, and still
got blamed for a project delay that wasn’t
even my fault. He called me out in front
of the entire team, making it sound like I
was slacking off. I tried to defend myself,
but he just dismissed me and moved on.
It’s exhausting constantly feeling like I
have to prove myself, only to be treated
like I’'m incompetent."

**Qutput:** "adversity": 8, "reasoning":
"The individual is experiencing direct
blame from their manager for a project
delay that was not their fault. They de-
scribe being publicly criticized in front
of colleagues and dismissed when at-
tempting to defend themselves. The
tone reflects frustration and exhaustion
from repeated unfair treatment, which
strongly aligns with the Adversity di-
mension.","supporting spans": "I worked
overtime all last week, skipped my
breaks, and still got blamed for a project
delay that wasn’t even my fault.","He
called me out in front of the entire team,
making it sound like I was slacking
off.","I tried to defend myself, but he just
dismissed me and moved on.","It’s ex-
hausting constantly feeling like I have to
prove myself, only to be treated like I'm
incompetent."

Example 2: "Every time I try to express
my opinion, my older brother just shuts
me down. He talks over me, mocks what
I say, and makes me feel like I'm too
stupid to contribute. It’s like my thoughts
don’t matter in my own family. Even
when I call him out on it, he just laughs
and says I’m being too sensitive. I don’t
know how to get him to take me seri-
ously."

**Qutput:** "adversity": 7, "reasoning":
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A.1 Adaptive/Maladaptive
recall weighted recall

overall adaptive maladaptive | overall adaptive maladaptive

HaRTwsrr + ReLM + Dist (LinSVC) 0.108  0.099 0.116 0.103  0.097 0.109

HaRTws-Fr +Logree. 0.105 0.077 0.132 0.102  0.075 0.129
HaRTadaptive-FF 0.276 0.245 0.308 - - -
HaRTmaladaptive—FT - - - 0.236 0.238 0.235

Table Al: Task A.1 Adaptive and Maladaptive Evidence task. We found that finetuning HaRT for independent
adaptive and maladaptive evidence classification can yield significant boosts over traditional principled baselines.

A.2 Well-being

timeline MSE | F1
overall . miqimal impaired . ser.ious macro
impairment impairment
HaRTws-rr 3.73 2.76 1.95 5.92 0.15
HaRTwser + Ridge 3.42 2.95 1.33 5.1 0.17
HaRTwe-rr + S8D + ReLM + Dist (Ridge)  3.27 2.63 1.38 4.98 0.19
HaRTws-rr + S8D + PLT (Ridge) 3.22 1.40 2.60 4.86 0.19
S8D + ReLLM + Dist (Ridge) 3.02 1.21 1.79 5.25 0.17
S8D + PLT (Ridge) 2.78 1.84 2.14 3.89 0.19

Table A2: Task A.2 Wellbeing task. We found that unlike Task A.1, finetuning HaRT to the wellbeing prediction task
need not consistently offer boosts, instead, principled and theoretical methods can offer significant advantages, with
a small number of interpretable dimensions without compromising on the accuracy. The first 3 rows in this table
were our official submissions while others are presented for additional analysis. We note that using HaRt fine-tuned
for the respective adaptive and maladaptive binary classifications may provide benefits over using HaRTws-rr in all
combinations, however, due to time constraints we do not have empirical results for the same.
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"The individual describes repeated expe-
riences of being dismissed, mocked, and
dominated by their older brother. The sit-
uation involves verbal criticism, a power
imbalance, and an inability to be taken
seriously, all of which strongly align with
the Adversity dimension.", "supporting
spans": "Every time I try to express my
opinion, my older brother just shuts me
down.", "He talks over me, mocks what
I say, and makes me feel like I'm too
stupid to contribute.", "Even when I call
him out on it, he just laughs and says I'm
being too sensitive.""

A.3 Implicit Motives and Mental Health in
PLT

To construct our person-level trait (PLT) features,
we extracted both implicit motivational needs and
core mental health dimensions from participants’
language using pre-existing, validated models.

Implicit Motives. Following classic motivational
theory (McClelland, 1987), we define three core im-
plicit motives reflected in language: (1) the need for
achievement, indicated by references to striving for
excellence; (2) the need for affiliation, reflected in
efforts to initiate or maintain friendly relationships;
and (3) the need for power, expressed as influence
or control over others or institutions. We used
RoBERTa-based models from prior work (Nilsson
et al., 2024), trained on expert-coded Picture Story
Exercises, to infer these motives at the sentence
level. Sentence-level predictions were then aggre-
gated to post level using word count-adjusted aver-
aging procedures.

Mental Health Dimensions. We further ex-
tracted six features representing key aspects of
mental health using models from the Language-
Based Assessment Model Library (Nilsson et al.,
a). These include:

* Valence: Trained on annotated Facebook
posts rated for emotional positivity or neg-
ativity. The model’s out-of-sample correlation
with human ratings was » = .81.

Harmony in Life & Satisfaction with Life:
Trained on open-text responses rated using
validated scales (Kjell et al., 2022a). The
models achieved out-of-sample correlations
of r = .73 and r = .71, respectively.

311

* Depression: Two separate models were
used — one trained to the Patient Health
Questionnaire-9 (PHQ-9; Kroenke et al.,
2011), and the other to the Center for Epi-
demiologic Studies Depression Scale (CES-D;
Radloff, 1977). These models yielded correla-
tions of r = .66 and r = .73, respectively.

* Anxiety: Trained on worry-based language
mapped to the Generalized Anxiety Disorder
7-item scale (GAD-7), with a correlation of
r = .63.

All models were previously pre-registered for
their respective source projects, evaluated using
nested cross-validation, and applied out-of-sample
to the present dataset. These features form part of
our psychologically interpretable PLT baseline.

A.4 Resilience in PLT

Traditional views of resilience often reduce it to
the absence of psychopathology or the ability to
recover from stress. However, contemporary psy-
chological frameworks emphasize a broader under-
standing: resilience as a multidimensional capacity
for adaptive functioning in the face of adversity.
To operationalize this richer perspective, we used
the ReLM (Resilience using Language Modeling)
framework (Mahwish et al.), which integrates an
archetype-based approach to assess resilience from
language.

ReLM captures nine core facets of resilience: op-
timism, flexibility mindset, sense of social support
(SoS), continued activities of daily living (CADL),
cognitive reappraisal, emotional maturity, uncer-
tainty tolerance, belief in a higher power, and
coping toolkit. Each facet is represented by four
prototype statements — brief exemplar sentences
derived from a synthesis of resilience literature
and analysis of archival interviews with individu-
als who have demonstrated stability in the face of
trauma. For example, a prototype for flexibility
mindset reads: “I always try new things because
I’m open to exploring.”

To assess individual alignment with each facet,
ReLLM embeds both prototype statements and par-
ticipant text using Sentence ROBERTa and com-
putes their semantic similarity (see: Varadarajan
et al., 2024a). The resulting scores quantify how
strongly a participant’s language reflects each di-
mension of resilience. A higher score indicates
greater expression of that facet.



Finally, a composite resilience score is computed
by applying exploratory factor analysis to the nine
facet scores. Across multiple datasets, a single-
factor solution consistently explained 49-56% of
the variance (Mahwish et al.), supporting the use
of a unified resilience metric. This composite
score provides a theoretically grounded and inter-
pretable estimate of an individual’s language-based
resilience profile.

A.5 Continued Discussion

The ‘daily lived experience’ facet in this dataset ex-
hibits a strong negative association with well-being.
This relationship likely stems from the facet’s fo-
cus on individuals persisting through routine tasks
despite ongoing stressors. Participant statements
such as “I’ve adjusted to my new environment—it
was hard at first, but ’'m improving” and “I’ve been
leaving the house more” (rewritten for anonymity)
illustrate gradual adaptation and effort. However,
because well-being in this dataset is framed in
terms of symptom absence and unimpaired func-
tioning, the ‘daily lived experience’ facet presents a
paradox. While it reflects resilience — people con-
tinuing daily tasks despite struggles — it also sig-
nals underlying difficulty. The very act of pushing
forward in the face of these challenges may indi-
cate diminished well-being, as it suggests persistent
symptomatology masked by forced functionality.

The Belief in a Higher Power facet reflects trust
in external forces during times of struggle, as il-
lustrated by participant statements like “T accept
things as they are... I trust that things will get
better over time” and “I know that life will work
itself out” (anonymized). These responses suggest
a surrender of personal control to fate or higher be-
ing—a mechanism that may offer emotional relief.
However, the model’s negative weighting of this
facet stems from a tension between its definition
of well-being (rooted in agency, engagement, and
lack of symptom) and a resilience strategy that re-
lies on external control. While faith can provide
comfort, the framework may be interpreting pas-
sive reliance on higher powers as maladaptive in
contexts where well-being is tied to active mastery
of one’s circumstances.

A.6 Supplementary results and figures
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Figure A1: Distribution of probabilities to predict mal-
adaptive state for a given sentence. On the top is using
HaRTws-rr + PLT features, and the bottom is using PLT
features in Logistic Regression models.
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Figure A2: Distribution of probabilities to predicting
adaptive state for a given sentence. On the top is us-
ing HaRTws-rr + ReLM + Dist adapiive features, and the
bottom is using ReLM + Dist adaptive features in Logistic
Regression models.
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Internal Val Set
Flmacro Fl'wtd AUC Ace

Dist adaptive 0.53 0.85 0.75 0.89
HaRTadaptive-FT 0.67 0.89 0.66 0.89
Dist maladaptive 0.56 0.82 0.76 0.84
HaRTmaladaplive-FT 0.60 0.82 0.60 0.82

Table A3: Task A.1 Additional results on internal validation set when predicting binary adaptive and maladaptive
labels separately over sentences split from posts.

5-fold Log.reg. CV
Flmacro Flwtd AUC Ace

Dist adaptive 0.54 0.87 0.75 0.90
HaRTws-Fr 0.50 0.87 0.74 0.90
HaRTws-Fr + ReLM + Dist adaptive 0.53 0.87 0.76 091
PLT adaptive 0.48 0.86 0.66 0.91
HaRTws-Fr + PLTadaptive 0.52 0.87 0.76 0.90
Dist maladaptive 0.56 0.81 0.73 0.85
HaRTws-Fr 0.56 0.81 0.73 0.85
HaRTws-rr + ReLM + Dist maladaptive 0.57 0.82 0.76 0.86
PLT maladaptive 0.49 0.80 0.70 0.86
HaRTws-FT + PLTmaladaptive 0.58 0.83 0.77 0.86

Table A4: Additional results when training a logistic regression model to predict binary adaptive and maladaptive
labels separately over sentences split from posts.
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Figure A3: Distribution of probabilities to predicting
maladaptive state for a given sentence. On the top is
using HaRTws-rr + ReLM + Dist maiadaptive features, and
the bottom is using ReLM + Dist maladaptive features in
Logistic Regression models.
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