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Abstract

Depression is the most common mental health
disorder, and its prevalence increased during
the COVID-19 pandemic. As one of the most
extensively researched psychological condi-
tions, recent research has increasingly focused
on leveraging social media data to enhance
traditional methods of depression screening.
This paper addresses the growing interest in
interdisciplinary research on depression, and
aims to support early-career researchers by pro-
viding a comprehensive and up-to-date list of
datasets for analyzing and predicting depres-
sion through social media data. We present an
overview of datasets published between 2019
and 2024. We also make the comprehensive
list of datasets available online as a continu-
ously updated resource, with the hope that it
will facilitate further interdisciplinary research
into the linguistic expressions of depression on
social media.

1 Introduction

Depression is the most common mental health
disorder, and its prevalence has increased further
during the COVID-19 pandemic (Wolohan, 2020;
Kaseb et al., 2022; Bucur et al., 2025). Depres-
sion is also one of the most extensively researched
mental health disorders in the field of psychol-
ogy (Xu et al., 2021). Since the past decade,
interdisciplinary researchers have explored this
widespread mental disorder using data from so-
cial media (De Choudhury et al., 2013; Yates et al.,
2017; Orabi et al., 2018; Aragén et al., 2019; Fine
et al., 2020; Uban et al., 2021; Nguyen et al., 2022;
Wang et al., 2024; Raihan et al., 2024; Abdelkadir
et al., 2024). The language used on social media
has been shown to predict future depression diag-
noses recorded in medical files, suggesting that
social media data could be a valuable supplement
to traditional depression screening methods (Eich-
staedt et al., 2018).

Interdisciplinary research has gained popular-
ity through workshops and shared tasks focused
on computational approaches for analyzing mental
disorders, including CLPsych (Chim et al., 2024),
LT-EDI (Kayalvizhi et al., 2023), eRisk (Parapar
et al., 2024), and MentalRiskES (Marmol-Romero
et al., 2023). As the research community shows
increasing interest in examining how depression is
expressed in social media language, we aim to sup-
port early-career researchers and anyone interested
in this field by providing a comprehensive list of
datasets for analyzing or predicting depression us-
ing social media data. Our motivation stems from
recent changes in the terms of service and API rate
limits for popular social media platforms, such as
Twitter and Reddit, which have been the primary
sources for data collection (Harrigian et al., 2021).
These changes have made it more challenging and
costly to gather new data. Therefore, we focus on
the availability of the datasets in this overview.

The most recent review of social media data for
mental health research was conducted by Harrigian
et al. (2021), which covered datasets published
between 2014 and 2019. Our current work aims
to provide an updated overview of social media
datasets specifically related to depression research.
Since the latest dataset included by Harrigian et al.
(2021) is from 2019, our focus will be on datasets
published between 2019 and 2024.

This paper contributes to the computational re-
search in depression by providing a meticulously
curated, up-to-date, and continuously updated list
of data collections.! We hope that the resources
presented in this overview will further contribute to
the interdisciplinary research on depression mani-
festations in social media language and aid in de-
veloping effective interventions for those affected
by depression.

'We make the list available online at
https://github.com/bucuram/depression-datasets-nlp.
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2 Methodology

We have conducted a comprehensive literature
search on the major publication databases, includ-
ing ACL Anthology, IEEE Xplore, Scopus, ACM
Digital Library, Springer Nature Link, ScienceDi-
rect, and Google Scholar to search for papers using
NLP models for depression modeling or papers pre-
senting novel depression-related data collections
from social media. We formulated the following
search query to retrieve relevant papers:
(“depression” OR “depression detection” OR “de-
pression prediction” OR “depression monitoring”
OR “depression analysis”) AND (“social media”
OR “online” OR “Twitter” OR “Reddit” OR “Face-
book™)

For this overview, we selected papers published
between 2019 and 2024 that specifically analyze de-
pression using social media data. We excluded any
papers not written in English. To determine if the
retrieved papers included analyses related to depres-
sion based on social media data or described new
data collections, we manually inspected the full
texts. We focused on data in the English language.
In total, we identified 310 relevant papers, of which
59 proposed new data collections for depression-
related research using social media data.

3 Datasets

In Figure 1, we show the number of papers on
depression modeling from social media data pub-
lished each year.
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Figure 1: Number of papers on depression modeling
published each year in peer-reviewed conferences or
journals.

We observe a growing trend in interdisciplinary
research on depression, which may have been
partly influenced by the COVID-19 pandemic, as
there has been an increase in depression rates dur-
ing this time (Wolohan, 2020; Kaseb et al., 2022).
In addition, there has been more research focused
on using NLP models for mental health surveil-
lance on social media platforms to assess the pan-
demic’s impact on the population (Dhelim et al.,
2023).

In Figure 2, we present the most used datasets in
the 310 papers found through our search. Most of
the papers have used the datasets from the LT-EDI
Workshop (DepSign dataset (Sampath and Durairaj,
2022)), the eRisk Lab (Losada et al., 2017, 2018,
2019, 2020; Parapar et al., 2021; Crestani et al.,
2022), or the CLPsych 2015 Shared Task dataset
(Coppersmith et al., 2015). All the aforementioned
datasets were released as part of shared tasks or
competitions, and the data was a valuable resource
that was further used after the end of the shared
task. Other benchmark datasets are from Shen
et al. (2017), Pirina and Coltekin (2018), or RSDD
(Yates et al., 2017).
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Figure 2: The most used datasets for depression model-
ing.

The availability of data collections has advanced
the development of state-of-the-art depression pre-
diction models. Of the 310 papers published during
2019 and 2024, 59 of them collect and annotate new
data from online platforms. In Appendix 6 Table
1, we present detailed information for each of the
data collections, such as the platform used for data
gathering, the annotation procedure, and the level
of annotation (either for each post or user), the la-
bels that are provided for the data, the size of the
dataset and its availability.

Platform In Figure 3, we present the social me-
dia platforms used for gathering datasets for depres-
sion modeling. Reddit and Twitter were the most
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commonly used platforms for data collection due
to easy access to dedicated APIs. However, recent
changes in the terms of service and API rate limits
for both Twitter / X* and Reddit® have complicated
data collection from these platforms. These updates
may hinder the reproduction of datasets where au-
thors only provide Twitter or Reddit IDs instead of
the raw text. In addition, these changes make the
process of collecting new data more challenging,
costly and time-consuming.
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Figure 3: The most used platforms for the data collec-
tions presented in this overview.

Annotation procedure and labels For depres-
sion detection from social media data, the most
common method of annotation from the datasets
presented in this work is the annotation based on
self-disclosure (Figure 4), labeling users binary, de-
pending on whether they mention online a depres-
sion diagnosis or not. In 20 of the data collections,
researchers use self-mentions of depression diag-
noses (e.g., “I was diagnosed with depression”) for
their annotation processes. This approach allows
for the compilation of large datasets containing
hundreds of thousands of users.

Another common annotation procedure is man-
ual annotation, used for 18 of the data collections.
These annotations can be performed by mental
health experts, graduate students, or laypeople.
Most procedures for manual annotations are per-
formed at the post level. Manual annotation is used

Zhttps://developer.twitter.com/en/docs/twitter-api/rate-
limits

3https://support.reddithelp.com/hc/en-
us/articles/16160319875092-Reddit-Data-API-Wiki
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Figure 4: Overview of the annotation levels within each
dataset, at either the user or post level, along with the
procedures used for annotation.

to label the data binary (depression vs. control),
to label data for depression severity (no signs of
depression, mild, moderate, severe, etc.), and for
symptoms measured by different validated ques-
tionnaires, or symptoms from The Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edi-
tion (DSM-V) (American Psychiatric Association,
2013). Recently, datasets have shifted from binary
labeling to labeling based on depression symptoms,
leading to the development of explainable methods
for depression modeling (Pérez et al., 2023c; Bao
et al., 2024).

Data annotation can also be performed by ask-
ing social media users to fill in validated self-report
questionnaires, such as the Beck’s Depression In-
ventory (BDI) or Patient Health Questionnaire-9
(PHQ-9). However, even if psychometric tools
produce a more reliable assessment of depression,
fewer people are willing to participate in the data
collection, resulting in small sample sizes. Only
six datasets rely on self-report questionnaires for
the annotation procedure, and one of them relies
on the diagnosis from medical records.

Another method for annotation, which is noisier
and more prone to errors, is labeling posts by the
presence of specific depression-related keywords or
automatic annotation performed via an NLP model
trained on mental health data. These methods are
used less frequently in the data collections included
in this overview, with only three data collections
being labeled automatically and two datasets being

118


https://developer.twitter.com/en/docs/twitter-api/rate-limits
https://developer.twitter.com/en/docs/twitter-api/rate-limits
https://support.reddithelp.com/hc/en-us/articles/16160319875092-Reddit-Data-API-Wiki
https://support.reddithelp.com/hc/en-us/articles/16160319875092-Reddit-Data-API-Wiki

labeled using depression-related keywords.

Availability Due to the sensitive nature of the in-
formation in the datasets used for depression mod-
eling, their availability varies. Our exploration of
data availability was inspired by the work of Harri-
gian et al. (2021). However, unlike their study, we
have decided not to consider datasets that can be re-
produced using APIs from social media platforms
as readily available. This decision was influenced
by recent changes in the terms of service of plat-
forms such as Reddit and Twitter / X, which have
complicated the reproduction of data and made it
difficult to retrieve social media posts using the IDs
included in the data collections via APIs.

Out of the 59 papers proposing new datasets, 16
are publicly available and hosted online for anyone
to use, 15 can be made available after signing a
data usage agreement, and 11 collections can be
made available by contacting the authors of the
dataset. The availability of the rest of the datasets
is unknown.

4 Discussion

Data availability One of the primary motivations
for this overview were the recent changes in social
media platforms, which may hinder the develop-
ment of new research collections. Our aim was
to provide the research community with a compre-
hensive list of data collections that can be used for
interdisciplinary research on the manifestations of
depression in social media. We included availabil-
ity information for each dataset in this overview.
We have found that 16 of the datasets are publicly
available and free for anyone interested to down-
load and use. As detailed in Section 3, data col-
lections that were part of shared tasks or easily
accessible were successfully used by the research
community.

Annotation reliability One common method for
user-level labeling involves relying on individuals
to self-disclose their depression diagnoses. How-
ever, this approach is not reliable. Even when an-
notators manually review posts that contain self-
disclosed information, there is no way to verify the
authenticity of these disclosures or the accuracy
of the users’ statements. In addition, for the con-
trol group, which includes users who do not men-
tion any depression diagnoses, their actual mental
health status remains unknown. We cannot assume
that these individuals do not suffer from mental

disorders because they have not disclosed this in-
formation. It is essential to recognize that rely-
ing on self-reported diagnoses for mental health
data collection can lead to self-selection bias (Amir
et al., 2019). This means that the data obtained
may only represent individuals who are willing to
openly discuss their mental health issues, which
may not accurately reflect the entire population of
people with mental disorders.

5 Conclusion and Future Work

We presented a comprehensive and up-to-date
overview of datasets used for depression model-
ing from social media data. We review papers
published in international conferences and jour-
nals between 2019 and 2024. Due to the research
community’s efforts to organize shared tasks, the
availability of benchmark datasets has increased,
offering researchers the resources to build online
screening methods for depression and to analyze
the depression-related discourse online.

This paper not only aims to offer information
about the available datasets for depression manifes-
tation in social media language, but to encourage
further interdisciplinary collaboration and explo-
ration. We hope that the comprehensive list of
resources provided will inspire researchers, partic-
ularly those in the early stages of their careers, to
explore this field more deeply. This could lead to a
better understanding of depression as expressed in
social media and improved interventions.

In this overview, we focused on English datasets,
as it is one of the languages that are most used for
data collection (Harrigian et al., 2021; Skaik and
Inkpen, 2020). However, studying the manifesta-
tions of mental health problems in low-resourced
languages is an important step toward providing
depression screening solutions that can improve
the mental health outcomes of people from all
around the world (Garg, 2024). In future work,
we aim to extend this effort to include social media
datasets in languages other than English. Further-
more, we would like to explore the relationship
between datasets curated for depression detection
and those used in related tasks. This would provide
insights on the relationship between depression de-
tection and related social media tasks (Bucur et al.,
2021) as well as support multi-task learning efforts
(Benton et al., 2017b; Kodati and Tene, 2025).
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Limitations

In this paper, we aim to provide a comprehen-
sive overview of the current state of social media
data for computational research on depression and
present a list of datasets available for researchers
in this field. Our study includes 59 data collec-
tions, each of which has been carefully reviewed.
However, it is possible that we may have over-
looked some works that do not explicitly mention
depression-related analyses using social media data
in their titles or abstracts.

Ethical Considerations

Addressing ethical considerations in mental health
research that uses social media data is essential
for protecting the privacy, confidentiality, and well-
being of individuals whose data is being analyzed
(Chancellor and De Choudhury, 2020; Benton et al.,
2017a; Chancellor et al., 2019). In this overview,
we present the datasets available for studying the
manifestations of mental disorders on social media.
Although we do not conduct any analyses on the
data presented in this work, we want to emphasize
that collecting social media data from individuals
affected by mental disorders must adhere to ethical
research protocols (Benton et al., 2017a). Addi-
tionally, researchers who use these datasets should
follow the same ethical guidelines and recommen-
dations for health research involving social media.
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6 Appendix

Table 1: List of available datasets for depression modeling using data posted on online platforms. The labels for availability are
the following: FREE - the dataset is publicly available and hosted online for anyone to access, AUTH - the data can be accessed
by contacting the paper’s authors, DUA - the data is available only after a data usage agreement is signed, UNK - the dataset
availability is unknown; the authors do not mention if the data is available to the research community.

Dataset Platform| Level | Annotation Procedure | Label Size Availab.
Gui et al. (2019) Twitter | USER | Self-disclosure Binary 2.8K users UNK
Chandra Guntuku et al. (2019) Twitter | USER | BDI Binary 887 users UNK
Almougzini et al. (2019) Twitter | USER,| Manual annotation Binary 89 users UNK
POST
eRisk2019 (Losada et al., 2019) | Reddit USER | BDI-II BDI filled-in 20 users DUA
Owen et al. (2020) Twitter | POST | Manual annotation Binary 1K posts FREE
Bathina et al. (2021) Twitter | USER | Self-disclosure Binary 1.2K users AUTH
Rissola et al. (2020) Reddit POST | Self-disclosure, heuris- | Binary 14K posts DUA
tics
Birnbaum et al. (2020) Facebook] USER | Medical records diagno- | Binary 223 users AUTH
sis
D2S (Yadav et al., 2020) Twitter | POST | PHQ-9 PHQ-9 symp- | 12K posts AUTH
toms
eRisk 2020 (Losada et al., 2020) | Reddit USER | BDI-II BDI filled-in 90 users DUA
Tabak and Purver (2020) Twitter | USER | Self-disclosure Binary 5K users UNK
Yazdavar et al. (2020) Twitter | USER | Manual annotation Binary 8.7K users DUA
Haque et al. (2021) Reddit POST | Subreddit participation | Depression vs. | 1.8K posts FREE
suicide
Chiu et al. (2021) Instagramj USER | Depression-related key- | Binary 520 users UNK
words
Nanomi Arachchige et al. | Online | POST | Manual annotation Depression 2.1K posts UNK
(2021) forums severity
Sherman et al. (2021) Reddit USER | Self-disclosure Binary 31K users DUA
eRisk 2021 (Parapar etal., 2021) | Reddit USER | BDI-II BDI filled-in 170 users DUA
Pirayesh et al. (2021) Twitter | USER | Self-disclosure Binary 817 users AUTH
Guo et al. (2021) Reddit USER | Self-disclosure Labels for mul- | 7.9 Kusers | UNK
tiple disorders
Zhang et al. (2021) Twitter | USER | Self-disclosure Binary 5K users UNK
Zhou et al. (2021) Twitter | USER | Self-disclosure Binary 1.8M posts | UNK
Safa et al. (2022) Twitter | USER | Self-disclosure Binary 1.1 Kusers | AUTH
Naseem et al. (2022) Reddit POST | Manual annotation Depression 3.5K posts | FREE
severity
PsySym (Zhang et al., 2022) Reddit USER,| Automatic and manual | DSM-5 symp- | 26K users, | AUTH
POST | annotation toms for multi- | 8.5K posts
ple disorders
MHB (Boinepelli et al., 2022) Online | USER | Forum participation Only depres- | 9.3K users FREE
forums sion
CAMS (Garg et al., 2022) Reddit POST | Manual annotation Causes for de- | 3.1 Kposts | FREE
pression
Sotudeh et al. (2022) Reddit POST | Subreddit participation | Summarization | 24 k posts DUA
Sampath and Durairaj (2022) Reddit POST | Manual annotation Depression 16K posts FREE
severity
eRisk2022 (Crestani et al.,, | Reddit USER | Self-disclosure Binary 3.1K users DUA
2022)
Monreale et al. (2022) Reddit POST | Subreddit participation | Labels for mul- | 16 K posts UNK
tiple disorders
PRIMATE (Gupta et al., 2022) | Reddit POST | Manual annotation PHQ-9 symp- | 2K posts DUA
toms
PsycheNet-G (Mihov et al., | Twitter | USER | Self-disclosure Binary 591 users UNK
2022)
Twitter-STMHD (Singh et al., | Twitter | USER | Self-disclosure, manual | Labels for mul- | 33K users FREE
2022) annotation tiple disorders
multiRedditDep (Uban et al., | Reddit USER | Self-disclosure Binary 3.7K users AUTH
2022)
Davis et al. (2022) Reddit USER | Subreddit participation | Binary 81K users UNK
Ferndndez-Barrera et al. (2022) | Flickr POST | Depression tags Only depres- | 14.5K posts | UNK
sion
Cha et al. (2022) Twitter, | POST | Lexicon-based auto- | Binary 26M posts, | AUTH
Every- matic annotation 22K posts
time
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Dataset Platform| Level | Annotation Procedure | Label Size Availab.
DEPTWEET (Kabir et al., | Twitter | POST | Manual annotation Depression 40K posts FREE
2023) severity
Alavijeh et al. (2023) Twitter | USER | Self-disclosure Labels for mul- | 1.5K users FREE
tiple disorders
Adarsh et al. (2023) Reddit POST | Subreddit participation | Binary 60K posts UNK
Liu et al. (2023a) Reddit POST | Subreddit participation | Symptoms 1.3M posts | FREE
BDI-Sen (Pérez et al., 2023b) Reddit POST | Manual annotation BDI-Il  symp- | 4.9K posts DUA
toms
Song et al. (2023) Reddit POST | Subreddit participation | Labels for mul- | 85K posts UNK
tiple disorders
RedditCE (Liang et al., 2023) Reddit POST | Manual annotation Emotion-cause | 35K posts FREE
labels
Liu et al. (2023b) Reddit, | USER | Self-disclosure Binary 205K users, | UNK
Twitter 255 users
RESTORE (Yadav et al., 2023) | Reddit, | POST | Manual and automatic | PHQ-9 symp- | 9.8K AUTH
Twitter, annotation toms images
Pinter-
est
Zogan et al. (2023) Twitter | USER | Self-disclosure Binary 1.4K users UNK
Wu et al. (2023) Twitter | USER | Self-disclosure, manual | Binary 10K users DUA
annotation
DepreSym (Pérez et al., 2023a) | Reddit POST | Manual annotation BDI-II symp- | 21K posts DUA
toms
Villa-Pérez et al. (2023) Twitter | USER | Self-disclosure Labels for mul- | 6K users DUA
tiple disorders
HelaDepDet  (Priyadarshana | Twitter, | POST | Manual annotation Depression 40K posts FREE
etal., 2023) Reddit severity
Anshul et al. (2023) Twitter | USER | Self-disclosure, Manual | Binary 1.5K users FREE
annotation
RED (Welivita et al., 2023) Reddit POST | Subreddit participation | Labels for mul- | 1.2M posts | FREE
tiple disorders
Alhamed et al. (2024) Twitter | USER | Manual annotation Before/After di- | 120 users FREE
agnosis
Milintsevich et al. (2024) Reddit POST | Manual annotation Anhedonia 167 posts DUA
MentalHelp (Raihan et al, | Reddit | POST | Automatic annotation Binary 14M posts FREE
2024)
Lee et al. (2024) Reddit USER | Manual annotation Binary 1K users DUA
Beniwal and Saraswat (2024) Instagrami POST | Manual annotation Binary 10K posts AUTH
Tumaliuan et al. (2024) Twitter | USER | PHQ-9 Binary 72 users AUTH
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