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Abstract

In this paper, we address the challenge of
patient-note identification, which involves ac-
curately matching an anonymized clinical note
to its corresponding patient, represented by a
set of related notes. This task has broad applica-
tions, including duplicate records detection and
patient similarity analysis, which require robust
patient-level representations. We explore vari-
ous embedding methods, including Hierarchi-
cal Attention Networks (HAN), three-level Hi-
erarchical Transformer Networks (HTN), Long-
Former, and advanced BERT-based models,
focusing on their ability to process medium-
to-long clinical texts effectively. Additionally,
we evaluate different pooling strategies (mean,
max, and mean_max) for aggregating word-
level embeddings into patient-level representa-
tions and we examine the impact of sliding win-
dows on model performance. Our results indi-
cate that BERT-based embeddings outperform
traditional and hierarchical models, particularly
in processing lengthy clinical notes and captur-
ing nuanced patient representations. Among
the pooling strategies, mean_max pooling con-
sistently yields the best results, highlighting
its ability to capture critical features from clin-
ical notes. Furthermore, the reproduction of
our results on both MIMIC dataset and Necker
hospital data warehouse illustrates the general-
izability of these approaches to real-world ap-
plications, emphasizing the importance of both
embedding methods and aggregation strategies
in optimizing patient-note identification and
enhancing patient-level modeling.

1 Introduction

Representation learning focuses on learning com-
pact, meaningful representations from raw data to
make it easier for models to perform tasks such as
classification, prediction, and clustering. In general,
representation learning consists in learning dense
representations, where complex, high-dimensional
data are mapped to lower-dimensional spaces (Liu
et al., 2020). These representations capture under-
lying structure and essential features, preserving
relevant information from the data. In the con-
text of Natural Language Processing (NLP), rep-
resentation learning has been widely applied and
demonstrated impressive performance across vari-
ous tasks, including downstream applications such
as text classification, sentiment analysis, and ma-
chine translation (Pennington et al., 2014; Liu et al.,
2020; Alsentzer et al., 2019).

Studies in healthcare have focused on learn-
ing patient representations from electronic health
records (EHRs) to develop predictive models for
patient outcomes, such as hospital readmissions,
disease progression, or patient mortality rates (Deo
and Borgwardt, 2015; Zhu et al., 2015; Auslander
et al., 2020; Mahbub et al., 2022). In recent years,
EHRs have been widely adopted by many medical
institutions, capturing comprehensive patient data
throughout the care process (Landi et al., 2020; Es-
cudié et al., 2018; Steinberg et al., 2021; Le and
Mikolov, 2014). Nonetheless, learning effective
patient representations poses several challenges,
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one of which is determining what defines a “good”
patient representation. The optimal representation
can vary depending on the specific application, as
well as factors such as data noise, missing values,
and the type of data incorporated. For instance,
representations designed for structured data (Rajko-
mar et al., 2018) may differ significantly from those
that incorporate both structured data and unstruc-
tured text (Deznabi et al., 2021). These challenges
highlight the importance of investigating different
representation learning methods to generate repre-
sentations that are adapted not only to a specific
task but also to the nature of the dataset.

In this paper, we address the task of patient-note
identification, which consists in determining to
which patient a particular note belongs. We fo-
cus exclusively on clinical texts, representing each
patient as a set of chronologically ordered notes.
While higher risks of patient-note mismatches have
been reported with paper records, there is limited
literature on this issue within modern EHR systems
(Wilcox et al., 2011), which further motivates our
work. To this end, we investigate which text-based
patient representation is best suited for the task of
patient-note identification.

Accurately identifying patient information is cru-
cial in the medical field to ensure that a patient’s
medical history is up-to-date. Furthermore, this
task has applications in biomedical informatics,
including data cleaning and privacy-related tasks
(e.g., assessing re-identification risk of patient data
(Lee and Lee, 2017)). More broadly, we believe
that patient-note identification can serve as a foun-
dational task for more advanced similarity-based
tasks, such as clustering, diagnosing conditions by
matching complex symptoms and medical histo-
ries, or finding "patients like mine" (Gombar et al.,
2019; Garcelon et al., 2017).

In this study, we conduct experiments on two
datasets: MIMIC-III (Goldberger et al., 2000) and
an anonymized EHR dataset from our local hospi-
tal, the Necker hospital data warehouse (Dr. Ware-
house) (Garcelon et al., 2018). We focus on the
MIMIC-III dataset to develop and refine our ap-
proach to identify the best representation for the
patient-note identification task, and only evaluate
reproducibility of our findings using our local hos-
pital dataset. We consider different embedding
models to learn representations of potentially large
sets of clinical notes associated with each patient,
and evaluate and compare these representations
by performing classification with traditional algo-

rithms.
Our contributions are 3-fold:

• we clearly define the patient-note identifi-
cation task and highlight its importance for
studying patient representations;

• we conduct an empirical comparison of pa-
tient representation methods for this task;

• we attest that BERT-based model, using a slid-
ing window mechanism and a combination of
mean and max pooling, achieves the highest
accuracy.

2 Related Work

2.1 Patient-Information Identification

Despite the growing interest in patient-information
identification, relatively few studies have explored
this task using text, and to our knowledge, none
have specifically addressed patient-note identifica-
tion. This research gap further motivates our work.

Most efforts in patient matching or record link-
age have focused on structured data (Riplinger
et al., 2020). Some prior studies have leveraged un-
structured clinical text for patient-matching tasks.
For example, Wornow et al. (2025) tackled the
challenge of matching patients to clinical trials
using a zero-shot LLM-based system. By eval-
uating unstructured clinical text against free-text
trial criteria, their approach achieved state-of-the-
art performance on the n2c2 2018 cohort selection
benchmark. Clinician reviews indicated that the
system provided coherent explanations for 97% of
correct decisions and 75% of incorrect ones.

In contrast, other studies have explored deep
learning approaches for patient identification using
imaging data, particularly chest X-rays (Ueda and
Morishita, 2023; Packhäuser et al., 2021). For in-
stance, Packhäuser et al. (2021) trained a Siamese
neural network to determine whether two frontal
chest X-ray images belonged to the same patient,
achieving an AUC of 0.9940 and a classification
accuracy of 95.55% on the ChestX-ray14 dataset.
Similarly, Ueda and Morishita (2023) proposed a
deep metric learning approach using a deep convo-
lutional neural network (DCNN) feature extractor
and a classifier based on the cosine similarity index
to verify patient identities from chest X-ray images.
Their method achieved AUC values of 0.9999 and
0.9943 on the Morishita Laboratory and CheXpert
datasets.
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While these studies highlight the potential of
deep learning for patient identification, our work
fills a critical gap by focusing on text-based patient-
note identification, an area that remains largely
unexplored.

2.2 Representation Learning
Typically, EHRs comprise both structured (e.g.,
age, demographics, ICD codes, laboratory results)
and unstructured data (e.g., free-text clinical notes
such as radiology reports, discharge summaries,
and medical images). The inherent complexity
of EHRs has inspired numerous studies aimed at
developing patient representations by learning op-
timized, dense numerical vectors (Li et al., 2020;
Sushil et al., 2018; Hashir and Sawhney, 2020; Si
and Roberts, 2020).

Previous research has explored various ap-
proaches, including paragraph vectors (Le and
Mikolov, 2014), topic models (Blei et al., 2001),
word2vec embeddings (Mikolov et al., 2013), and
Hierarchical Attention Networks (HAN) (Si and
Roberts, 2020, 2021). For instance, Auslander et al.
(2020) used word2vec and bag-of-words as feature
extraction methods to learn patient representation
from clinical notes for mortality prediction. Sushil
et al. (2018) learned generalized patient representa-
tions using a stacked denoising autoencoder and a
paragraph vector model to predict patient mortality,
primary diagnostic, procedural category, and pa-
tient gender. Si and Roberts (2020) learned patient
representations notes using a hierarchical attention-
based recurrent neural network (HAN-RNN) with
greedy segmentation and evaluated the model for
mortality prediction and as a transfer learning pre-
training model to downstream evaluation such as
phenotype prediction.

Representation learning from clinical texts, par-
ticularly using Bidirectional Encoder Representa-
tions from Transformers (BERT) (Devlin et al.,
2019), has shown significant improvements in text-
processing tasks like clinical named entity recogni-
tion (NER) and document classification (Alsentzer
et al., 2019; Peng et al., 2019; Lee et al., 2020).
BERT-based models have also been used for pre-
diction in medicine. For example, Mahbub et al.
(2022) used PubMedBERT to generate dynamic
embeddings from clinical notes, enabling predic-
tions of short-, mid-, and long-term mortality in
adult ICU patients. However, due to BERT’s 512-
token limitation, longer clinical notes in these ex-
periments had to be either truncated or split, which

may have resulted in the loss of valuable context
necessary for accurate predictions.

To address BERT’s 512-token input limitation,
models like BigBird (Zaheer et al., 2020) and Long-
Former (Beltagy et al., 2020) have been employed
to learn patient representations from longer clinical
texts. These models support input sequences of up
to 4,096 tokens (8 times the BERT limit), yield-
ing substantial performance improvements in tasks
such as long-text question answering and summa-
rization. Additionally, (Li et al., 2023) introduced
Clinical-Longformer and ClinicalBigBird, two pre-
trained language models specifically designed for
lengthy clinical text processing. These models
demonstrated superior performance in NER, ques-
tion answering, and document classification tasks
when handling lengthy documents.

These studies highlight the challenges involved
in identifying the most suitable representation
learning method for a specific task. In the case of
patient-note identification, there is no one-size-fits-
all solution, and the effectiveness of existing meth-
ods remains unclear, motivating empirical evalua-
tion. In this work, we present an empirical com-
parison of four methods (HAN BERTLSTM, HTN,
Longformer, and BERT) to assess their effective-
ness in addressing the patient-note identification
task. For BERT model, we introduce four different
settings that explore different embedding strategies,
using token embeddings (TE) or the [CLS] token,
as well as applying a sliding window mechanism
or restricting inputs to 512 tokens. This results in a
total of seven experimental configurations.

3 Datasets

In this work, we use two distinct datasets of EHRs
containing clinical notes: (1) the publicly available
MIMIC-III dataset, which consists of ICU patient
records in English, and (2) the Necker hospital
data warehouse, containing French-language notes
from nephrology patients. Below, we provide an
overview of each dataset along with the preprocess-
ing steps and selection criteria used to define our
final cohorts.

3.1 MIMIC-III

MIMIC-III (Johnson et al., 2016) is a publicly avail-
able medical database that includes anonymized
health records from 46,520 ICU patients treated at
Beth Israel Deaconess Medical Center in Boston,
Massachusetts, between 2001 and 2012. The
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MIMIC-III dataset provides a wide range of patient
data, including demographics, vital signs, labora-
tory test results, clinical notes, and ICD-9 diag-
nosis codes. It contains 2,083,180 clinical notes
across multiple categories, such as physician notes,
nursing notes, discharge summaries, and radiology
reports. The distribution of notes across different
categories is shown in Table 4 in Appendix A.1.

Firstly, we begin by performing several data
cleaning operations: we exclude notes flagged as
erroneous in MIMIC-III, those without a hospital
admission identifier, notes lacking chart time infor-
mation (i.e., the date and time the note was docu-
mented), and duplicated notes. For partially dupli-
cated notes with identical chart times, we retain the
longer note, ensuring that its text encompasses the
content of the shorter note.

Secondly, we select only notes categorized as
‘Physician.’ As presented in Table 4, this category
ranks fourth in terms of notes count and contains
the longest notes, with an average length of 1,874
tokens and a median of 1,823 tokens. We hypothe-
size that these notes would provide the most com-
prehensive information about a patient’s medical
condition, enhancing the ability to accurately asso-
ciate a clinical note with its corresponding patient.

Thirdly, we remove outliers, using interquartile
range (IQR) filtering and a threshold multiplier of
1.5, which results in excluding patients with more
than 40 notes. As our work focuses on matching
notes to the patient they belong to, we include only
patients with at least two clinical notes: one serving
as the target note for identification (X2), and the
other used to learn the patient’s representation (Xi

1).
Ultimately, MIMIC-III dataset consists of 33,007
notes associated with 6,174 patients. The cohort
design is illustrated in Figure 1 in Appendix A.1.
This dataset serves as a foundation for optimizing
note representations for the task of patient-note
identification.

3.2 Necker Hospital Data Warehouse
To assess the generalizability of our approach
across different languages and medical specialties,
we extended our analysis to EHRs from our local
Necker hospital data warehouse (Dr. Warehouse),
under IRB number 2016–06-01. This dataset en-
compasses a broad spectrum of clinical note types,
such as consultations, hospitalization reports, dis-
charge summaries, and laboratory results, spanning
multiple departments.

For our study, we focus on notes of nephrol-

ogy patients hospitalized between 2018 and 2023.
These selected notes have an average length of
1,237 tokens and a median of 897 tokens. We apply
a similar preprocessing pipeline to the one used
for MIMIC-III, filtering out note categories with
limited text content, removing patients with ex-
ceptionally high note counts using IQR filtering
and patients with less than two notes. All notes
have been already pseudonymized. Ultimately, our
dataset comprises 32,731 clinical notes associated
with 5,145 patients.

Unlike MIMIC-III, which consists of English-
language ICU patient notes, this dataset contains
French-language notes from nephrology patients.
This distinction allows us to evaluate the robust-
ness of our approach across different languages
and clinical settings.

4 Methodology

4.1 Patient-note identification task

We define the patient-note identification task as
a binary classification problem, where the input
pair (Xi

1, X2) maps to an output label Ŷ i. Here,
Xi

1 represents a unified representation of all notes
belonging to patient i, excluding one randomly
selected note (X2), which is represented separately.
X2 denotes the representation of a single note, and
Ŷ i is a binary label that equals 1 if X2 belongs to
patient i, and 0 otherwise.

From an initial set X = {Xi
0} with i ∈ [1, n], n

the number of patients and Xi
0 is the set of notes

associated with the patient i, we define our train
and test sets as pairs ((Xi

1, X2), Y
i). For each pa-

tient i, we designate randomly one clinical note
X2 as the target note, while the remaining notes
Xi

1 = Xi
0 \ X2 serve as the patient’s historical

context (source notes). To maintain a balanced
representation between positive and negative exam-
ples, each randomly selected clinical note is associ-
ated once in our dataset to the correct patient, and
once to a randomly chosen patient. Accordingly,
the pair (Xi

1, X2) is either associated with Y i = 1
or 0. This leads to a dataset with twice as many
instances as patients. To guarantee consistency,
patients are split in train and test sets before exclud-
ing X2, and building (Xi

1, X2) pairs. This ensures
that both source and target notes of one patient are
either in the train, or in the test set, avoiding data
leakage.
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4.2 Learning Patient-Note Representations

Successfully performing this task requires learning
effective document-level representations. Conse-
quently, our study evaluates the performance of
various representation learning approaches. Draw-
ing from previous work on document-level rep-
resentation learning (Si and Roberts, 2020; Liu
et al., 2019; Li et al., 2022; Matondora et al., 2024;
Li et al., 2020; Bazoge et al., 2024), we experi-
ment with several models to evaluate their ability
to generate effective representations for patient-
note identification. Each model was selected to
highlight distinct strategies for processing and ag-
gregating clinical notes, including hierarchical ap-
proaches, transformer-based architectures, and hy-
brid designs that integrate both sequential and con-
textual information. Specifically, we experiment
with a hierarchical attention network with BiL-
STM and BERT at the word level (HAN BERTL-
STM), a three-level hierarchical transformer net-
work (HTN), Longformer, and BERT. Using these
four models, we define seven different settings. For
the BERT model, we consider two variants: one
using token embeddings (TE) and the other using
the [CLS] token (CLS). Token embeddings repre-
sent each individual token in the sequence, while
the [CLS] token variant uses a special token at the
beginning of the sequence to aggregate informa-
tion for classification tasks. Additionally, we ex-
plore configurations both with and without a sliding
window mechanism to address BERT’s 512-token
limitation. The sliding window approach allows
the model to process longer texts by splitting them
into overlapping segments, whereas the alternative
approach restricts inputs to a single 512-token se-
quence. Detailed descriptions of each model can be
found in Appendix A.2. The acronyms introduced
in this section will be used consistently throughout
the paper.

For clinical document representation, we eval-
uate and adapt several aggregation techniques tra-
ditionally used to transition from word-level to
sentence-level and, subsequently, to document-
level representations. These techniques include
attention mechanisms, average pooling, max pool-
ing, and mean_max pooling (Deznabi et al., 2021;
Li et al., 2023; Si and Roberts, 2021; Mahbub et al.,
2022). To derive a single patient representation,
we aggregate all note representations for a given
patient into a unified representation using one of
these four methods.

Attention-based Aggregation (att) employs a
learnt attention mechanism to dynamically assign
varying importance to each clinical note. Aver-
age Pooling or Mean Pooling (avg) computes the
mean representation of all clinical notes, capturing
the overall feature distribution, while Max Pooling
(max) selects the highest value across note represen-
tations, emphasizing the most prominent features.
Recent studies (Si and Roberts, 2021; Li et al.,
2023) suggest that Mean-max Pooling (mean_max),
which concatenates the average pooled and max
pooled embeddings, often yields superior perfor-
mance across predictive tasks by combining the
strengths of both pooling strategies: the average
highlights overall feature distribution, while the
max emphasizes key dominant features.

To formalize this pooling strategy, let rj be the
vector representation of the j-th note of a given
patient with m notes. The aggregated patient rep-
resentation R using mean_max pooling is defined
as:

R = [mean(r1, r2, . . . , rm)⊕ max(r1, r2, . . . , rm)],

where mean(·) computes the element-wise average,
max(·) computes the element-wise maximum, and
⊕ denotes the concatenation operation.

Finally, these note representations serve as in-
puts to classifiers for the patient-note identification
task. We evaluate five machine learning models:
logistic regression (LR), random forest (RF), de-
cision trees (DT), support vector machine (SVM),
and XGBoost. Performance of both the embedding
methods and classifiers are measured with five key
metrics: accuracy, precision, recall, F1-score, and
area under the curve (AUC).

5 Experiments and Results

To ensure robustness, experiments were repeated
three times on each dataset (MIMIC-III and Necker
hospital dataset) with distinct random train and test
splits, maintaining an 80/20 ratio. Table 1 pro-
vides details on the train and test sets, including
the length of source (Xi

1) and target (X2) notes, as
well as the size of the associated dictionaries.

Table 2 presents the results of our experiments
on MIMIC-III, keeping only results obtained for
the best-performing classifier, which name is pro-
vided in the third column. The AUC score reflects
the model’s ability to effectively distinguish be-
tween two classes: whether a note representation
belongs to a given patient.

113



Dataset Notes Set Token Count Sentence Count Vocabulary Size

MIMIC-III

Source Notes (Xi
1) Train 8006.11± 7416.22 149.30± 140.23 15, 510

Test 8080.67± 7503.55 149.98± 150.89 14, 050
Target Note (X2) Train 1768.63± 687.90 33.88± 26.31 13, 106

Test 1782.04± 706.93 33.98± 27.13 11, 609

Necker Hospital Data Warehouse

Source Notes (Xi
1) Train 8493.19± 9935.22 424.02± 560.27 17, 335

Test 8578.87± 9733.31 427.30± 545.52 15, 744
Target Note (X2) Train 1436.10± 1013.69 69.50± 77.19 14, 907

Test 1436.36± 1033.57 69.40± 79.26 12, 962

Table 1: Mean number of tokens and sentences for the set of notes belonging to a single patient (source notes, Xi
1)

and the target note (X2) across train and test sets in both MIMIC-III and our local Necker hospital dataset, along
with vocabulary sizes. Token count and vocabulary size are computed using the BERT WordPiece tokenizer. These
values are computed over the three different train and test splits.

We observe that BERT_TE_sliding consistently
outperforms all other models. Furthermore,
mean_max pooling consistently yields the best per-
formance across all models and nearly all metrics
as the aggregation method for patient representa-
tions. XGBoost also emerges as the top-performing
machine learning algorithm across all models.

We evaluate the impact of pooling strategies (av-
erage, max, and mean_max) on the performance
of different models using paired t-tests to assess
statistical significance. Mean_max pooling out-
performs mean and max pooling in most com-
parisons, with significant differences observed in
most of the cases (p < 0.05). For hierarchical
models, significant differences are observed be-
tween mean pooling and mean_max pooling for
both HAN BERTLSTM and HTN (p < 0.05).
Additionally, max pooling shows a significant
difference compared to mean_max pooling for
HTN (p < 0.05), but not for HAN BERTLSTM.
Turning to the LongFormer model, mean pool-
ing shows a significant difference compared to
mean_max pooling (p < 0.05), whereas no sig-
nificant difference is found between max pool-
ing and mean_max pooling. Among BERT-based
models, both BERT_[CLS] and BERT_TE ex-
hibit significant differences between mean pool-
ing and mean_max pooling (p < 0.05). How-
ever, while max pooling differs significantly from
mean_max pooling for BERT_TE (p < 0.05),
no such difference is observed for BERT_[CLS].
In sliding window approaches, significant dif-
ferences emerge between mean pooling and
mean_max pooling for both BERT_[CLS]_sliding
and BERT_TE_sliding (p < 0.05). Meanwhile, max
pooling differs significantly from mean_max pool-
ing for BERT_[CLS]_sliding (p < 0.05), but not for
BERT_TE_sliding.

To evaluate the generalizability of our re-
sults, we extend our analysis to EHRs from the
Necker hospital data warehouse. For this exper-
iment, we use only our best-performing model,
BERT_TE_sliding, and test the three different ag-
gregation methods to obtain patient-level represen-
tations. Since the dataset contains French clini-
cal notes, we replace BERT with CamemBERT
to accommodate the language difference. Results
are obtained by conducting three independent runs
and are reported in Table 3. The results on the
Necker hospital dataset show similar results to
those of MIMIC-III, with the mean_max aggrega-
tion method outperforming other pooling strategies.
Statistical analysis using paired t-tests reveals a sig-
nificant difference between mean_max pooling and
average pooling (p < 0.05), while the difference
between mean_max pooling and max pooling is
not statistically significant.

6 Discussion

As mentioned previously, each experiment was con-
ducted 3 times using a random sampling of train
and test set. Although the reported standard devi-
ation is small, this can be explained by the nature
of our datatsets, i.e., our cohort selection. Given
that our datasets consist of notes from specific cate-
gories (i.e., physician-only notes in the MIMIC-III
dataset and nephrology-only notes in the Necker
hospital dataset), which each tend to have simi-
lar language and structure within their respective
categories, the model’s predictions are highly con-
sistent. We believe this homogeneity within each
category likely contributes to the low standard de-
viation observed. Despite this, our overall results
(accuracy, AUC, and F1 score) indicate that our
models effectively differentiate between notes and
accurately matches them to their corresponding
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Model Aggreg. Classifier Accuracy Precision Recall F1 AUC
(mean ± std.) (mean ± std.) (mean ± std.) (mean ± std.) (mean ± std.)

HAN BERTLSTM

att RF 0.64 ± 0.00 0.62 ± 0.00 0.69 ± 0.01 0.66 ± 0.01 0.70 ± 0.01
avg SVM 0.76 ± 0.00 0.82 ± 0.01 0.67 ± 0.01 0.73 ± 0.00 0.79 ± 0.00
max XGBOOST 0.75 ± 0.00 0.76 ± 0.00 0.74 ± 0.01 0.75 ± 0.01 0.82 ± 0.01

mean_max XGBOOST 0.76 ± 0.00 0.76 ± 0.01 0.75 ± 0.01 0.75 ± 0.00 0.83 ± 0.01

3-level HTN
avg XGBOOST 0.74 ± 0.01 0.72 ± 0.01 0.80 ± 0.01 0.75 ± 0.01 0.82 ± 0.01
max XGBOOST 0.71 ± 0.01 0.68 ± 0.00 0.79 ± 0.01 0.73 ± 0.01 0.79 ± 0.01

mean_max XGBOOST 0.76 ± 0.01 0.74 ± 0.01 0.82 ± 0.01 0.77 ± 0.01 0.84 ± 0.00

BERT_TE
avg XGBOOST 0.85 ± 0.00 0.84 ± 0.00 0.86 ± 0.01 0.85 ± 0.00 0.93 ± 0.00
max XGBOOST 0.85 ± 0.01 0.86 ± 0.01 0.83 ± 0.01 0.85 ± 0.01 0.92 ± 0.01

mean_max XGBOOST 0.87 ± 0.00 0.88 ± 0.00 0.85 ± 0.01 0.87 ± 0.00 0.94 ± 0.00

BERT_[CLS]
avg XGBOOST 0.82 ± 0.00 0.81 ± 0.00 0.82 ± 0.01 0.82 ± 0.00 0.90 ± 0.00
max XGBOOST 0.84 ± 0.00 0.83 ± 0.00 0.85 ± 0.01 0.84 ± 0.00 0.92 ± 0.00

mean_max XGBOOST 0.85± 0.00 0.84 ± 0.01 0.85 ± 0.01 0.84 ± 0.01 0.93 ± 0.01

Longformer
avg XGBOOST 0.74 ± 0.01 0.74 ± 0.01 0.76 ± 0.02 0.75 ± 0.01 0.83 ± 0.00
max XGBOOST 0.75 ± 0.01 0.75 ± 0.02 0.76 ± 0.02 0.75 ± 0.01 0.83 ± 0.00

mean_max XGBOOST 0.78 ± 0.01 0.78 ± 0.02 0.79 ± 0.02 0.78 ± 0.00 0.85 ± 0.00

BERT_TE_sliding
avg XGBOOST 0.85 ± 0.00 0.84 ± 0.01 0.87 ± 0.01 0.86 ± 0.00 0.94 ± 0.00
max XGBOOST 0.88 ± 0.00 0.89 ± 0.00 0.86 ± 0.01 0.88 ± 0.00 0.95 ± 0.00

mean_max XGBOOST 0.90 ± 0.00 0.91 ± 0.00 0.88 ± 0.00 0.89 ± 0.00 0.96 ± 0.00

BERT_[CLS]_sliding
avg XGBOOST 0.86 ± 0.00 0.85 ± 0.00 0.88 ± 0.00 0.87 ± 0.00 0.94 ± 0.00
max XGBOOST 0.85 ± 0.01 0.85 ± 0.01 0.85 ± 0.01 0.85 ± 0.01 0.93 ± 0.01

mean_max XGBOOST 0.88 ± 0.00 0.88 ± 0.00 0.88 ± 0.00 0.88 ± 0.00 0.95 ± 0.00

Table 2: Best results reported based on AUC metrics across 4 models (7 different settings) among 5 different
classification algorithms (LR, RF, SVM, DT, and XGBOOST), using MIMIC-III dataset. We report mean ± std.
over 3 runs.

Model Aggreg. Classifier Accuracy Precision Recall F1 AUC
(mean ± std.) (mean ± std.) (mean ± std.) (mean ± std.) (mean ± std.)

BERT_TE_sliding
(FR: CamemBERT)

avg XGBOOST 0.78 ± 0.01 0.79 ± 0.01 0.78 ± 0.02 0.78 ± 0.01 0.86 ± 0.01
max XGBOOST 0.82 ± 0.00 0.83 ± 0.01 0.82 ± 0.02 0.83 ± 0.01 0.90 ± 0.01

mean_max XGBOOST 0.83 ± 0.01 0.84 ± 0.02 0.83 ± 0.00 0.83 ± 0.01 0.91 ± 0.01

Table 3: Best results reported based on AUC metrics among 5 different classification algorithms (LR, RF, SVM, DT,
and XGBOOST), using our local Necker hospital data warehouse. We report mean ± std. over 3 runs.

patient.
In this version of the datasets, we conducted a

single random drawing for each patient from their
available set of clinical notes. However, to further
expand the dataset, multiple random draws could
be performed per patient, which would yield differ-
ent patient representations.

The results obtained from our experiments em-
phasize the significance of model architecture, em-
bedding strategies, and aggregation methods in op-
timizing performance for patient-note identification
as shown in Table 2. Below, we discuss key obser-
vations and insights drawn from the performance
metrics.

1. Effect of Model Architecture: The hier-
archical models (HAN and HTN) demon-
strated moderate performance. Among these,
HAN BERTLSTM with mean_max pooling
achieved an F1 score of 0.75 and an AUC of
0.83. Similarly, the 3-level HTN model with
mean_max pooling achieved slightly better

performance, with an F1 score of 0.77 and
an AUC of 0.84, demonstrating the utility of
hierarchical modeling. However, the overall
performance of hierarchical models was sur-
passed by purely transformer-based models,
including Longformer, which better captured
contextual representations.

To elaborate, HAN and HTN rely on a fixed
structure to aggregate information, which
could limit their ability to detect nuanced
relationships between sentences and words,
particularly in long clinical notes. On the
other hand, transformer-based models, such
as Longformer and BERT, dynamically ad-
just word representations based on surround-
ing context. Given that we are working with
clinical notes, we know that the meaning of
terms could vary based on what follows and
what precedes. Thus it is crucial to correctly
identify or recognize the intended meaning
of a particular term in a clinical note. While
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hierarchical models capture some structural
patterns, they may miss more granular contex-
tual cues, which are essential for accurately
matching clinical notes to the correct patient.

2. BERT Token Embedding (TE) vs. [CLS]
Representations: BERT models using TE
achieved higher performance compared to
those using [CLS] token representations.
While [CLS] embeddings are designed to en-
capsulate the overall sentence representation,
their reliance on a single token representation
might limit their ability to capture nuanced
information spread across longer notes. In
contrast, the token embeddings (TE) in BERT
allows us to focus on the contextual repre-
sentations of each token in a sequence. As
demonstrated in the results, the mean_max
pooling strategy with BERT_TE consistently
yielded the best results, highlighting the effec-
tiveness of combining token embeddings with
contextual attention mechanisms in capturing
fine-grained details from clinical notes.

3. Longformer vs. BERT Sliding Window:
The Longformer model addresses BERT’s
token-length limitation by processing up to
4096 tokens, outperforming hierarchical mod-
els but falling short of BERT’s sliding window
configurations. Longformer achieved an F1
score of 0.83 and an AUC of 0.92, demon-
strating its capability to handle lengthy clini-
cal notes. In contrast, BERT_TE_sliding with
mean_max pooling achieved the highest per-
formance, with an F1 score of 0.89 and an
AUC of 0.96. This success highlights the
sliding window approach’s ability to capture
contextual information distributed across long
notes. By employing overlapping windows,
the model attended to diverse parts of the
notes while maintaining contextual integrity.
This method proved to be superior to Long-
former’s fixed sliding window attention mech-
anism, as it enabled chunk-specific embed-
dings to be aggregated effectively.

4. Pooling strategies: mean_max pooling con-
sistently yielded the best results, likely due to
its ability to capture both global and localized
features across embeddings. By focusing on
the maximum values, max pooling reduces the
influence of less relevant or noisy features and,
at the same time, ensures that the most im-

portant features are prominently represented
in the final patient-level representation. In
contrast, average pooling calculates the mean
across all clinical note representations to de-
rive the final patient representation, which can
result in the loss of critical information, partic-
ularly when vital details are scattered across
notes.

In addition to the findings on the MIMIC-III
dataset, the results on the Necker hospital dataset
highlight two key points. First, our model demon-
strates strong adaptability to a different dataset,
effectively addressing the task of patient-note
identification. Second, the results on our local
dataset align with our previous experiments on the
MIMIC-III dataset, where the mean_max aggre-
gation method generally outperforms other pool-
ing strategies or performs similarly in a few cases,
where no significant difference was observed com-
pared to max pooling. These results highlight the
versatility of our approach, demonstrating its effec-
tiveness across diverse datasets and languages.

7 Conclusion

Patient-note identification is a fundamental prob-
lem in the domain of medical informatics. While
not extensively explored, the risks associated with
patient-note mismatches can have serious conse-
quences, particularly in ICU settings. In this work,
we developed a framework to address this chal-
lenge using unstructured clinical notes from the
MIMIC-III database. We evaluated various em-
bedding models (HAN BERTLSTM, HTN, Long-
former, and BERT) and aggregation methods (av-
erage, max, and mean_max pooling) to generate
patient-level representations. Our findings high-
light that transformer-based models with advanced
aggregation strategies, such as mean_max pool-
ing combined with a sliding window approach, are
highly effective for capturing fine-grained contex-
tual information and ensuring accurate patient-note
identification. Additionally, experiments on an ex-
ternal dataset validated the generalizability of our
approach. By adapting to French clinical notes
with CamemBERT, the model maintained strong
performance, demonstrating its robustness across
diverse datasets and settings.

8 Limitations

Through this work, we emphasize the importance
of patient-note identification and the potential of
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leveraging raw clinical notes for predictive mod-
eling. While our approach shows strong perfor-
mance, it is not without limitations. Our first
limit lies in the use of generic language mod-
els to learn patient representations rather than us-
ing domain-specific architectures. Future research
could explore more specialized models, such as
ClinicalMamba (Yang et al., 2024) and Modern-
BERT (Warner et al., 2024), and investigate alter-
native aggregation strategies. These approaches
may enhance representation quality and help miti-
gate potential information loss inherent in process-
ing complex clinical text. However, it is important
to consider the potential biases embedded in the
pretraining data of these models, as such biases
can impact both the generalizability and fairness of
their application in clinical settings.

Another limit lies in the exclusive focus on un-
structured clinical notes within our current frame-
work. Integrating structured data, such as labora-
tory results or vital signs, alongside unstructured
text could yield more comprehensive patient repre-
sentations and allow for more nuanced comparative
analyses.

Additionally, while we validated our approach
using an external dataset, we did not assess its
effectiveness on downstream clinical tasks, such
as predictive modeling or forecasting, where clini-
cal notes serve as primary or supplementary input.
Such evaluations could offer further insights into
the practical utility of the learned patient represen-
tations.

Finally, benchmarking our method against large
language models (LLMs), including ChatGPT or
GPT-4o, could provide valuable perspectives for as-
sessing the scalability, accuracy, and overall effec-
tiveness of our approach in the context of patient-
note identification.
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A Appendix

A.1 Notes Statistics

CATEGORY NUMBER OF NOTES
Nursing/other 822,497
Radiology 522,279
Nursing 223,556
ECG 209,051
Physician 141,624
Discharge summary 59,652
Echo 45,794
Respiratory 31,739
Nutrition 9,418
General 8,301
Rehab Services 5,431
Social Work 2,670
Case Management 967
Pharmacy 103
Consult 98

Table 4: Number of notes per category in the MIMIC-III
dataset.

Figure 1: Cohort design, MIMIC-III dataset.

A.2 Models Details
A.2.1 HAN BERTLSTM
Following the architecture proposed by (Si and
Roberts, 2021), we adapted their HAN BiLSTM
model3 to our task. The model integrates a BERT

3Model code is available at https://github.com/
Yuqi92/3-level-HTN-MIMIC.git

component as a fully trainable word-level encoder,
followed by BiLSTMs and a pooling strategy to
hierarchically learn sentence-level and document-
level embeddings. The BiLSTMs and a global
context-based attention mechanism capture sequen-
tial information at both the sentence and document
levels, while a pooling strategy aggregates embed-
dings from one level to the next, extracting salient
features at each stage.

In our implementation, we employed the BERT-
Base model at the word level. BERTBase com-
prises 12 layers, 768 hidden units, and 12 atten-
tion heads. It is pretrained on general-domain text
datasets, including English Wikipedia (2.5 billion
words) and the BookCorpus dataset (Zhu et al.,
2015) (800 million words). The model uses the
WordPiece tokenizer (Wu et al., 2016) and has an
input token limit of 512.

To generate word-level embeddings, we applied
either the attention mechanism resulting from the
original HAN BERTLSTM pre-training or one of
several pooling strategies, namely average pooling,
max pooling, or mean_max pooling, to the BERT
output. These word-level embeddings were then
passed through the BiLSTM encoder to capture
sentence-level features, where the same attention
or pooling strategies were applied to produce final
sentence embeddings. Similarly, document-level
embeddings for individual clinical notes were ob-
tained by applying the same strategies at the next
hierarchical level. For patient-level representation,
we aggregated the embeddings of all notes asso-
ciated with a single patient. This was achieved
using either an attention mechanism or a pooling
strategy. Experimenting with these various pooling
strategies allowed us to assess their impact on the
patient-note identification task. The architecture of
the model is shown in Figure 2.

A.2.2 HTN
As our second model, we evaluated the three-level
Hierarchical Transformer Network (HTN) 4, pro-
posed by (Si and Roberts, 2021) and illustrated
in Figure 3. The model architecture progressively
constructs representations from the word level to
the document level. At the word level, the model
integrates a BERT encoder, experimenting with dif-
ferent BERT variants to balance model size and
sequence length. At the sentence and document
levels, it employs a Transformer-based encoder ar-

4Model code is available at https://github.com/
Yuqi92/3-level-HTN-MIMIC.git
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Figure 2: Overview of the HAN architecture incorpo-
rating BERT and BiLSTM with attention or pooling
strategies for hierarchical aggregation. Adapted from
(Si and Roberts, 2021).

chitecture inspired by (Vaswani et al., 2017), using
multiheaded self-attention to identify key features
and pooling to condense representations for the
next level. Inputs are cropped or padded to fixed
sizes at all levels (word, sentence, document). Fur-
ther details about the model can be found in (Si and
Roberts, 2021).

For our experiments, we used the BERTBase
model at the word level. To construct higher-level
representations from word to document level, we
experimented with three pooling strategies: aver-
age, max, and mean_max pooling. Patient-level
representations were then derived by aggregating
note-level representations for each patient using the
same pooling strategies.

A.2.3 Bert-based Models
As our third model, we aimed to evaluate the stan-
dalone performance of BERT (Devlin et al., 2019),
a widely used transformer model, to establish a
robust baseline. This experiment was designed to
understand the capability of BERT in capturing
semantic and contextual information from clini-
cal notes without leveraging additional hierarchical
mechanisms or pretrained domain-specific adapta-
tions. BERT has proven to be highly effective in
various NLP tasks, making it a strong candidate for

Figure 3: Overview of the HTN architecture incorporat-
ing BERT and Multi-head Transformer Encoder with
pooling strategies for hierarchical aggregation. Adapted
from (Si and Roberts, 2021).

text representation in this context. Although spe-
cialized models like ClinicalBERT (Huang et al.,
2020) have shown strong results in clinical applica-
tions, we opted not to use them to avoid potential
bias. ClinicalBERT is pretrained on the MIMIC-III
dataset, which overlaps with our experimental data,
potentially confounding the evaluation. By em-
ploying the generic BERTBase model, we ensure a
fairer evaluation of our approach.

Token Embeddings Representations In the first
approach, the final representations are derived from
token embeddings in the text. Clinical notes are
first split into sentences, and each sentence is tok-
enized. The tokenized input is passed into BERT-
Base, which generates embeddings for each token
in the sentences. To obtain a single vector represen-
tation of a sentence, we pool the token embeddings
using one of three strategies: average, max, or
mean_max pooling, represented as:

Srepr = avg/max/mean_max(TE(w1), TE(w2), . . . , TE(wn))

(1)
, where Srepr refers to the sentence representation
and TE(wn) is the token embedding representa-
tion of each token in the sentence. To construct
document-level embeddings, the sentence embed-
dings are appended and aggregated using the same
pooling strategies (average, max, or mean_max)
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along the dimension of sentence:

Nrepr = avg/max/mean_max(S1repr, S2repr, . . . , Snrepr)

(2)
Finally, for patient-level representation, where each
patient has a set of clinical notes, the document-
level embeddings are aggregated using average,
max, or mean_max pooling. This results in a single
vector representation that captures the information
from all notes associated with the patient.

[CLS] Token-Based Representation In the sec-
ond approach, instead of learning token embed-
dings and aggregating them to obtain sentence rep-
resentations, we directly extract the [CLS] token
representation for each sentence. For each sentence,
the sum of all token embeddings is passed through
the Transformer layers (TL) to compute the final
representation of the [CLS] token:

[[CLS]]repr = TL(TE(w1) + TE(w2) + . . .+ TE(wn)

(3)
The [CLS] representations for all sentences are
concatenated to form the input for document-level
embedding. To obtain the document-level embed-
dings, we apply the same aggregation strategies
(average, max, or mean_max) across the [CLS]
token representations of sentences:

Nrepr = avg/max/mean_max([[CLS]]1repr, [[CLS]]2repr, . . . , [[CLS]]nrepr)

For patient-level representation, document-level
embeddings from all notes associated with a pa-
tient are further aggregated using the same pooling
strategies (average, max, or mean_max), producing
a single vector representation for the patient.

By experimenting with these two methods, we
aim to comprehensively evaluate BERT’s effec-
tiveness at capturing representations at sentence,
document, and patient levels, while establishing a
strong comparative baseline for this task.

A.3 LongFormer

Upon reviewing the MIMIC-III Physician notes,
we observed that 28,266 out of 33,660 notes exceed
512 tokens, indicating that approximately 84% of
the notes exceed the token limit imposed by BERT.
This suggests that the 512-token constraint may
restrict the amount of information BERT can ef-
fectively capture. Figure 4 illustrates the token
distribution across the Physician clinical notes in
the MIMIC-III dataset. Given this limitation, we
sought to explore a model that could handle longer

sequences more effectively, motivating our deci-
sion to experiment with Longformer as our fourth
model. Unlike BERT, Longformer can process
sequences up to 4096 tokens, addressing BERT’s
token constraint. It does this through a sliding win-
dow attention mechanism by allowing each token
to attend only to a fixed window of neighboring
tokens. Additionally, Longformer incorporates a
global attention mechanism for selected tokens,
such as the [CLS] token, enabling the model to
capture broader context in longer documents.

Longformer is pretrained on a mix of general-
purpose datasets, including scientific and news arti-
cles, designed to handle long-form text.

Figure 4: Number of tokens across MIMIC-III Physi-
cian notes.

A.4 Bert-based [CLS] Token or Token
Embedding (TE) With Sliding Window
Model

Motivated by the Longformer model, we conducted
a new set of experiments with BERT, implement-
ing the sliding window mechanism for both token
embedding (TE) and [CLS] token-based represen-
tations. We believe this approach (our fifth model)
will not only overcome the token limitation im-
posed by BERT but also enable the model to focus
on different parts of a clinical note, often spread
across various sections, thus minimizing informa-
tion loss typically associated with pooling.

To implement this, we begin by splitting each
note into individual sentences. If a sentence ex-
ceeds 512 tokens, a sliding window is applied. The
window starts at an initial position and processes
a chunk of the sentence up to 512 tokens. It then
moves by a specified stride and processes the next
chunk. For our experiments, we set the stride value
to 256 tokens, meaning that each window overlaps
with the next one. We believe this overlapping strat-
egy helps preserve contextual information when
learning embeddings, as shown in Figure 5.

This process continues until the entire sen-
tence is covered. For each chunk, we obtain
sentence-level embeddings using either the
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token embedding (TE) or [CLS] representation,
depending on the approach being tested. To
illustrate, consider a note consisting of two
sentences: one long sentence containing more
than 512 tokens and a shorter sentence with
exactly 512 tokens. The long sentence (S1) can
be represented as S1 = Srepr1.1, Srepr1.2, Srepr1.3,
and the short sentence (S2) as S2 = Srepr2. The
final document-level embedding for the entire note
is then computed as the average of all sentence
embeddings:

Nrepr = avg/max/mean_max(Srepr1.1, Srepr1.2, Srepr1.3, Srepr2)

It is important to note that our sliding window
approach differs from the one used in Longformer.
While Longformer processes the entire input using
a global attention mechanism and a sliding window
to select specific tokens to attend to, our approach
divides the text into chunks, ensuring that each
part of the sentence is processed separately before
combining them into a final representation. This
chunk-based approach allows us to handle very
long sentences in a more structured manner.

Figure 5: Sliding window approach.
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