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Abstract

The PerAnsSumm 2024 shared task at the
CL4Health workshop focuses on generating
structured, perspective-specific summaries to
enhance the accessibility of health-related in-
formation. Given a Healthcare community
QA dataset containing a question, context, and
multiple user-answers, the task involves iden-
tifying relevant perspective categories, extract-
ing spans from these perspectives, and gen-
erating concise summaries for the extracted
spans. We fine-tuned open-source models such
as Llama-3.2 3B, Llama-3.1 8B, and Gemma-
2 9B, while also experimenting with propri-
etary models including GPT-40, ol, Gemini-
1.5 Pro, and Gemini-2 Flash Experimental us-
ing few-shot prompting. Our best-performing
approach leveraged an ensemble strategy, com-
bining span outputs from o1 (CoT) and Gemini-
2 Flash Experimental. For overlapping perspec-
tives, we prioritized Gemini. The final spans
were summarized using Gemini, preserving
the higher classification accuracy of ol while
leveraging Gemini’s superior span extraction
and summarization capabilities. This hybrid
method secured fourth place on the final leader-
board among 100 participants and 206 submis-
sions.

1 Introduction

In recent years the widespread adoption of social
media has sprung up various community question
answer forums especially in the medical domain.
Users often rely on others experience or sugges-
tions. They post a query along with information
as context and multiple users can answer them.
The answers vary in multiple aspects depending on
the user’s question, the experience of the person
replying etc. Hence traditional summarization tech-
niques are not particularly useful since they com-
bine everything. User’s answers include multiple
perspectives and the aim of this shared task (Agar-
wal et al., 2025) is to identify them and form more

meaningful summaries for users to make more in-
formed healthcare decisions. The perspectives are
‘Cause’, ‘Suggestion’, ‘Experience’, ‘Question’,
and ‘Information’. An example is displayed in Fig-
ure 1. The recent rise of Large Language Models
enable much more accurate perspective identifica-
tion and summarization than traditional transform-
ers. We leverage these LLM’s both proprietary and
open source for the task. We finetune open-source
smaller models like Llama 3b, 8b (Grattafiori et al.,
2024) and Gemma 9b (Team et al., 2024) for the
task. We observe that finetuning significantly im-
proves the base models performance on the task
and even outperforms models like GPT 40 (8 shot
prompt) (OpenAl et al., 2024).

2 Related Work

Span prediction and Abstractive Summarization
are popular tasks in the ML domain for a long
time. Transformer models have been used ever
since the Transformer paper (Vaswani et al., 2023).
Models like BERT (Devlin et al., 2019), Roberta
(Liu et al., 2019) and it’s variants were the best
performing models of their time. This was soon
followed by pre-trained language models (PLMs)
like BART (Lewis et al., 2019), TS5 (Raffel et al.,
2023), PEGASUS (Zhang et al., 2020) etc.which
achieved state of the art results in their time.

In the medical domain these models were trained
on biomedical corpora like PubMed and MIMIC-
IIT giving to rise of domain specific pre-trained
language models (PLMs) like BioBERT (Lee et al.,
2019), BioBART (Yuan et al., 2022), and clini-
calBERT (Huang et al., 2020) which did much
better in medical domain tasks. There are efforts
in summarizing diverse types of content, includ-
ing biomedical literature using these models like
(Soleimani et al., 2022), consumer healthcare ques-
tions ((Yadav et al., 2022); (Yadav and Caragea,
2022); (Yadav et al., 2023); (Savery et al., 2020)),
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Question

| was just diagnosed with gallstones in my gall bladder | really don’t want to have surgery and have been told that there are other |
| ways to get rid of the stones. Suggestions? |

Answers

Most gallstones are made of pure
cholesterol. You might iry a diet with
low fat and very low saturated fats. I've
had the surgery, and it really isnt a big

Have you seen a gastroenterologist?
They can do a minimally invasive
procedure called an ERCP. ... freely. |
had the surgery myself about 10 years
deal. ago. ... after it's over. A diet high in fat
will make gallbladder disease worse, ...

|/ A
The best remedy is surgery. | had
surgery to have kidney stones
removed. The surgery isn’t as
bad as you think it may be.

with an ERCF.

. AN
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'

Perspective-based summaries

Information

Reducing saturated fats may shrink gallstones as they're mostly made of cholesterol. Gallstone pain occurs when the
gallbladder squeezes to aid digestion on fat consumption. An ERCP procedure by a gastroenterolegist can remove

stones stuck in the duct leading to the intestine.

Gallstones left untreated can harm the gallbladder, causing severe infection and potentially death.

To eliminate gallstones without surgery, a low-fat diet, particularly low in saturated fats, as it may help reduce pain

Suggestion

associated with gallbladder disease. Ultimately, surgical or medical intervention like ERCP may be necessary for

complete remaval if stones don't pass naturally.

Experience

Question

Multiple people shared their experience of undergoing surgery to remove kidney stones, assuring that the procedure
wasn't as daunting as expected. Despite the possibility of post-operative discomfort, the relief from the original pain was

significant.

It was asked if the person had seen a gastroenterologist

Figure 1: Task A: Span Prediction (highlighted spans), Task B: Summary Generation. (Source - (Agarwal et al.,

2025))

and medical notes (Hsu et al., 2020).

(Fabbri et al., 2021) work on a QA dataset
with sentence-level spans with query-focused multi-
perspective abstractive summarization. (Joshi et al.,
2020a) and (Michalopoulos et al., 2022) accom-
plish the same by exploiting local and global fea-
tures of the text. CTRLsum (He et al., 2020) in-
troduces a novel framework for controllable sum-
marization that allows interaction during inference
through textual input. CQASumm (Chowdhury
and Chakraborty, 2018) highlight the issues with
high-variance, opinion-based CQA data often hav-
ing contradicting opinion and the challenges of
applying Multi document summarization (MDS)
on it.

In AnswerSumm (Fabbri et al., 2022), they use
a model to extract sentences similar to the query.
SpanBERT (Joshi et al., 2020b) extends BERT with
a pre-training method, to better represent and pre-
dict spans of text. (Abaho et al., 2021) use both
word-level and sentence-level attention to jointly
perform span detection and outcome classification
in the medical domain.

In this task the spans need not be complete sen-
tences but rather can be phrases as well. The orga-
nizers of this task have annotated the dataset and
proposed a prompt-driven control-label summariza-

tion model for the same.

3 Dataset

The dataset (Naik et al., 2024) used for the Per-
AnsSumm 2025 shared task consists of health-
related questions and user-generated answers anno-
tated with perspective categories. Each sample is a
community Question-Answer thread (CQA) which
includes a health-related question, an optional con-
text providing additional background information,
and a set of user answers. Specific spans within the
answers are labeled according to one of five per-
spectives: Cause, Suggestion, Experience, Ques-
tion, and Information. Additionally, each sample
includes summaries that concisely represent the
extracted spans for each perspective.

3.1 Dataset Statistics

The dataset is divided into training and valida-
tion sets, comprising 2,236 and 959 samples, re-
spectively. During our Exploratory Data Analysis
(EDA), we found that 4 samples in the training
set and 3 samples in the validation set were incor-
rectly annotated. The spans in these samples were
selected from the user context instead of the user
answers, which goes against the task instructions.
As aresult, we discarded these samples, leaving us

399



with 2,232 training samples and 956 validation sam-
ples. Among the validation samples, we randomly
selected 300 samples as a test set to evaluate both
open-source LL.Ms and proprietary models. The
remaining 656 samples were used as a validation
set for fine-tuning open-source LLMs.

Context availability varies, with 821 training
samples containing context and 1,415 without it,
while in the validation set, 350 samples include
context and 606 do not include context.

The distribution of perspective categories reveals
that Information and Suggestion are the most preva-
lent, whereas Cause and Question are less frequent.
The complete label distribution across training and
validation sets is illustrated in Figure 2.

A similar trend is observed in span counts, where
Information spans appear most frequently, followed
by Suggestion, Experience, Cause, and Question.
The full span distribution can be seen in Figure 3.

4 Experimentations

4.1 Span Prediction

Span prediction involves identifying and classi-
fying relevant spans within user responses based
on predefined perspective categories. The models
were evaluated using multiple performance met-
rics such as Classification Macro F1, Classifica-
tion Weighted F1, Strict Matching Precision, Strict
Matching Recall, Strict Matching F1, Proportional
Matching Precision, Proportional Matching Recall,
and Proportional Matching F1, ensuring a compre-
hensive assessment of both classification accuracy
and span alignment.

4.1.1 LLM Fine-tuning

To effectively predict spans corresponding to dif-
ferent perspectives, we fine-tuned multiple open-
source large language models, including Llama-3.1
8B (base model), Llama-3.2 3B (base model), and
Gemma-2 9B (4-bit quantized model). The mod-
els were trained on the training set with Unsloth
(Daniel Han and team, 2023) using zero-shot fine-
tuning for 3 epochs with a learning rate of 2e-4 and
validated on the validation set. The models were
evaluated on the test set.

Among all models, the Llama-3.1 8B (base
model) achieved the highest scores in classifica-
tion, with a Classification Macro F1 of 0.7890,
Classification Weighted F1 of 0.8360, and Strict
Matching F1 of 0.2421. Meanwhile, the Gemma-2
9B (4-bit quantized model) outperformed others in

proportional matching, achieving the highest Pro-
portional Matching F1 score of 0.6652. A detailed
comparison of these results is presented in Table 1.

Perspective Distribution
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Figure 2: This figure shows the distribution of perspec-
tive categories in the training and validation datasets.
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Figure 3: This figure shows the distribution of spans
across perspective categories in the training and valida-
tion datasets. Each perspective category may contain
one or more spans.

4.1.2 Proprietary Models

In addition to fine-tuning open-source models, we
experimented with proprietary models, including
GPT-40, ol, Gemini-1.5 Pro, and Gemini-2 Flash
Experimental. These models were evaluated us-
ing few-shot prompting, where we provided eight
examples as context. We carefully selected these
eight examples to mirror the label distribution in
the training set. Two examples contained only one
perspective, while one example included all five
perspectives. The remaining examples featured
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Metric L3.1-8B L3.2-3B G2-9B(4b) o1 01(50) FL FL (50) o1 (CoT) 4o Pro
CMF1 0.7890 0.6759 0.7102  0.7624 0.7601 0.7317 0.7102 0.7760 0.6770 0.7279
CWF1 0.8360 0.7545 0.8135  0.8404 0.8315 0.8305 0.8213 0.8464 0.7443 0.8258
SMP 0.2734 0.0958 0.0972  0.0611 0.0553 0.0627 0.0616 0.0432 0.0506 0.0618
SMR 02172 0.0758 0.0961  0.1114 0.0657 0.1118 0.1097 0.0568 0.0613 0.1089
SMF1 0.2421 0.0846 0.0967  0.0789 0.0601 0.0804 0.0789 0.0491 0.0554 0.0789
PMP 0.7384 0.6623 0.6479  0.6150 0.5903 0.6856 0.6759 0.6030 0.6615 0.6856
PMR 0.5436 0.5012 0.6833  0.6582 0.5358 0.6405 0.6674 0.5117 0.4474 0.6727
PMF1 0.6262 0.5706 0.6652  0.6359 0.5617 0.6623 0.6716 0.5536 0.5338 0.6791

Table 1: Performance comparison of various open-sourced and proprietary large language models for the span
prediction task on the 300-sample holdout test set. C M F1 and C W F1 correspond to Classification Macro F1
and Classification Weighted F1. SM P, S M R, and S M F1 correspond to Strict Matching Precision, Strict
Matching Recall, and Strict Matching F1-score. P M P, P M R, and P M F1 correspond to Proportional
Matching Precision, Proportional Matching Recall, and Proportional Matching F1-score. 1.3.1-8B, 1.3.2-3B,
G2-9B (4b), o1 (50), FL (50), o1 (CoT), 40, and Pro represent Llama-3.1 8B, Llama-3.2 3B, Gemma-2 9B
(4-bit), o1 (50-shot), Gemini-2 Flash Experimental (50-shot), o1 (Chain-of-Thought Prompting), GPT-40, and

Gemini-1.5 Pro respectively.

Metric G2-9B (4b) L3.1-8 40 ol ol (CoT) Pro FL

Rouge-1 0.5457 0.4812 0.4911 04976  0.3380 0.5020 0.5323
Rouge-2 0.2861 0.2218 0.2337 0.2292  0.1160  0.2339 0.2713
Rouge-L 0.4909 0.4187 0.4211 04239 0.2810 0.4424 0.4765
BERTScore 0.9099 0.8611 0.8714 0.8972  0.8230  0.9064 0.9103
METEOR 0.4754 0.4529 0.4227 04176 02530 04154 0.4494
BLEU 0.2137 0.1923 0.1691 0.1992  0.0570  0.1792 0.2018

Table 2: Performance comparison of various open-sourced and proprietary large language models for the

summarization task on the 300-sample holdout test set.

two, three, or four perspectives. The evaluation
was conducted on the test set.

Among all proprietary models, ol with Chain-
of-Thought (CoT) prompting gave us the best clas-
sification results among all proprietary models.
Gemini-2 Flash Experimental performed best in
Strict Matching F1, while Gemini-1.5 Pro achieved
the highest Proportional Matching F1.

To assess the impact of increasing the number
of examples in few-shot prompting, we conducted
an additional experiment by increasing the number
of examples from 8 to 50, selected using random
sampling for ol and Gemini-2 Flash Experimental.
The results showed that providing more examples
did not improve performance. In fact, for ol, the
Strict Matching F1 decreased from 0.0921 (8 exam-
ples) to 0.0601 (50 examples), and the Proportional
Matching F1 dropped from 0.6359 to 0.5617. Sim-
ilarly, for Gemini-2 Flash Experimental, the Classi-

fication Macro F1 declined from 0.7317 to 0.7102,
and the Classification Weighted F1 decreased from
0.8305 to 0.8213. Although Strict Matching F1
and Proportional Matching F1 showed slight im-
provements, the gains were marginal. A detailed
comparison of all the experiments is presented in
Table 1.

4.2 Summarization

Once the relevant spans were identified for each
perspective category, the next step was to gener-
ate a summary that effectively captured the key
information from those spans. The models were
evaluated using standard metrics such as ROUGE-
1, ROUGE-2, ROUGE-L, BERTScore, METEOR,
and BLEU.

4.2.1 LLM Fine-tuning

We fine-tuned Gemma-2 9B (4-bit quantized
model) and Llama-3.1 8B (base model) to generate
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Metric S1 S2 S3 S4 SS S6 S7 S8 S9

A+B 0.3964 0.4427 0.3940 0.4440 0.4083 0.4495 0.3833 0.4467 0.4407
CMF1 0.8628 0.7933 0.8656 0.8509 0.8581 0.8656 0.7849 0.8656 0.8656
CWF1 0.9092 0.8634 0.9140 0.8992 0.8900 0.9140 0.8396 0.9140 0.9140
SMP 0.1352 0.1768 0.1491 0.1775 0.1748 0.1765 0.1552 0.1765 0.1765
SMR 0.1257 0.2667 0.1562 0.2705 0.1162 0.2743 0.1200 0.2743 0.2743
SMF1 0.1303 0.2126 0.1526 0.2143 0.1396 0.2148 0.1353 0.2148 0.2148
PMP 0.5189 0.6793 0.5892 0.6641 0.5275 0.6597 0.4420 0.6597 0.6597
PMR 0.6857 0.7396 0.5648 0.7076 0.6350 0.7159 0.6145 0.7159 0.7159
PMF1 0.5907 0.7081 0.5767 0.6852 0.5763 0.6866 0.5142 0.6866 0.6866
A 0.5434 0.5947 0.5478 0.5996 0.5353 0.6052 0.4964 0.6052 0.6052
ROUGE-1 0.3580 0.4129 0.3407 0.4201 03533 0.4345 0.3318 0.4243 0.4048
ROUGE-2 0.1432 0.1818 0.1058 0.1812 0.1574 0.1869 0.1434 0.1753 0.1542
ROUGE-L 0.3210 0.3714 0.2881 0.3763 0.3184 0.3878 0.3017 0.3765 0.3510
BERTScore 0.8038 0.8048 0.8531 0.8318 0.7385 0.8658 0.7220 0.8621 0.8584
METEOR 0.3226 0.3713 0.2572 0.3719 0.3190 0.3844 0.3041 0.3509 0.3474
BLEU 0.0971 0.1189 0.0602 0.1127 0.1088 0.1124 0.0959 0.1134 0.1047
B_Relevance 0.3409 0.3768 0.3175 0.3823 0.3326 0.3953 0.3165 0.3838 0.3701
AlignScore 0.3665 0.4458 0.4043 0.4307 0.4359 0.4260 0.3991 0.4308 0.4369
SummaC 0.2433 0.2671 0.2291 0.2696 0.2785 0.2701 0.2750 0.2715 0.2570
B_Factuality 0.3049 0.3565 0.3167 0.3502 0.3572 0.3480 0.3370 0.3512 0.3470

Table 3: Performance comparison across all submissions evaluated on the provided 50 samples.

summaries from the predicted spans. Both mod-
els were trained on the training set with Unsloth
(Daniel Han and team, 2023) using zero-shot fine-
tuning for 3 epochs with a learning rate of 2e-4,
validated on the validation set, and evaluated on
the test set.

Among these two, Gemma-2 9B (4-bit quantized
model) consistently outperformed the Llama-3.1
8B model across all evaluation metrics. A detailed
comparison of the results is presented in Table 2.

4.2.2 Proprietary Models

In addition to fine-tuned models, we explored pro-
prietary models, including GPT-40, o1, Gemini-
1.5 Pro, and Gemini-2 Flash Experimental, using
a few-shot prompting approach with 8 examples.
We used the same examples which were used the
span prediction task. These models were evaluated
on the test set. Among these models, Gemini-2
Flash Experimental consistently achieved the high-
est scores across all evaluation metrics. A detailed
comparison of the results is presented in Table 2.

5 Submissions

During the competition’s evaluation phase, we
were given 50 test samples and made a total of
nine submissions, each exploring different model
configurations and techniques.

In our first submission, we fine-tuned the
Gemma-2 9B (4-bit quantized) model on the train-
ing data and validated it on the validation data
for span prediction and summarization. The sec-
ond submission (S2) used Gemini-2 Flash Exper-
imental, a proprietary model, for both tasks. The
third submission (S3) introduced ol with Chain-
of-Thought (CoT) prompting to enhance reasoning
capabilities.

In the fourth submission (S4), we used ol (CoT)
for classification and Gemini-2 Flash Experimental
for span extraction and summarization. However,
Gemini-2 Flash Experimental did not always ad-
here to the class predictions from ol, leading to
inconsistencies in output. For the fifth submission
(S5), we fine-tuned Gemma-2 9B (4-bit quantized)
using a combined training and validation set.

Our sixth submission (S6) achieved the best over-
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Figure 4: This figure illustrates the workflow of our best submission.

all performance. Here, we used ol and Gemini-2
Flash Experimental for span extraction, ensuring
that all classes predicted by ol had corresponding
spans. We noticed that Gemini’s perspective classi-
fication was a proper subset of ol’s. If Gemini-2
Flash Experimental did not generate spans for a
perspective category but ol did, we retained those
from ol. When both models provided spans for a
particular perspective, we used those from Gemini-
2 Flash Experimental and discarded o1’s. The final
set of spans was then passed to Gemini-2 Flash
Experimental for summarization. This submission
achieved the highest Task A+B average score of
0.4495. The complete workflow is illustrated in
Figure 4.

While evaluating the test data, we observed that
all 50 samples included context, whereas two-thirds
of the training data lacked it. To account for this,
our seventh submission (S7) fine-tuned Gemma-
2 9B using only samples that contained context.
In the eigth submission (S8), we used ol for clas-
sification, Gemini-2 Flash Experimental for span
extraction, and increased the few-shot prompting
examples from 8 to 16 to enhance summarization
performance.

For our final submission (S9), ol was used for
span extraction, and Gemini-1.5 Pro was used for
summarization. A detailed breakdown of the scores
for all submissions is provided in Table 3.

In Table 3, the metric (A+B) denotes the com-
bined average score of Task A and B, and (A)

represents the score for Task A. The metrics
(B_Relevance) and (B_Factuality) correspond to
the relevance and factuality scores for Task B, re-
spectively. AlignScore (Zha et al., 2023) and Sum-
maC (Laban et al., 2022) are factual consistency
evaluation metrics, designed to assess the align-
ment of generated summaries with the source text.

6 Discussion

In the final submissions we notice that ol CoT
performs well on the classification task (to predict
perspectives present in user answers) as seen in Ta-
ble 3. This is in line with our evaluations on the test
set as well, where the classification weighted F1 of
ol CoT was the best as seen in Table 1. For the
span extraction task, finetuned open-source models
were performing on par with proprietary ones like
Gemini-2 Flash Experimental and 1.5 Pro as seen
in Table 1. For summarization Gemma-2 9B (4 bit)
beats all other models as seen in Table 2. This
demonstrates the efficiency of finetuning Large
Language Models on downsteam tasks where even
smaller models (less than 10 B parameters) can
compete with and beat larger models like GPT 40
etc.

However, in the final submissions we see a large
gap between open-sourced models like Gemma-2
9B (4-bit) (Submision 1) and proprietary models
like Gemini-2 Flash Experimental (Submission 2)
as seen in Table 3. The reason for such discrepancy
can be due to difference in data distribution of the
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training and validation set released earlier and the
final evaluation set of 50 samples on which the sub-
missions were scored. One difference highlighted
earlier was that the final evaluation set had the op-
tional context section for all samples whereas, the
training and validation set had approximately two-
thirds of the samples without the context section.
Another reason could be an inherent bias due to a
small set of just 50 samples.

7 Conclusion

We test multiple open-source and proprietary
LLM’s for the task. Finetuning open-source
smaller models like Llama 8b, 3b and Gemma
9b models yielded significant improvements from
their base variants and even outperformed GPT
40. This is likely because learning is significantly
higher from finetuning when compared to in- con-
text Learning with few shot examples. It is also
difficult to capture all the details of the data in the
few shot examples which is another reason why
finetuning performs better. In our experiments, we
observed that increasing the number of few-shot
examples did not enhance performance. Hence
finetuning is the better alternative.

Regardless, few proprietary LLM’s particularly
Gemini-2 Flash Experimental was able to beat the
finetuned smaller models like Llama and Gemma
on the final evaluation set of 50 samples on which
submissions were scored. Possible reasons for a
significant drop in performance during the final
evaluation is discussed in the Discussions section.
We also try a CoT prompt with ol to accomplish
both tasks in one go. We notice that the classifica-
tion (perspective prediction) of ol CoT is the best
of all submissions (Table 3) which is largely in line
with our experimentations (Table 1), but the spans
and summaries of Gemini-2 Flash Experimental is
better. Hence, we merge the spans of both mod-
els and choose Gemini’s spans wherever possible.
For perspectives where Gemini does not generate
any spans but ol does, we go ahead with the spans
from ol. This ensures we utilize the better classi-
fication performance of ol and use Gemini’s span
and summarization.

8 Limitations

The experiments carried out were mainly on a few
selected open source and proprietary models. There
are a number of open-sourced larger models which
could have been finetuned for better performance.

However, due to insufficient resources and time
constraints we keep it as a possible future work. As
for the proprietary models, more effort can be put
in the prompting of these models. Things like a
greater number of few shot prompts, different few
shot examples can be tried. An ensemble approach
using ol and Gemini-2 Flash Experimental for span
prediction, combined with the Gemma-2 9B model
for summarization, could also be explored for im-
proved performance.

9 Ethical Consideratons

Given that our dataset is from the medical and
healthcare domain we take additional effort to com-
ply with all ethical guidelines. As per the shared
tasks instructions we use this dataset strictly for the
task experiments and have not leaked this data to
any third party. Since the data contains answers
from multiple users there are some personal identi-
fication information like email addresses, website
links etc. We make no effort to make contact or
connect to these users on their social media han-
dles. Also, we have cited all intellectual artifacts
and resources to the best of our knowledge, en-
suring proper attribution and adherence to ethical
research practices.
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